1
|
Hill C, Duffy S, Coulter T, Maxwell AP, McKnight AJ. Harnessing Genomic Analysis to Explore the Role of Telomeres in the Pathogenesis and Progression of Diabetic Kidney Disease. Genes (Basel) 2023; 14:609. [PMID: 36980881 PMCID: PMC10048490 DOI: 10.3390/genes14030609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 03/06/2023] Open
Abstract
The prevalence of diabetes is increasing globally, and this trend is predicted to continue for future decades. Research is needed to uncover new ways to manage diabetes and its co-morbidities. A significant secondary complication of diabetes is kidney disease, which can ultimately result in the need for renal replacement therapy, via dialysis or transplantation. Diabetic kidney disease presents a substantial burden to patients, their families and global healthcare services. This review highlights studies that have harnessed genomic, epigenomic and functional prediction tools to uncover novel genes and pathways associated with DKD that are useful for the identification of therapeutic targets or novel biomarkers for risk stratification. Telomere length regulation is a specific pathway gaining attention recently because of its association with DKD. Researchers are employing both observational and genetics-based studies to identify telomere-related genes associated with kidney function decline in diabetes. Studies have also uncovered novel functions for telomere-related genes beyond the immediate regulation of telomere length, such as transcriptional regulation and inflammation. This review summarises studies that have revealed the potential to harness therapeutics that modulate telomere length, or the associated epigenetic modifications, for the treatment of DKD, to potentially slow renal function decline and reduce the global burden of this disease.
Collapse
Affiliation(s)
- Claire Hill
- Centre for Public Health, Queen’s University of Belfast, Belfast BT12 6BA, UK
| | - Seamus Duffy
- Centre for Public Health, Queen’s University of Belfast, Belfast BT12 6BA, UK
| | - Tiernan Coulter
- Centre for Public Health, Queen’s University of Belfast, Belfast BT12 6BA, UK
| | - Alexander Peter Maxwell
- Centre for Public Health, Queen’s University of Belfast, Belfast BT12 6BA, UK
- Regional Nephrology Unit, Belfast City Hospital, Belfast BT9 7AB, UK
| | - Amy Jayne McKnight
- Centre for Public Health, Queen’s University of Belfast, Belfast BT12 6BA, UK
| |
Collapse
|
2
|
Mucosal Immune System Dysregulation in the Pathogenesis of IgA Nephropathy. Biomedicines 2022; 10:biomedicines10123027. [PMID: 36551783 PMCID: PMC9775168 DOI: 10.3390/biomedicines10123027] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/20/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022] Open
Abstract
The mucosal immune system, via a dynamic immune network, serves as the first line of defense against exogenous antigens. Mucosal immune system dysregulation is closely associated with the pathogenesis of immunoglobulin A nephropathy (IgAN), as illustrated by IgAN having the clinical feature of gross hematuria, often concurrent with mucosal infections. Notably, previous studies have demonstrated the efficacy of tonsillectomy and found that a targeted-release formulation of budesonide reduced proteinuria in patients with IgAN. However, it remains unclear how exogenous antigens interact with the mucosal immune system to induce or exacerbate IgAN. Thus, in this review, we focus on the dysregulation of mucosal immune response in the pathogenesis of IgAN.
