1
|
Functional assays of non-canonical splice-site variants in inherited retinal dystrophies genes. Sci Rep 2022; 12:68. [PMID: 34996991 PMCID: PMC8742059 DOI: 10.1038/s41598-021-03925-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 12/10/2021] [Indexed: 11/17/2022] Open
Abstract
Inherited retinal dystrophies are a group of disorders characterized by the progressive degeneration of photoreceptors leading to loss of the visual function and eventually to legal blindness. Although next generation sequencing (NGS) has revolutionized the molecular diagnosis of these diseases, the pathogenicity of some mutations casts doubts. After the screening of 208 patients with a panel of 117 genes, we obtained 383 variants that were analysed in silico with bioinformatic prediction programs. Based on the results of these tools, we selected 15 variants for their functional assessment. Therefore, we carried out minigene assays to unveil whether they could affect the splicing of the corresponding gene. As a whole, seven variants were found to induce aberrant splicing in the following genes: BEST1, CACNA2D4, PRCD, RIMS1, FSCN2, MERTK and MAK. This study shows the efficacy of a workflow, based on the association of the Minimum Allele Frequency, family co-segregation, in silico predictions and in vitro assays to determine the effect of potential splice site variants identified by DNA-based NGS. These findings improve the molecular diagnosis of inherited retinal dystrophies and will allow some patients to benefit from the upcoming gene-based therapeutic strategies.
Collapse
|
2
|
Chesneau B, Plancke A, Rolland G, Marcheix B, Dulac Y, Edouard T, Plaisancié J, Aubert-Mucca M, Julia S, Langeois M, Lavabre-Bertrand T, Khau Van Kien P. A +3 variant at a donor splice site leads to a skipping of the MYH11 exon 32, a recurrent RNA defect causing Heritable Thoracic Aortic Aneurysm and Dissection and/or Patent Ductus Arteriosus. Mol Genet Genomic Med 2021; 9:e1814. [PMID: 34672437 PMCID: PMC8606209 DOI: 10.1002/mgg3.1814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 08/11/2021] [Accepted: 09/03/2021] [Indexed: 12/29/2022] Open
Abstract
Background Pathogenic variants in MYH11 are associated with either heritable thoracic aortic aneurysm and dissection (HTAAD), patent ductus arteriosus (PDA) syndrome, or megacystis‐microcolon‐intestinal hypoperistalsis syndrome (MMIHS). Methods and Results We report a family referred for molecular diagnosis with HTAAD/PDA phenotype in which we found a variant at a non‐conserved position of the 5’ donor splice site of intron 32 of MYH11 potentially altering splicing (NM_002474.3:c.4578+3A>C). Although its cosegregation with disease was observed, it remained of unknown significance. Later, aortic surgery in the proband gave us the opportunity to perform a transcript analysis. This showed a skipping of the exon 32, an RNA defect previously reported to be translated to an in‐frame loss of 71 amino acids and a dominant‐negative effect in the smooth muscle myosin rod. This RNA defect is also reported in 3 other HTAAD/PDA pedigrees. Conclusion This report confirms that among rare variants in MYH11, skipping of exon 32 is recurrent. This finding is of particular interest to establish complex genotype–phenotype correlations where some alleles are associated with autosomal dominant HTAAD/PDA, while others result in recessive or dominant visceral myopathies.
Collapse
Affiliation(s)
- Bertrand Chesneau
- UF de Génétique Médicale et Cytogénétique, Centre Hospitalier Régional Universitaire de Nîmes, Nîmes, France.,Centre de Référence du syndrome de Marfan et des syndromes apparentés, Hôpital des Enfants, CHU de Toulouse, Toulouse, France
| | - Aurélie Plancke
- UF de Génétique Médicale et Cytogénétique, Centre Hospitalier Régional Universitaire de Nîmes, Nîmes, France
| | - Guillaume Rolland
- UF de Génétique Médicale et Cytogénétique, Centre Hospitalier Régional Universitaire de Nîmes, Nîmes, France
| | - Bertrand Marcheix
- Département de Chirurgie Cardiaque, Hôpital Universitaire de Rangueil, Toulouse, France
| | - Yves Dulac
- Centre de Référence du syndrome de Marfan et des syndromes apparentés, Hôpital des Enfants, CHU de Toulouse, Toulouse, France
| | - Thomas Edouard
- Centre de Référence du syndrome de Marfan et des syndromes apparentés, Hôpital des Enfants, CHU de Toulouse, Toulouse, France
| | - Julie Plaisancié
- Service de Génétique Médicale, Hôpital Universitaire de Purpan, Toulouse, France
| | - Marion Aubert-Mucca
- Centre de Référence du syndrome de Marfan et des syndromes apparentés, Hôpital des Enfants, CHU de Toulouse, Toulouse, France.,Service de Génétique Médicale, Hôpital Universitaire de Purpan, Toulouse, France
| | - Sophie Julia
- Service de Génétique Médicale, Hôpital Universitaire de Purpan, Toulouse, France
| | - Maud Langeois
- Centre de Référence du syndrome de Marfan et des syndromes apparentés, Hôpital des Enfants, CHU de Toulouse, Toulouse, France.,Service de Génétique Médicale, Hôpital Universitaire de Purpan, Toulouse, France
| | - Thierry Lavabre-Bertrand
- UF de Génétique Médicale et Cytogénétique, Centre Hospitalier Régional Universitaire de Nîmes, Nîmes, France.,Institut des Biomolécules Max Mousseron (IBMM), CNRS UMR5247, Université de Montpellier, Montpellier, France.,Faculté de Médecine Montpellier-Nîmes, Laboratoire d'Histologie-Embryologie-Cytogénétique, Institut des Biomolécules Max Mousseron (IBMM), CNRS UMR5247, Nîmes, France
| | - Philippe Khau Van Kien
