1
|
Kerschner JL, Ghosh S, Paranjapye A, Cosme WR, Audrézet MP, Nakakuki M, Ishiguro H, Férec C, Rommens J, Harris A. Screening for Regulatory Variants in 460 kb Encompassing the CFTR Locus in Cystic Fibrosis Patients. J Mol Diagn 2018; 21:70-80. [PMID: 30296588 DOI: 10.1016/j.jmoldx.2018.08.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 07/18/2018] [Accepted: 08/10/2018] [Indexed: 12/30/2022] Open
Abstract
It is estimated that up to 5% of cystic fibrosis transmembrane conductance regulator (CFTR) pathogenic alleles are unidentified. Some of these errors may lie in noncoding regions of the locus and affect gene expression. To identify regulatory element variants in the CFTR locus, SureSelect targeted enrichment of 460 kb encompassing the gene was optimized to deep sequence genomic DNA from 80 CF patients with an unequivocal clinical diagnosis but only one or no CFTR-coding region pathogenic variants. Bioinformatics tools were used to identify sequence variants and predict their impact, which were then assayed in transient reporter gene luciferase assays. The effect of five variants in the CFTR promoter and four in an intestinal enhancer of the gene were assayed in relevant cell lines. The initial analysis of sequence data revealed previously known CF-causing variants, validating the robustness of the SureSelect design, and showed that 85 of 160 CF alleles were undefined. Of a total 1737 variants revealed across the extended 460-kb CFTR locus, 51 map to known CFTR cis-regulatory elements, and many of these are predicted to alter transcription factor occupancy. Four promoter variants and all those in the intestinal enhancer significantly repress reporter gene activity. These data suggest that CFTR regulatory elements may harbor novel CF disease-causing variants that warrant further investigation, both for genetic screening protocols and functional assays.
Collapse
Affiliation(s)
- Jenny L Kerschner
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio
| | - Sujana Ghosh
- Human Molecular Genetics Program, Lurie Children's Research Center, Chicago, Illinois; Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Alekh Paranjapye
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio
| | - Wilmel R Cosme
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio
| | | | - Miyuki Nakakuki
- Department of Human Nutrition, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroshi Ishiguro
- Department of Human Nutrition, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | - Johanna Rommens
- Program in Genetics and Genome Biology, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Ann Harris
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio; Human Molecular Genetics Program, Lurie Children's Research Center, Chicago, Illinois; Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois.
| |
Collapse
|
2
|
Song X, Beck CR, Du R, Campbell IM, Coban-Akdemir Z, Gu S, Breman AM, Stankiewicz P, Ira G, Shaw CA, Lupski JR. Predicting human genes susceptible to genomic instability associated with Alu/ Alu-mediated rearrangements. Genome Res 2018; 28:1228-1242. [PMID: 29907612 PMCID: PMC6071635 DOI: 10.1101/gr.229401.117] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 06/06/2018] [Indexed: 12/14/2022]
Abstract
Alu elements, the short interspersed element numbering more than 1 million copies per human genome, can mediate the formation of copy number variants (CNVs) between substrate pairs. These Alu/Alu-mediated rearrangements (AAMRs) can result in pathogenic variants that cause diseases. To investigate the impact of AAMR on gene variation and human health, we first characterized Alus that are involved in mediating CNVs (CNV-Alus) and observed that these Alus tend to be evolutionarily younger. We then computationally generated, with the assistance of a supercomputer, a test data set consisting of 78 million Alu pairs and predicted ∼18% of them are potentially susceptible to AAMR. We further determined the relative risk of AAMR in 12,074 OMIM genes using the count of predicted CNV-Alu pairs and experimentally validated the predictions with 89 samples selected by correlating predicted hotspots with a database of CNVs identified by clinical chromosomal microarrays (CMAs) on the genomes of approximately 54,000 subjects. We fine-mapped 47 duplications, 40 deletions, and two complex rearrangements and examined a total of 52 breakpoint junctions of simple CNVs. Overall, 94% of the candidate breakpoints were at least partially Alu mediated. We successfully predicted all (100%) of Alu pairs that mediated deletions (n = 21) and achieved an 87% positive predictive value overall when including AAMR-generated deletions and duplications. We provided a tool, AluAluCNVpredictor, for assessing AAMR hotspots and their role in human disease. These results demonstrate the utility of our predictive model and provide insights into the genomic features and molecular mechanisms underlying AAMR.