Collapse
|
3
|
Smyth LJ, Patterson CC, Swan EJ, Maxwell AP, McKnight AJ. DNA Methylation Associated With Diabetic Kidney Disease in Blood-Derived DNA. Front Cell Dev Biol 2020; 8:561907. [PMID: 33178681 PMCID: PMC7593403 DOI: 10.3389/fcell.2020.561907] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 09/15/2020] [Indexed: 12/23/2022] Open
Abstract
A subset of individuals with type 1 diabetes will develop diabetic kidney disease (DKD). DKD is heritable and large-scale genome-wide association studies have begun to identify genetic factors that influence DKD. Complementary to genetic factors, we know that a person’s epigenetic profile is also altered with DKD. This study reports analysis of DNA methylation, a major epigenetic feature, evaluating methylome-wide loci for association with DKD. Unique features (n = 485,577; 482,421 CpG probes) were evaluated in blood-derived DNA from carefully phenotyped White European individuals diagnosed with type 1 diabetes with (cases) or without (controls) DKD (n = 677 samples). Explicitly, 150 cases were compared to 100 controls using the 450K array, with subsequent analysis using data previously generated for a further 96 cases and 96 controls on the 27K array, and de novo methylation data generated for replication in 139 cases and 96 controls. Following stringent quality control, raw data were quantile normalized and beta values calculated to reflect the methylation status at each site. The difference in methylation status was evaluated between cases and controls; resultant P-values for array-based data were adjusted for multiple testing. Genes with significantly increased (hypermethylated) and/or decreased (hypomethylated) levels of DNA methylation were considered for biological relevance by functional enrichment analysis using KEGG pathways. Twenty-two loci demonstrated statistically significant fold changes associated with DKD and additional support for these associated loci was sought using independent samples derived from patients recruited with similar inclusion criteria. Markers associated with CCNL1 and ZNF187 genes are supported as differentially regulated loci (P < 10–8), with evidence also presented for AFF3, which has been identified from a meta-analysis and subsequent replication of genome-wide association studies. Further supporting evidence for differential gene expression in CCNL1 and ZNF187 is presented from kidney biopsy and blood-derived RNA in people with and without kidney disease from NephroSeq. Evidence confirming that methylation sites influence the development of DKD may aid risk prediction tools and stimulate research to identify epigenomic therapies which might be clinically useful for this disease.
Collapse
Affiliation(s)
- Laura J Smyth
- Centre for Public Health, Queen's University Belfast, Belfast, United Kingdom
| | | | - Elizabeth J Swan
- Centre for Public Health, Queen's University Belfast, Belfast, United Kingdom
| | - Alexander P Maxwell
- Centre for Public Health, Queen's University Belfast, Belfast, United Kingdom.,Regional Nephrology Unit, Belfast City Hospital, Belfast, United Kingdom
| | - Amy Jayne McKnight
- Centre for Public Health, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
4
|
Abstract
The global prevalence of diabetic nephropathy is rising in parallel with the increasing incidence of diabetes in most countries. Unfortunately, up to 40 % of persons diagnosed with diabetes may develop kidney complications. Diabetic nephropathy is associated with substantially increased risks of cardiovascular disease and premature mortality. An inherited susceptibility to diabetic nephropathy exists, and progress is being made unravelling the genetic basis for nephropathy thanks to international research collaborations, shared biological resources and new analytical approaches. Multiple epidemiological studies have highlighted the clinical heterogeneity of nephropathy and the need for better phenotyping to help define important subgroups for analysis and increase the power of genetic studies. Collaborative genome-wide association studies for nephropathy have reported unique genes, highlighted novel biological pathways and suggested new disease mechanisms, but progress towards clinically relevant risk prediction models for diabetic nephropathy has been slow. This review summarises the current status, recent developments and ongoing challenges elucidating the genetics of diabetic nephropathy.
Collapse
Affiliation(s)
- Amy Jayne McKnight
- Nephrology Research Group, Centre for Public Health, Queen's University Belfast, c/o Regional Genetics Centre, Level A, Tower Block, Belfast City Hospital, Lisburn Road, Belfast, BT9 7AB, UK,
| | | | | |
Collapse
|
5
|
Smyth LJ, Duffy S, Maxwell AP, McKnight AJ. Genetic and epigenetic factors influencing chronic kidney disease. Am J Physiol Renal Physiol 2014; 307:F757-76. [PMID: 25080522 DOI: 10.1152/ajprenal.00306.2014] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Chronic kidney disease (CKD) has become a serious public health problem because of its associated morbidity, premature mortality, and attendant healthcare costs. The rising number of persons with CKD is linked with the aging population structure and an increased prevalence of diabetes, hypertension, and obesity. There is an inherited risk associated with developing CKD, as evidenced by familial clustering and differing prevalence rates across ethnic groups. Previous studies to determine the inherited risk factors for CKD rarely identified genetic variants that were robustly replicated. However, improvements in genotyping technologies and analytic methods are now helping to identify promising genetic loci aided by international collaboration and multiconsortia efforts. More recently, epigenetic modifications have been proposed to play a role in both the inherited susceptibility to CKD and, importantly, to explain how the environment dynamically interacts with the genome to alter an individual's disease risk. Genome-wide, epigenome-wide, and whole transcriptome studies have been performed, and optimal approaches for integrative analysis are being developed. This review summarizes recent research and the current status of genetic and epigenetic risk factors influencing CKD using population-based information.