- UF de Génétique Médicale et Cytogénétique, Centre Hospitalier Régional Universitaire de Nîmes, Nîmes, France.,Institut des Biomolécules Max Mousseron (IBMM), CNRS UMR5247, Université de Montpellier, Montpellier, France.,Faculté de Médecine Montpellier-Nîmes, Laboratoire d'Histologie-Embryologie-Cytogénétique, Institut des Biomolécules Max Mousseron (IBMM), CNRS UMR5247, Nîmes, France
| |
Collapse
|
3
|
Wong J, Martelly W, Sharma S. A Reporter Based Cellular Assay for Monitoring Splicing Efficiency. J Vis Exp 2021. [PMID: 34605821 DOI: 10.3791/63014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
During gene expression, the vital step of pre-mRNA splicing involves accurate recognition of splice sites and efficient assembly of spliceosomal complexes to join exons and remove introns prior to cytoplasmic export of the mature mRNA. Splicing efficiency can be altered by the presence of mutations at splice sites, the influence of trans-acting splicing factors, or the activity of therapeutics. Here, we describe the protocol for a cellular assay that can be applied for monitoring the splicing efficiency of any given exon. The assay uses an adaptable plasmid encoded 3-exon/2-intron minigene reporter, which can be expressed in mammalian cells by transient transfection. Post-transfection, total cellular RNA is isolated, and the efficiency of exon splicing in the reporter mRNA is determined by either primer extension or semi-quantitative reverse transcriptase-polymerase chain reaction (RT-PCR). We describe how the impact of disease associated 5' splice-site mutations can be determined by introducing them in the reporter; and how the suppression of these mutations can be achieved by co-transfection with U1 small nuclear RNA (snRNA) construct carrying compensatory mutations in its 5' region that basepairs with the 5'-splice sites at exon-intron junctions in pre-mRNAs. Thus, the reporter can be used for the design of therapeutic U1 particles to improve recognition of mutant 5' splice-sites. Insertion of cis-acting regulatory sites, such as splicing enhancer or silencer sequences, into the reporter can also be used to examine the role of U1 snRNP in regulation mediated by a specific alternative splicing factor. Finally, reporter expressing cells can be incubated with small molecules to determine the effect of potential therapeutics on constitutive pre-mRNA splicing or on exons carrying mutant 5' splice sites. Overall, the reporter assay can be applied to monitor splicing efficiency in a variety of conditions to study fundamental splicing mechanisms and splicing-associated diseases.
Collapse
Affiliation(s)
- Jason Wong
- Department of Basic Medical Sciences, College of Medicine-Phoenix, University of Arizona
| | - William Martelly
- Department of Basic Medical Sciences, College of Medicine-Phoenix, University of Arizona
| | - Shalini Sharma
- Department of Basic Medical Sciences, College of Medicine-Phoenix, University of Arizona;
| |
Collapse
|
4
|
Fry LE, Patrício MI, Williams J, Aylward JW, Hewitt H, Clouston P, Xue K, Barnard AR, MacLaren RE. Association of Messenger RNA Level With Phenotype in Patients With Choroideremia: Potential Implications for Gene Therapy Dose. JAMA Ophthalmol 2020; 138:128-135. [PMID: 31855248 DOI: 10.1001/jamaophthalmol.2019.5071] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Importance Gene therapy is a promising treatment for choroideremia, an X-linked retinal degeneration. The required minimum level of gene expression to ameliorate degeneration rate is unknown. This can be interrogated by exploring the association between messenger RNA (mRNA) levels and phenotype in mildly affected patients with choroideremia. Objective To analyze CHM mRNA splicing outcomes in 2 unrelated patients with the same c.940+3delA CHM splice site variant identified as mildly affected from a previous study of patients with choroideremia. Design, Setting, and Participants In this retrospective observational case series, 2 patients with c.940+3delA CHM variants treated at a single tertiary referral center were studied. In addition, a third patient with a c.940+2T>A variant that disrupts the canonical dinucleotide sequence at the same donor site served as a positive control. Data were collected from October 2013 to July 2018. Main Outcomes and Measures Central area of residual fundus autofluorescence was used as a biomarker for disease progression. CHM transcript splicing was assessed by both end point and quantitative polymerase chain reaction. Rab escort protein 1 (REP1) expression was assessed by immunoblot. Results The 2 mildly affected patients with c.940+3delA variants had large areas of residual autofluorescence for their age and longer degeneration half-lives compared with the previous cohort of patients with choroideremia. The control patient with a c.940+2T>A variant had a residual autofluorescence area within the range expected for his age. Both patients with the c.940+3delA variant expressed residual levels of full-length CHM mRNA transcripts relative to the predominant truncated transcript (mean [SEM] residual level: patient 1, 2.3% [0.3]; patient 2, 4.7% [0.2]), equivalent to approximately less than 1% of the level of full-length CHM expressed in nonaffected individuals. Full-length CHM expression was undetectable in the control patient. REP1 expression was less than the threshold for detection both in patients 1 and 2 and the control patient compared with wild-type controls. Conclusions and Relevance These results demonstrate the first genotype-phenotype association in choroideremia. A +3 deletion in intron 7 is sufficient to cause choroideremia in a milder form. If replicated with gene therapy, these findings would suggest that relatively low expression (less than 1%) of the wild-type levels of mRNA would be sufficient to slow disease progression.