Collapse
Affiliation(s)
- Xiaofei Song
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Christine R Beck
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Renqian Du
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Ian M Campbell
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Zeynep Coban-Akdemir
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Shen Gu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Amy M Breman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Baylor Genetics, Houston, Texas 77021, USA
| | - Pawel Stankiewicz
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Baylor Genetics, Houston, Texas 77021, USA
| | - Grzegorz Ira
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Chad A Shaw
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Baylor Genetics, Houston, Texas 77021, USA
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA
- Texas Children's Hospital, Houston, Texas 77030, USA
| |
Collapse
|
3
|
Claustres M, Thèze C, des Georges M, Baux D, Girodon E, Bienvenu T, Audrezet MP, Dugueperoux I, Férec C, Lalau G, Pagin A, Kitzis A, Thoreau V, Gaston V, Bieth E, Malinge MC, Reboul MP, Fergelot P, Lemonnier L, Mekki C, Fanen P, Bergougnoux A, Sasorith S, Raynal C, Bareil C. CFTR-France, a national relational patient database for sharing genetic and phenotypic data associated with rare CFTR variants. Hum Mutat 2017; 38:1297-1315. [PMID: 28603918 DOI: 10.1002/humu.23276] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 05/31/2017] [Accepted: 06/04/2017] [Indexed: 11/09/2022]
Abstract
Most of the 2,000 variants identified in the CFTR (cystic fibrosis transmembrane regulator) gene are rare or private. Their interpretation is hampered by the lack of available data and resources, making patient care and genetic counseling challenging. We developed a patient-based database dedicated to the annotations of rare CFTR variants in the context of their cis- and trans-allelic combinations. Based on almost 30 years of experience of CFTR testing, CFTR-France (https://cftr.iurc.montp.inserm.fr/cftr) currently compiles 16,819 variant records from 4,615 individuals with cystic fibrosis (CF) or CFTR-RD (related disorders), fetuses with ultrasound bowel anomalies, newborns awaiting clinical diagnosis, and asymptomatic compound heterozygotes. For each of the 736 different variants reported in the database, patient characteristics and genetic information (other variations in cis or in trans) have been thoroughly checked by a dedicated curator. Combining updated clinical, epidemiological, in silico, or in vitro functional data helps to the interpretation of unclassified and the reassessment of misclassified variants. This comprehensive CFTR database is now an invaluable tool for diagnostic laboratories gathering information on rare variants, especially in the context of genetic counseling, prenatal and preimplantation genetic diagnosis. CFTR-France is thus highly complementary to the international database CFTR2 focused so far on the most common CF-causing alleles.
Collapse
Affiliation(s)
- Mireille Claustres
- Laboratoire de Génétique Moléculaire, Centre Hospitalier Universitaire et Université de Montpellier, Montpellier, France
| | - Corinne Thèze
- Laboratoire de Génétique Moléculaire, Centre Hospitalier Universitaire et Université de Montpellier, Montpellier, France
| | - Marie des Georges
- Laboratoire de Génétique Moléculaire, Centre Hospitalier Universitaire et Université de Montpellier, Montpellier, France
| | - David Baux
- Laboratoire de Génétique Moléculaire, Centre Hospitalier Universitaire et Université de Montpellier, Montpellier, France
| | - Emmanuelle Girodon
- Service de Génétique et Biologie Moléculaires, Groupe Hospitalier Cochin-Broca-Hotel Dieu, Paris, France
| | - Thierry Bienvenu
- Service de Génétique et Biologie Moléculaires, Groupe Hospitalier Cochin-Broca-Hotel Dieu, Paris, France
| | - Marie-Pierre Audrezet
- Laboratoire de Génétique Moléculaire et d'Histocompatibilité, Centre Hospitalier Régional Universitaire, Brest, France
| | - Ingrid Dugueperoux
- Laboratoire de Génétique Moléculaire et d'Histocompatibilité, Centre Hospitalier Régional Universitaire, Brest, France
| | - Claude Férec
- Laboratoire de Génétique Moléculaire et d'Histocompatibilité, Centre Hospitalier Régional Universitaire, Brest, France
| | - Guy Lalau
- Centre de Biologie Pathologie Génétique, Centre Hospitalier Régional Universitaire, Lille, France
| | - Adrien Pagin
- Centre de Biologie Pathologie Génétique, Centre Hospitalier Régional Universitaire, Lille, France
| | - Alain Kitzis
- Département de Génétique, Centre Hospitalier Universitaire, Poitiers, France
| | - Vincent Thoreau
- Département de Génétique, Centre Hospitalier Universitaire, Poitiers, France
| | - Véronique Gaston
- Service de Génétique Médicale, Centre Hospitalier Universitaire, Toulouse, France
| | - Eric Bieth
- Service de Génétique Médicale, Centre Hospitalier Universitaire, Toulouse, France
| | - Marie-Claire Malinge
- Département de Biochimie Génétique, Institut de Biologie en Santé, Centre Hospitalier Universitaire, Angers, France
| | - Marie-Pierre Reboul
- Laboratoire de Génétique Moléculaire, Centre Hospitalier Régional Universitaire, Bordeaux, France
| | - Patricia Fergelot
- Laboratoire Maladies Rares, Génétique et Métabolisme, Bordeaux, France
| | - Lydie Lemonnier