Collapse
Affiliation(s)
- L J Smyth
- Nephrology Research, Centre for Public Health, Queen's University of Belfast, Belfast, Northern Ireland
| | - S Duffy
- Nephrology Research, Centre for Public Health, Queen's University of Belfast, Belfast, Northern Ireland
| | - A P Maxwell
- Nephrology Research, Centre for Public Health, Queen's University of Belfast, Belfast, Northern Ireland
| | - A J McKnight
- Nephrology Research, Centre for Public Health, Queen's University of Belfast, Belfast, Northern Ireland
| |
Collapse
|
6
|
McKnight AJ, McKay GJ, Maxwell AP. Genetic and epigenetic risk factors for diabetic kidney disease. Adv Chronic Kidney Dis 2014; 21:287-96. [PMID: 24780457 DOI: 10.1053/j.ackd.2014.03.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 03/10/2014] [Indexed: 12/22/2022]
Abstract
Diabetes is increasing at daunting rates worldwide, and approximately 40% of affected individuals will develop kidney complications. Diabetic kidney disease (DKD) is the leading cause of end-stage kidney disease, and there are significant healthcare costs providing appropriate renal replacement therapies to affected individuals. For several decades, investigators have sought to discover inherited risk factors and biomarkers for DKD. In recent years, advances in high-throughput laboratory techniques and computational analyses, coupled with the establishment of multicenter consortia, have helped to identify genetic loci that are replicated across multiple populations. Several genome-wide association studies (GWAS) have been conducted for DKD with further meta-analysis of GWAS and comprehensive "single gene" meta-analyses now published. Despite these efforts, much of the inherited predisposition to DKD remains unexplained. Meta-analyses and integrated-omics pathway studies are being used to help elucidate underlying genetic risks. Epigenetic phenomena are increasingly recognized as important drivers of disease risk, and several epigenome-wide association studies have now been completed. This review describes key findings and ongoing genetic and epigenetic initiatives for DKD.
Collapse
Affiliation(s)
- Amy Jayne McKnight
- Nephrology Research, Centre for Public Health, Queen's University of Belfast, Belfast, Northern Ireland, United Kingdom.
| | - Gareth J McKay
- Nephrology Research, Centre for Public Health, Queen's University of Belfast, Belfast, Northern Ireland, United Kingdom
| | - Alexander P Maxwell
- Nephrology Research, Centre for Public Health, Queen's University of Belfast, Belfast, Northern Ireland, United Kingdom
| |
Collapse
|
7
|
McKnight AJ, Patterson CC, Mollsten A, Vance DR, Tarnow L, Maxwell AP. Review of Genetic Association in the SOD2 Gene with Chronic Kidney Disease: Case-Control Studies and Meta-Analysis Confirm Association with Diabetic Nephropathy. ACTA ACUST UNITED AC 2014. [DOI: 10.4081/nr.2012.e12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The SOD2 gene encodes a mitochondrial protein that is involved with response to oxidative stress and cellular proliferation. The diabetic milieu, in particular hyperglycemia, results in the overproduction of superoxide and formation of secondary reactive oxygen species contributing to the accumulation of DNA, protein and cellular damage. Functional genetic variants within the SOD2 gene are postulated to influence renal injury. We sought to resolve the inconsistent conclusions of several studies examining the SOD2 gene for association with chronic kidney disease, in particular diabetic nephropathy. We genotyped a total of 3,913 individuals with diabetic nephropathy, glomerulonephritis and/or end-stage renal disease, reviewed published literature, and conducted a subsequent meta-analysis. Using χ2 test, our independent case-control study for diabetic nephropathy revealed evidence for association of rs4880 (P=0.01). However, this was ameliorated by adjusting for age at diagnosis, duration, sex and recruitment centre in the logistical model. Genotype counts were obtained for all published studies having genotyped this SNP and a meta-analysis was performed on a total of 3,949 individuals with type 1 diabetes mellitus (cases n=2,184; controls, n=1,765). No significant heterogeneity was observed (P=0.5) and association with diabetic nephropathy was supported by P=0.005 (odds ratio 0.87, 95% confidence interval: 0.79–0.96). There is biological evidence that this amino-acid changing SNP, rs4880, directly influences enzymatic activity of the SOD2 gene product. We conclude that the functional, clinically associated rs4880 is important in the pathogenesis of diabetic nephropathy.