Collapse
Affiliation(s)
- Lewis E Fry
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom.,Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom.,NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Maria I Patrício
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom.,Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom.,NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Jonathan Williams
- Oxford Medical Genetics Laboratories, The Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - James W Aylward
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom.,Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom.,NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Harriet Hewitt
- Oxford Medical Genetics Laboratories, The Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Penny Clouston
- Oxford Medical Genetics Laboratories, The Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Kanmin Xue
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom.,Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom.,NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Alun R Barnard
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom.,Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom.,Oxford Medical Genetics Laboratories, The Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Robert E MacLaren
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom.,Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom.,NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
5
|
Torella A, Zanobio M, Zeuli R, del Vecchio Blanco F, Savarese M, Giugliano T, Garofalo A, Piluso G, Politano L, Nigro V. The position of nonsense mutations can predict the phenotype severity: A survey on the DMD gene. PLoS One 2020; 15:e0237803. [PMID: 32813700 PMCID: PMC7437896 DOI: 10.1371/journal.pone.0237803] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 08/03/2020] [Indexed: 12/23/2022] Open
Abstract
A nonsense mutation adds a premature stop signal that hinders any further translation of a protein-coding gene, usually resulting in a null allele. To investigate the possible exceptions, we used the DMD gene as an ideal model. First, because dystrophin absence causes Duchenne muscular dystrophy (DMD), while its reduction causes Becker muscular dystrophy (BMD). Second, the DMD gene is X-linked and there is no second allele that can interfere in males. Third, databases are accumulating reports on many mutations and phenotypic data. Finally, because DMD mutations may have important therapeutic implications. For our study, we analyzed large databases (LOVD, HGMD and ClinVar) and literature and revised critically all data, together with data from our internal patients. We totally collected 2593 patients. Positioning these mutations along the dystrophin transcript, we observed a nonrandom distribution of BMD-associated mutations within selected exons and concluded that the position can be predictive of the phenotype. Nonsense mutations always cause DMD when occurring at any point in fifty-one exons. In the remaining exons, we found milder BMD cases due to early 5’ nonsense mutations, if reinitiation can occur, or due to late 3’ nonsense when the shortened product retains functionality. In the central part of the gene, all mutations in some in-frame exons, such as in exons 25, 31, 37 and 38 cause BMD, while mutations in exons 30, 32, 34 and 36 cause DMD. This may have important implication in predicting the natural history and the efficacy of therapeutic use of drug-stimulated translational readthrough of premature termination codons, also considering the action of internal natural rescuers. More in general, our survey confirm that a nonsense mutation should be not necessarily classified as a null allele and this should be considered in genetic counselling.
Collapse
Affiliation(s)
- Annalaura Torella
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania “Luigi Vanvitelli”, Napoli, Italy
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Mariateresa Zanobio
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania “Luigi Vanvitelli”, Napoli, Italy
| | - Roberta Zeuli
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania “Luigi Vanvitelli”, Napoli, Italy
| | | | - Marco Savarese
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania “Luigi Vanvitelli”, Napoli, Italy
- Folkhälsan Research Center, Medicum, University of Helsinki, Helsinki, Finland
| | - Teresa Giugliano
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania “Luigi Vanvitelli”, Napoli, Italy
| | - Arcomaria Garofalo
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania “Luigi Vanvitelli”, Napoli, Italy
| | - Giulio Piluso
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania “Luigi Vanvitelli”, Napoli, Italy
| | - Luisa Politano
- Dipartimento di Medicina Sperimentale, Università degli Studi della Campania “Luigi Vanvitelli”, Napoli, Italy
| | - Vincenzo Nigro
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania “Luigi Vanvitelli”, Napoli, Italy
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
- * E-mail:
| |
Collapse
|
6
|
Yamazaki N, Kanazawa K, Kimura M, Ike H, Shinomiya M, Tanaka S, Shinohara Y, Minakawa N, Itoh K, Takiguchi Y. Use of modified U1 small nuclear RNA for rescue from exon 7 skipping caused by 5′-splice site mutation of human cathepsin A gene. Gene 2018; 677:41-48. [DOI: 10.1016/j.gene.2018.07.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 06/30/2018] [Accepted: 07/11/2018] [Indexed: 01/04/2023]
|
7
|
Baux D, Vaché C, Blanchet C, Willems M, Baudoin C, Moclyn M, Faugère V, Touraine R, Isidor B, Dupin-Deguine D, Nizon M, Vincent M, Mercier S, Calais C, García-García G, Azher Z, Lambert L, Perdomo-Trujillo Y, Giuliano F, Claustres M, Koenig M, Mondain M, Roux AF. Combined genetic approaches yield a 48% diagnostic rate in a large cohort of French hearing-impaired patients. Sci Rep 2017; 7:16783. [PMID: 29196752 PMCID: PMC5711943 DOI: 10.1038/s41598-017-16846-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 11/17/2017] [Indexed: 11/22/2022] Open
Abstract
Hearing loss is the most common sensory disorder and because of its high genetic heterogeneity, implementation of Massively Parallel Sequencing (MPS) in diagnostic laboratories is greatly improving the possibilities of offering optimal care to patients. We present the results of a two-year period of molecular diagnosis that included 207 French families referred for non-syndromic hearing loss. Our multi-step strategy involved (i) DFNB1 locus analysis, (ii) MPS of 74 genes, and (iii) additional approaches including Copy Number Variations, in silico analyses, minigene studies coupled when appropriate with complete gene sequencing, and a specific assay for STRC. This comprehensive screening yielded an overall diagnostic rate of 48%, equally distributed between DFNB1 (24%) and the other genes (24%). Pathogenic genotypes were identified in 19 different genes, with a high prevalence of GJB2, STRC, MYO15A, OTOF, TMC1, MYO7A and USH2A. Involvement of an Usher gene was reported in 16% of the genotyped cohort. Four de novo variants were identified. This study highlights the need to develop several molecular approaches for efficient molecular diagnosis of hearing loss, as this is crucial for genetic counselling, audiological rehabilitation and the detection of syndromic forms.
Collapse
Affiliation(s)
- D Baux
- Laboratoire de Génétique Moléculaire, CHU Montpellier, Montpellier, France
| | - C Vaché
- Laboratoire de Génétique Moléculaire, CHU Montpellier, Montpellier, France
| | - C Blanchet
- Service ORL, CHU Montpellier, Montpellier, France.,Centre National de Référence Maladies Rares "Affections Sensorielles Génétiques", CHU Montpellier, Montpellier, France
| | - M Willems
- Génétique Médicale, CHU Montpellier, Montpellier, France
| | - C Baudoin
- Laboratoire de Génétique Moléculaire, CHU Montpellier, Montpellier, France
| | - M Moclyn
- Laboratoire de Génétique Moléculaire, CHU Montpellier, Montpellier, France
| | - V Faugère
- Laboratoire de Génétique Moléculaire, CHU Montpellier, Montpellier, France
| | - R Touraine
- Service de Génétique, CHU-Hôpital Nord, Saint-Etienne, France
| | - B Isidor
- Service de Génétique Médicale, CHU Nantes, Nantes, France
| | - D Dupin-Deguine
- Service de Génétique Médicale, CHU Toulouse, Toulouse, France.,Service d'ORL, Otoneurologie et ORL pédiatrique CHU Toulouse, Toulouse, France
| | - M Nizon
- Service de Génétique Médicale, CHU Nantes, Nantes, France
| | - M Vincent
- Service de Génétique Médicale, CHU Nantes, Nantes, France
| | - S Mercier
- Service de Génétique Médicale, CHU Nantes, Nantes, France
| | - C Calais
- Service d'ORL, CHU Nantes, Nantes, France
| | - G García-García
- Laboratoire de Génétique de Maladies Rares (LGMR) EA7402, Université de Montpellier, Montpellier, France
| | - Z Azher
- Laboratoire de Génétique de Maladies Rares (LGMR) EA7402, Université de Montpellier, Montpellier, France
| | - L Lambert
- Génétique Médicale, Centre de Compétence des Surdités Génétiques, site constitutif du Centre de Référence des Anomalies du Développement et Syndromes Malformatifs de l'Est, CHRU Nancy, Nancy, France
| | - Y Perdomo-Trujillo
- Service de Génétique Médicale, Centre de Référence pour les Affections Rares en Génétique Ophtalmologique (CARGO), Hôpital Civil, Strasbourg, France
| | - F Giuliano
- Service de Génétique Médicale, CHU Nice, Nice, France
| | - M Claustres
- Laboratoire de Génétique Moléculaire, CHU Montpellier, Montpellier, France.,Laboratoire de Génétique de Maladies Rares (LGMR) EA7402, Université de Montpellier, Montpellier, France
| | - M Koenig
- Laboratoire de Génétique Moléculaire, CHU Montpellier, Montpellier, France.,Laboratoire de Génétique de Maladies Rares (LGMR) EA7402, Université de Montpellier, Montpellier, France
| | - M Mondain
- Service ORL, CHU Montpellier, Montpellier, France.,Centre National de Référence Maladies Rares "Affections Sensorielles Génétiques", CHU Montpellier, Montpellier, France
| | - A F Roux
- Laboratoire de Génétique Moléculaire, CHU Montpellier, Montpellier, France. .,Laboratoire de Génétique de Maladies Rares (LGMR) EA7402, Université de Montpellier, Montpellier, France.
| |
Collapse
|
8
|
Yadegari H, Biswas A, Akhter MS, Driesen J, Ivaskevicius V, Marquardt N, Oldenburg J. Intron retention resulting from a silent mutation in the VWF gene that structurally influences the 5' splice site. Blood 2016; 128:2144-2152. [PMID: 27543438 PMCID: PMC5161009 DOI: 10.1182/blood-2016-02-699686] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 08/08/2016] [Indexed: 12/26/2022] Open
Abstract
Disease-associated silent mutations are considered to affect the accurate pre-messenger RNA (mRNA) splicing either by influencing regulatory elements, leading to exon skipping, or by creating a new cryptic splice site. This study describes a new molecular pathological mechanism by which a silent mutation inhibits splicing and leads to intron retention. We identified a heterozygous silent mutation, c.7464C>T, in exon 44 of the von Willebrand factor (VWF) gene in a family with type 1 von Willebrand disease. In vivo and ex vivo transcript analysis revealed an aberrantly spliced transcript, with intron 44 retained in the mRNA, implying disruption of the first catalytic step of splicing at the 5' splice site (5'ss). The abnormal transcript with the retained intronic region coded a truncated protein that lacked the carboxy-terminal end of the VWF protein. Confocal immunofluorescence characterizations of blood outgrowth endothelial cells derived from the patient confirmed the presence of the truncated protein by demonstrating accumulation of VWF in the endoplasmic reticulum. In silico pre-mRNA secondary and tertiary structure analysis revealed that this substitution, despite its distal position from the 5'ss (85 bp downstream), induces cis alterations in pre-mRNA structure that result in the formation of a stable hairpin at the 5'ss. This hairpin sequesters the 5'ss residues involved in U1 small nuclear RNA interactions, thereby inhibiting excision of the pre-mRNA intronic region. This study is the first to show the allosteric-like/far-reaching effect of an exonic variation on pre-mRNA splicing that is mediated by structural changes in the pre-mRNA.