Collapse
Affiliation(s)
- Amy Jayne McKnight
- Nephrology Research Group, Centre for Public Health, Queen's University of Belfast, UK
| | | | - Anna Mollsten
- Department of Clinical Sciences, Pediatrics, Umeå University, Sweden
| | - Dwaine R. Vance
- Nephrology Research Group, Centre for Public Health, Queen's University of Belfast, UK
| | | | - Alexander P. Maxwell
- Nephrology Research Group, Centre for Public Health, Queen's University of Belfast, UK
| |
Collapse
|
8
|
McKnight AJ, Pettigrew KA, Patterson CC, Kilner J, Sadlier DM, Maxwell AP. Investigation of the association of BMP gene variants with nephropathy in Type 1 diabetes mellitus. Diabet Med 2010; 27:624-30. [PMID: 20546278 DOI: 10.1111/j.1464-5491.2010.02976.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIMS Diabetic nephropathy is a leading cause of end-stage renal disease. The transforming growth factor beta-bone morphogenic protein (BMP) pathway is implicated in the pathogenesis of diabetic nephropathy. The BMP2, BMP4 and BMP7 genes are located near linkage peaks for renal dysfunction, and we hypothesize that genetic polymorphisms in these biological and positional candidate genes may be risk factors for diabetic kidney disease. METHODS The BMP7 gene was screened, variants identified and allele frequencies determined by bidirectionally sequencing 46 individuals to facilitate selection of tag SNPs (n = 4). For BMP2 and BMP4 genes, data were downloaded for 19 single nucleotide polymorphisms (SNPs) from the International HapMap project and six tag SNPs selected. RESULTS The BMP7 gene was screened for novel genetic polymorphisms, haplotypes were identified, an appropriate subset of variants selected for the investigation of common genetic risk factors, and BMP2, BMP4 and BMP7 genes assessed for association with diabetic nephropathy in 1808 individuals. Thirty-two SNPs were identified, of which 11 were novel, including an amino-acid changing SNP (+63639C>T). No significant differences (P > 0.2) were observed when comparing genotype or allele or haplotype frequencies between 864 individuals with Type 1 diabetes and nephropathy compared with 944 individuals with Type 1 diabetes without nephropathy, stratified by recruitment centre. CONCLUSIONS Common polymorphisms in these BMP genes do not strongly influence genetic susceptibility to diabetic nephropathy in White individuals with Type 1 diabetes mellitus.
Collapse
Affiliation(s)
- A J McKnight
- Nephrology Research Group, Queen's University of Belfast, Belfast, UK.
| | | | | | | | | | | |
Collapse
|
9
|
McKnight AJ, Currie D, Patterson CC, Maxwell AP, Fogarty DG. Targeted genome-wide investigation identifies novel SNPs associated with diabetic nephropathy. THE HUGO JOURNAL 2010; 3:77-82. [PMID: 21119753 DOI: 10.1007/s11568-010-9133-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Revised: 10/23/2009] [Accepted: 02/08/2010] [Indexed: 10/19/2022]
Abstract
Loci contributing to complex disease have been identified by focusing on genome-wide scans utilising non-synonymous single nucleotide polymorphisms (nsSNPs). We employed Illumina's HNS12 BeadChip (13,917 high-value SNPs) which was specifically designed to capture nsSNPs and ideally complements more dense genome-wide association studies that fail to consider many of these putatively functional variants. The HNS12 panel also includes 870 tag SNPs covering the major histocompatibility region. All individuals genotyped in this study were Caucasians with (cases) and without (controls) diabetic nephropathy. About 449 individuals with type 2 diabetes (203 cases, 246 controls) were genotyped in the initial study. 1,467 individuals with type 1 diabetes (718 cases, 749 controls) were genotyped in the follow up study. 11,152 SNPs were successfully analysed and ranked for association with diabetic nephropathy based on significance (P) values. The top ranked 32 SNPs were subsequently genotyped using MassARRAY iPLEX(™) and TaqMan technologies to investigate association of these polymorphisms with nephropathy in individuals with type 1 diabetes. The top ranked nsSNP, rs1543547 (P = 10(-5)), is located in RAET1L, a major histocompatibility class I-related gene at 6q25.1. Of particular interest, multiple nsSNPs within the top ranked (0.2%) SNPs are within several plausible candidate genes for nephropathy on 3q21.3 and 6p21.3.