Collapse
Affiliation(s)
- Hamideh Yadegari
- Institute of Experimental Haematology and Transfusion Medicine, University Clinic Bonn, Bonn, Germany
| | - Arijit Biswas
- Institute of Experimental Haematology and Transfusion Medicine, University Clinic Bonn, Bonn, Germany
| | - Mohammad Suhail Akhter
- Institute of Experimental Haematology and Transfusion Medicine, University Clinic Bonn, Bonn, Germany
| | - Julia Driesen
- Institute of Experimental Haematology and Transfusion Medicine, University Clinic Bonn, Bonn, Germany
| | - Vytautas Ivaskevicius
- Institute of Experimental Haematology and Transfusion Medicine, University Clinic Bonn, Bonn, Germany
| | - Natascha Marquardt
- Institute of Experimental Haematology and Transfusion Medicine, University Clinic Bonn, Bonn, Germany
| | - Johannes Oldenburg
- Institute of Experimental Haematology and Transfusion Medicine, University Clinic Bonn, Bonn, Germany
| |
Collapse
|
9
|
Liquori A, Vaché C, Baux D, Blanchet C, Hamel C, Malcolm S, Koenig M, Claustres M, Roux AF. Whole USH2A Gene Sequencing Identifies Several New Deep Intronic Mutations. Hum Mutat 2015; 37:184-93. [PMID: 26629787 DOI: 10.1002/humu.22926] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 10/19/2015] [Indexed: 01/01/2023]
Abstract
Deep intronic mutations leading to pseudoexon (PE) insertions are underestimated and most of these splicing alterations have been identified by transcript analysis, for instance, the first deep intronic mutation in USH2A, the gene most frequently involved in Usher syndrome type II (USH2). Unfortunately, analyzing USH2A transcripts is challenging and for 1.8%-19% of USH2 individuals carrying a single USH2A recessive mutation, a second mutation is yet to be identified. We have developed and validated a DNA next-generation sequencing approach to identify deep intronic variants in USH2A and evaluated their consequences on splicing. Three distinct novel deep intronic mutations have been identified. All were predicted to affect splicing and resulted in the insertion of PEs, as shown by minigene assays. We present a new and attractive strategy to identify deep intronic mutations, when RNA analyses are not possible. Moreover, the bioinformatics pipeline developed is independent of the gene size, implying the possible application of this approach to any disease-linked gene. Finally, an antisense morpholino oligonucleotide tested in vitro for its ability to restore splicing caused by the c.9959-4159A>G mutation provided high inhibition rates, which are indicative of its potential for molecular therapy.
Collapse
Affiliation(s)
- Alessandro Liquori
- Laboratoire de Génétique de Maladies Rares EA 7402, Université de Montpellier, Montpellier, France
| | - Christel Vaché
- Laboratoire de Génétique de Maladies Rares EA 7402, Université de Montpellier, Montpellier, France.,Laboratoire de Génétique Moléculaire, CHRU Montpellier, Montpellier, France
| | - David Baux
- Laboratoire de Génétique de Maladies Rares EA 7402, Université de Montpellier, Montpellier, France.,Laboratoire de Génétique Moléculaire, CHRU Montpellier, Montpellier, France
| | - Catherine Blanchet
- Service ORL, CHRU Montpellier, Montpellier, France.,CHU Montpellier, Centre National de Référence Maladies Rares, "Affections Sensorielles Génétiques, France
| | - Christian Hamel
- CHU Montpellier, Centre National de Référence Maladies Rares, "Affections Sensorielles Génétiques, France
| | - Sue Malcolm
- Genetics and Genomic Medicine Programme, Institute of Child Health, UCL, London, UK
| | - Michel Koenig
- Laboratoire de Génétique de Maladies Rares EA 7402, Université de Montpellier, Montpellier, France.,Laboratoire de Génétique Moléculaire, CHRU Montpellier, Montpellier, France
| | - Mireille Claustres
- Laboratoire de Génétique de Maladies Rares EA 7402, Université de Montpellier, Montpellier, France.,Laboratoire de Génétique Moléculaire, CHRU Montpellier, Montpellier, France
| | - Anne-Françoise Roux
- Laboratoire de Génétique de Maladies Rares EA 7402, Université de Montpellier, Montpellier, France.,Laboratoire de Génétique Moléculaire, CHRU Montpellier, Montpellier, France
| |
Collapse
|
10
|
Caminsky NG, Mucaki EJ, Rogan PK. Interpretation of mRNA splicing mutations in genetic disease: review of the literature and guidelines for information-theoretical analysis. F1000Res 2015. [DOI: 10.12688/f1000research.5654.2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The interpretation of genomic variants has become one of the paramount challenges in the post-genome sequencing era. In this review we summarize nearly 20 years of research on the applications of information theory (IT) to interpret coding and non-coding mutations that alter mRNA splicing in rare and common diseases. We compile and summarize the spectrum of published variants analyzed by IT, to provide a broad perspective of the distribution of deleterious natural and cryptic splice site variants detected, as well as those affecting splicing regulatory sequences. Results for natural splice site mutations can be interrogated dynamically with Splicing Mutation Calculator, a companion software program that computes changes in information content for any splice site substitution, linked to corresponding publications containing these mutations. The accuracy of IT-based analysis was assessed in the context of experimentally validated mutations. Because splice site information quantifies binding affinity, IT-based analyses can discern the differences between variants that account for the observed reduced (leaky) versus abolished mRNA splicing. We extend this principle by comparing predicted mutations in natural, cryptic, and regulatory splice sites with observed deleterious phenotypic and benign effects. Our analysis of 1727 variants revealed a number of general principles useful for ensuring portability of these analyses and accurate input and interpretation of mutations. We offer guidelines for optimal use of IT software for interpretation of mRNA splicing mutations.
Collapse
|
11
|
Miro J, Laaref AM, Rofidal V, Lagrafeuille R, Hem S, Thorel D, Méchin D, Mamchaoui K, Mouly V, Claustres M, Tuffery-Giraud S. FUBP1: a new protagonist in splicing regulation of the DMD gene. Nucleic Acids Res 2015; 43:2378-89. [PMID: 25662218 PMCID: PMC4344520 DOI: 10.1093/nar/gkv086] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
We investigated the molecular mechanisms for in-frame skipping of DMD exon 39 caused by the nonsense c.5480T>A mutation in a patient with Becker muscular dystrophy. RNase-assisted pull down assay coupled with mass spectrometry revealed that the mutant RNA probe specifically recruits hnRNPA1, hnRNPA2/B1 and DAZAP1. Functional studies in a human myoblast cell line transfected with DMD minigenes confirmed the splicing inhibitory activity of hnRNPA1 and hnRNPA2/B1, and showed that DAZAP1, also known to activate splicing, acts negatively in the context of the mutated exon 39. Furthermore, we uncovered that recognition of endogenous DMD exon 39 in muscle cells is promoted by FUSE binding protein 1 (FUBP1), a multifunctional DNA- and RNA-binding protein whose role in splicing is largely unknown. By serial deletion and mutagenesis studies in minigenes, we delineated a functional intronic splicing enhancer (ISE) in intron 38. FUBP1 recruitment to the RNA sequence containing the ISE was established by RNA pull down and RNA EMSA, and further confirmed by RNA-ChIP on endogenous DMD pre-mRNA. This study provides new insights about the splicing regulation of DMD exon 39, highlighting the emerging role of FUBP1 in splicing and describing the first ISE for constitutive exon inclusion in the mature DMD transcript.
Collapse
Affiliation(s)
- Julie Miro
- Université Montpellier, UFR de Médecine, Montpellier F-34000, France Inserm U827, Laboratoire de Génétique de Maladies Rares, F-34000 Montpellier, France
| | - Abdelhamid Mahdi Laaref
- Université Montpellier, UFR de Médecine, Montpellier F-34000, France Inserm U827, Laboratoire de Génétique de Maladies Rares, F-34000 Montpellier, France
| | - Valérie Rofidal
- UR1199 Laboratoire de Protéomique Fonctionnelle, INRA, 34060 Montpellier cedex, France
| | - Rosyne Lagrafeuille
- Université Montpellier, UFR de Médecine, Montpellier F-34000, France Inserm U827, Laboratoire de Génétique de Maladies Rares, F-34000 Montpellier, France
| | - Sonia Hem
- UR1199 Laboratoire de Protéomique Fonctionnelle, INRA, 34060 Montpellier cedex, France
| | - Delphine Thorel
- CHU Montpellier, Hôpital Arnaud de Villeneuve, Laboratoire de Génétique Moléculaire, F-34000 Montpellier, France
| | - Déborah Méchin
- CHU Montpellier, Hôpital Arnaud de Villeneuve, Laboratoire de Génétique Moléculaire, F-34000 Montpellier, France
| | - Kamel Mamchaoui
- Institut de Myologie, UM76 Université Pierre et Marie Curie (UPMC), Paris, France INSERM U 974, Paris, France CNRS UMR 7215, Paris, France
| | - Vincent Mouly
- Institut de Myologie, UM76 Université Pierre et Marie Curie (UPMC), Paris, France INSERM U 974, Paris, France CNRS UMR 7215, Paris, France
| | - Mireille Claustres
- Université Montpellier, UFR de Médecine, Montpellier F-34000, France Inserm U827, Laboratoire de Génétique de Maladies Rares, F-34000 Montpellier, France CHU Montpellier, Hôpital Arnaud de Villeneuve, Laboratoire de Génétique Moléculaire, F-34000 Montpellier, France
| | - Sylvie Tuffery-Giraud
- Université Montpellier, UFR de Médecine, Montpellier F-34000, France Inserm U827, Laboratoire de Génétique de Maladies Rares, F-34000 Montpellier, France
| |
Collapse
|
12
|
Sharma S, Wongpalee SP, Vashisht A, Wohlschlegel JA, Black DL. Stem-loop 4 of U1 snRNA is essential for splicing and interacts with the U2 snRNP-specific SF3A1 protein during spliceosome assembly. Genes Dev 2015; 28:2518-31. [PMID: 25403181 PMCID: PMC4233244 DOI: 10.1101/gad.248625.114] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The pairing of 5′ and 3′ splice sites across an intron is a critical step in spliceosome formation and its regulation. Sharma et al. report a new interaction between stem–loop 4 (SL4) of the U1 snRNA, which recognizes the 5′ splice, and a component of the U2 snRNP complex, which assembles across the intron at the 3′ splice site. U1-SL4 interacts with the SF3A1 protein of the U2 snRNP, and this interaction occurs within prespliceosomal complexes assembled on the pre-mRNA. The pairing of 5′ and 3′ splice sites across an intron is a critical step in spliceosome formation and its regulation. Interactions that bring the two splice sites together during spliceosome assembly must occur with a high degree of specificity and fidelity to allow expression of functional mRNAs and make particular alternative splicing choices. Here, we report a new interaction between stem–loop 4 (SL4) of the U1 snRNA, which recognizes the 5′ splice site, and a component of the U2 small nuclear ribonucleoprotein particle (snRNP) complex, which assembles across the intron at the 3′ splice site. Using a U1 snRNP complementation assay, we found that SL4 is essential for splicing in vivo. The addition of free U1-SL4 to a splicing reaction in vitro inhibits splicing and blocks complex assembly prior to formation of the prespliceosomal A complex, indicating a requirement for a SL4 contact in spliceosome assembly. To characterize the interactions of this RNA structure, we used a combination of stable isotope labeling by amino acids in cell culture (SILAC), biotin/Neutravidin affinity pull-down, and mass spectrometry. We show that U1-SL4 interacts with the SF3A1 protein of the U2 snRNP. We found that this interaction between the U1 snRNA and SF3A1 occurs within prespliceosomal complexes assembled on the pre-mRNA. Thus, SL4 of the U1 snRNA is important for splicing, and its interaction with SF3A1 mediates contact between the 5′ and 3′ splice site complexes within the assembling spliceosome.