Collapse
|
10
|
McKnight AJ, Currie D, Maxwell AP. Unravelling the genetic basis of renal diseases; from single gene to multifactorial disorders. J Pathol 2010; 220:198-216. [PMID: 19882676 DOI: 10.1002/path.2639] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Chronic kidney disease is common with up to 5% of the adult population reported to have an estimated glomerular filtration rate of < 60 ml/min/1.73 m(2). A large number of pathogenic mutations have been identified that are responsible for 'single gene' renal disorders, such as autosomal dominant polycystic kidney disease and X-linked Alport syndrome. These single gene disorders account for < 15% of the burden of end-stage renal disease that requires dialysis or kidney transplantation. It has proved more difficult to identify the genetic susceptibility underlying common, complex, multifactorial kidney conditions, such as diabetic nephropathy and hypertensive nephrosclerosis. This review describes success to date and explores strategies currently employed in defining the genetic basis for a number of renal disorders. The complementary use of linkage studies, candidate gene and genome-wide association analyses are described and a collation of renal genetic resources highlighted.
Collapse
Affiliation(s)
- Amy J McKnight
- Nephrology Research Group, Queen's University of Belfast, Belfast BT9 7AB, Northern Ireland, UK
| | | | | |
Collapse
|
11
|
McKnight AJ, Patterson CC, Pettigrew KA, Savage DA, Kilner J, Murphy M, Sadlier D, Maxwell AP. A GREM1 gene variant associates with diabetic nephropathy. J Am Soc Nephrol 2010; 21:773-81. [PMID: 20150533 DOI: 10.1681/asn.2009070773] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Gremlin, a cell growth and differentiation factor, promotes the development of diabetic nephropathy in animal models, but whether GREM1 gene variants associate with diabetic nephropathy is unknown. We comprehensively screened the 5' upstream region (including the predicted promoter), all exons, intron-exon boundaries, complete untranslated regions, and the 3' region downstream of the GREM1 gene. We identified 31 unique variants, including 24 with a minor allele frequency exceeding 5%, and 9 haplotype-tagging single nucleotide polymorphisms (htSNPs). We selected one additional variant that we predicted to alter transcription factor binding. We genotyped 709 individuals with type 1 diabetes of whom 267 had nephropathy (cases) and 442 had no evidence of kidney disease (controls). Three individual SNPs significantly associated with nephropathy at the 5% level, and two remained significant after adjustment for multiple testing. Subsequently, we genotyped a replicate population comprising 597 cases and 502 controls: this population supported an association with one of the SNPs (rs1129456; P = 0.0003). Combined analysis, adjusted for recruitment center (n = 8), suggested that the T allele conferred greater odds of nephropathy (OR 1.69; 95% CI 1.36 to 2.11). In summary, the GREM1 variant rs1129456 associates with diabetic nephropathy, perhaps explaining some of the genetic susceptibility to this condition.
Collapse
Affiliation(s)
- Amy Jayne McKnight
- Nephrology Research Group, Queen's University of Belfast, c/o Regional Genetics Centre, Belfast City Hospital, Northern Ireland, United Kingdom.
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Association of microsatellite markers on chromosomes 6q27 region and 10p15 region with end-stage renal disease in a UK renal transplant population. J Hum Genet 2009; 54:497-8. [PMID: 19498447 DOI: 10.1038/jhg.2009.53] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|