Collapse
Affiliation(s)
- Shalini Sharma
- Department of Basic Medical Sciences, University of Arizona, College of Medicine-Phoenix, Phoenix, Arizona 85004, USA; Department of Microbiology, Immunology, and Molecular Genetics
| | | | | | | | - Douglas L Black
- Department of Microbiology, Immunology, and Molecular Genetics, Howard Hughes Medical Institute, University of California at Los Angeles, Los Angeles, California 90095, USA
| |
Collapse
|
13
|
Caminsky N, Mucaki EJ, Rogan PK. Interpretation of mRNA splicing mutations in genetic disease: review of the literature and guidelines for information-theoretical analysis. F1000Res 2014; 3:282. [PMID: 25717368 PMCID: PMC4329672 DOI: 10.12688/f1000research.5654.1] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/10/2014] [Indexed: 12/14/2022] Open
Abstract
The interpretation of genomic variants has become one of the paramount challenges in the post-genome sequencing era. In this review we summarize nearly 20 years of research on the applications of information theory (IT) to interpret coding and non-coding mutations that alter mRNA splicing in rare and common diseases. We compile and summarize the spectrum of published variants analyzed by IT, to provide a broad perspective of the distribution of deleterious natural and cryptic splice site variants detected, as well as those affecting splicing regulatory sequences. Results for natural splice site mutations can be interrogated dynamically with Splicing Mutation Calculator, a companion software program that computes changes in information content for any splice site substitution, linked to corresponding publications containing these mutations. The accuracy of IT-based analysis was assessed in the context of experimentally validated mutations. Because splice site information quantifies binding affinity, IT-based analyses can discern the differences between variants that account for the observed reduced (leaky) versus abolished mRNA splicing. We extend this principle by comparing predicted mutations in natural, cryptic, and regulatory splice sites with observed deleterious phenotypic and benign effects. Our analysis of 1727 variants revealed a number of general principles useful for ensuring portability of these analyses and accurate input and interpretation of mutations. We offer guidelines for optimal use of IT software for interpretation of mRNA splicing mutations.
Collapse
Affiliation(s)
- Natasha Caminsky
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON, N6A 2C1, Canada
| | - Eliseos J Mucaki
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON, N6A 2C1, Canada
| | - Peter K Rogan
- Departments of Biochemistry and Computer Science, Western University, London, ON, N6A 2C1, Canada
| |
Collapse
|
14
|
Besnard T, García-García G, Baux D, Vaché C, Faugère V, Larrieu L, Léonard S, Millan JM, Malcolm S, Claustres M, Roux AF. Experience of targeted Usher exome sequencing as a clinical test. Mol Genet Genomic Med 2013; 2:30-43. [PMID: 24498627 PMCID: PMC3907913 DOI: 10.1002/mgg3.25] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 06/06/2013] [Indexed: 12/15/2022] Open
Abstract
We show that massively parallel targeted sequencing of 19 genes provides a new and reliable strategy for molecular diagnosis of Usher syndrome (USH) and nonsyndromic deafness, particularly appropriate for these disorders characterized by a high clinical and genetic heterogeneity and a complex structure of several of the genes involved. A series of 71 patients including Usher patients previously screened by Sanger sequencing plus newly referred patients was studied. Ninety-eight percent of the variants previously identified by Sanger sequencing were found by next-generation sequencing (NGS). NGS proved to be efficient as it offers analysis of all relevant genes which is laborious to reach with Sanger sequencing. Among the 13 newly referred Usher patients, both mutations in the same gene were identified in 77% of cases (10 patients) and one candidate pathogenic variant in two additional patients. This work can be considered as pilot for implementing NGS for genetically heterogeneous diseases in clinical service.
Collapse
Affiliation(s)
- Thomas Besnard
- U827, Inserm Montpellier, F-34000, France ; Univ, Montpellier I Montpellier, F-34000, France
| | - Gema García-García
- U827, Inserm Montpellier, F-34000, France ; Grupo de Investigación en Enfermedades Neurosensoriales, Instituto de Investigación Sanitaria IIS-La Fe and CIBERER Valencia, Spain
| | - David Baux
- Laboratoire de Génétique Moléculaire, CHU Montpellier Montpellier, F-34000, France
| | - Christel Vaché
- Laboratoire de Génétique Moléculaire, CHU Montpellier Montpellier, F-34000, France
| | - Valérie Faugère
- Laboratoire de Génétique Moléculaire, CHU Montpellier Montpellier, F-34000, France
| | - Lise Larrieu
- Laboratoire de Génétique Moléculaire, CHU Montpellier Montpellier, F-34000, France
| | - Susana Léonard
- Laboratoire de Génétique Moléculaire, CHU Montpellier Montpellier, F-34000, France
| | - Jose M Millan
- Grupo de Investigación en Enfermedades Neurosensoriales, Instituto de Investigación Sanitaria IIS-La Fe and CIBERER Valencia, Spain
| | - Sue Malcolm
- Clinical and Molecular Genetics, Institute of Child Health, University College London London, United Kingdom
| | - Mireille Claustres
- U827, Inserm Montpellier, F-34000, France ; Univ, Montpellier I Montpellier, F-34000, France ; Laboratoire de Génétique Moléculaire, CHU Montpellier Montpellier, F-34000, France
| | - Anne-Françoise Roux
- U827, Inserm Montpellier, F-34000, France ; Laboratoire de Génétique Moléculaire, CHU Montpellier Montpellier, F-34000, France
| |
Collapse
|
15
|
Raynal C, Baux D, Theze C, Bareil C, Taulan M, Roux AF, Claustres M, Tuffery-Giraud S, des Georges M. A classification model relative to splicing for variants of unknown clinical significance: application to the CFTR gene. Hum Mutat 2013; 34:774-84. [PMID: 23381846 DOI: 10.1002/humu.22291] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 01/29/2013] [Indexed: 12/24/2022]
Abstract
Molecular diagnosis of cystic fibrosis and cystic fibrosis transmembrane regulator (CFTR)-related disorders led to the worldwide identification of nearly 1,900 sequence variations in the CFTR gene that consist mainly of private point mutations and small insertions/deletions. Establishing their effect on the function of the encoded protein and therefore their involvement in the disease is still challenging and directly impacts genetic counseling. In this context, we built a decision tree following the international guidelines for the classification of variants of unknown clinical significance (VUCS) in the CFTR gene specifically focused on their consequences on splicing. We applied general and specific criteria, including comprehensive review of literature and databases, familial genetics data, and thorough in silico studies. This model was tested on 15 intronic and exonic VUCS identified in our cohort. Six variants were classified as probably nonpathogenic considering their impact on splicing and eight as probably pathogenic, which include two apparent missense mutations. We assessed the validity of our method by performing minigenes studies and confirmed that 93% (14/15) were correctly classified. We provide in this study a high-performance method that can play a full role in interpreting the results of molecular diagnosis in emergency context, when functional studies are not achievable.
Collapse
Affiliation(s)
- Caroline Raynal
- CHU Montpellier, Hôpital Arnaud de Villeneuve, Laboratoire de Génétique Moléculaire, Montpellier, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Mazón MJ, Barros F, De la Peña P, Quesada JF, Escudero A, Cobo AM, Pascual-Pascual SI, Gutiérrez-Rivas E, Guillén E, Arpa J, Eraso P, Portillo F, Molano J. Screening for mutations in Spanish families with myotonia. Functional analysis of novel mutations in CLCN1 gene. Neuromuscul Disord 2012; 22:231-43. [DOI: 10.1016/j.nmd.2011.10.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2011] [Revised: 10/09/2011] [Accepted: 10/13/2011] [Indexed: 11/28/2022]
|
17
|
Sánchez-Alcudia R, Pérez B, Pérez-Cerdá C, Ugarte M, Desviat LR. Overexpression of adapted U1snRNA in patients' cells to correct a 5' splice site mutation in propionic acidemia. Mol Genet Metab 2011; 102:134-8. [PMID: 21094621 DOI: 10.1016/j.ymgme.2010.10.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Accepted: 10/26/2010] [Indexed: 10/25/2022]
Abstract
Splicing defects account for 16% of the mutant alleles in the PCCA and PCCB genes, encoding both subunits of the propionyl-CoA carboxylase (PCC) enzyme, defective in propionic acidemia, one of the most frequent organic acidemias causing variable neurological impairment. Most of the splicing mutations identified affect the conserved 3' splice (3' ss) or 5' splice (5' ss) sites, the latter predictably through lowering the strength of base pairing with U1snRNA. Among the 5' ss mutations we have focused on the c.1209+3A>G (IVS13+3A>G) mutation in the PCCA gene, identified in four patients (three homozygous and one heterozygous) of common geographical origin and causing exon 13 skipping. To study the potential of splicing modulation to restore PCC function, we analyzed the effect of transient transfections in patients' cells with modified U1snRNA adapted to compensate the mutant change and other mismatches at different positions of the 5' ss. Using this strategy normal transcript could be efficiently recovered with the concomitant disappearance of the aberrant exon skipping transcript, as observed after standard RT-PCR and sequence analysis or using fluorescent primers and semiquantitative RT-PCR. Different efficiencies with up to 100% exon inclusion were observed depending on the transfection conditions and specifically on the adapted U1snRNA used, confirming previously reported dependencies between nucleotides at the 5' ss for its correct recognition by the spliceosome. The reversal of the splicing defect did not result in a significant increase in enzyme activity, suggesting other factors must be taken into account for the application of overexpression of splice factors such as U1 as therapeutic strategy for splice defects.
Collapse
Affiliation(s)
- Rocío Sánchez-Alcudia
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular Severo Ochoa, UAM-CSIC, Universidad Autónoma de Madrid, Madrid, Spain
| | | | | | | | | |
Collapse
|
18
|
Le Guédard-Méreuze S, Vaché C, Baux D, Faugère V, Larrieu L, Abadie C, Janecke A, Claustres M, Roux AF, Tuffery-Giraud S. Ex vivo splicing assays of mutations at noncanonical positions of splice sites in USHER genes. Hum Mutat 2010; 31:347-55. [PMID: 20052763 DOI: 10.1002/humu.21193] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Molecular diagnosis in Usher syndrome type 1 and 2 patients led to the identification of 21 sequence variations located in noncanonical positions of splice sites in MYO7A, CDH23, USH1C, and USH2A genes. To establish experimentally the splicing pattern of these substitutions, whose impact on splicing is not always predictable by available softwares, ex vivo splicing assays were performed. The branch-point mapping strategy was also used to investigate further a putative branch-point mutation in USH2A intron 43. Aberrant splicing was demonstrated for 16 of the 21 (76.2%) tested sequence variations. The mutations resulted more frequently in activation of a nearby cryptic splice site or use of a de novo splice site than exon skipping (37.5%). This study allowed the reclassification as splicing mutations of one silent (c.7872G>A (p.Glu2624Glu) in CDH23) and four missense mutations (c.2993G>A (p.Arg998Lys) in USH2A, c.592G>A (p.Ala198Thr), c.3503G>C [p.Arg1168Pro], c.5944G>A (p.Gly1982Arg) in MYO7A), whereas it provided clues about a role in structure/function in four other cases: c.802G>A (p.Gly268Arg), c.653T>A (p.Val218Glu) (USH2A), and c.397C>T (p.His133Tyr), c.3502C>T (p.Arg1168Trp) (MYO7A). Our data provide insights into the contribution of splicing mutations in Usher genes and illustrate the need to define accurately their splicing outcome for diagnostic purposes.
Collapse
|