- Registre français de la mucoviscidose, Vaincre la Mucoviscidose, Paris, France
| | - Chadia Mekki
- Laboratoire de Génétique, Hôpital Henri Mondor, Créteil, France
| | - Pascale Fanen
- Laboratoire de Génétique, Hôpital Henri Mondor, Créteil, France
| | - Anne Bergougnoux
- Laboratoire de Génétique Moléculaire, Centre Hospitalier Universitaire et Université de Montpellier, Montpellier, France
| | - Souphatta Sasorith
- Laboratoire de Génétique Moléculaire, Centre Hospitalier Universitaire et Université de Montpellier, Montpellier, France
| | - Caroline Raynal
- Laboratoire de Génétique Moléculaire, Centre Hospitalier Universitaire et Université de Montpellier, Montpellier, France
| | - Corinne Bareil
- Laboratoire de Génétique Moléculaire, Centre Hospitalier Universitaire et Université de Montpellier, Montpellier, France
| |
Collapse
|
4
|
Abstract
Cystic fibrosis (CF) is the most frequent lethal genetic disorder among Caucasians, but is considered to be a very rare disease in Chinese population. Here, we present an 11-year-old Chinese CF patient with disseminated bronchiectasis and salty sweat, for whom exon sequencing followed by multiplex ligation-dependent probe amplification analysis of the CFTR gene was applied for mutation screening. A homozygous deletion involving exon 20 of CFTR was observed in the patient's genome. Molecular characterization of the breakpoints indicated that both alleles of this locus had an identical novel complex rearrangement (c.3140-454_c.3367+249del931ins13, p.R1048_G1123del), leading to an in-frame removal of 76 amino acid residues in the second transmembrane domains of the CFTR protein. Although a same haplotype containing this complex rearrangement was observed on both of the maternal and paternal alleles, the parents denied any blood relationship as far as they know. Genome-wide homozygosity mapping was performed through SNP microarray and only a single homozygous interval of ~14.1 Mb at chromosome 7 containing the CFTR gene was observed, indicating the possible origin of the deletion from a common ancestor many generations ago. This study expands the mutation spectrum of CFTR in patients of Chinese origin and further emphasizes the necessity of MLPA analysis in mutation screening for CF patients.
Collapse
|
5
|
Blanco-Kelly F, Palomares M, Vallespín E, Villaverde C, Martín-Arenas R, Vélez-Monsalve C, Lorda-Sánchez I, Nevado J, Trujillo-Tiebas MJ, Lapunzina P, Ayuso C, Corton M. Improving molecular diagnosis of aniridia and WAGR syndrome using customized targeted array-based CGH. PLoS One 2017; 12:e0172363. [PMID: 28231309 PMCID: PMC5322952 DOI: 10.1371/journal.pone.0172363] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 02/04/2017] [Indexed: 11/18/2022] Open
Abstract
Chromosomal deletions at 11p13 are a frequent cause of congenital Aniridia, a rare pan-ocular genetic disease, and of WAGR syndrome, accounting up to 30% of cases. First-tier genetic testing for newborn with aniridia, to detect 11p13 rearrangements, includes Multiplex Ligation-dependent Probe Amplification (MLPA) and karyotyping. However, neither of these approaches allow obtaining a complete picture of the high complexity of chromosomal deletions and breakpoints in aniridia. Here, we report the development and validation of a customized targeted array-based comparative genomic hybridization, so called WAGR-array, for comprehensive high-resolution analysis of CNV in the WAGR locus. Our approach increased the detection rate in a Spanish cohort of 38 patients with aniridia, WAGR syndrome and other related ocular malformations, allowing to characterize four undiagnosed aniridia cases, and to confirm MLPA findings in four additional patients. For all patients, breakpoints were accurately established and a contiguous deletion syndrome, involving a large number of genes, was identified in three patients. Moreover, we identified novel microdeletions affecting 3' PAX6 regulatory regions in three families with isolated aniridia. This tool represents a good strategy for the genetic diagnosis of aniridia and associated syndromes, allowing for a more accurate CNVs detection, as well as a better delineation of breakpoints. Our results underline the clinical importance of performing exhaustive and accurate analysis of chromosomal rearrangements for patients with aniridia, especially newborns and those without defects in PAX6 after diagnostic screening.
Collapse
Affiliation(s)
- Fiona Blanco-Kelly
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital- Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - María Palomares
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
- Institute of Medical & Molecular Genetics (INGEMM), Hospital Universitario La Paz, Universidad Autónoma de Madrid, IdiPAZ, Madrid, Spain
| | - Elena Vallespín
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
- Institute of Medical & Molecular Genetics (INGEMM), Hospital Universitario La Paz, Universidad Autónoma de Madrid, IdiPAZ, Madrid, Spain
| | - Cristina Villaverde
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital- Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - Rubén Martín-Arenas
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
- Institute of Medical & Molecular Genetics (INGEMM), Hospital Universitario La Paz, Universidad Autónoma de Madrid, IdiPAZ, Madrid, Spain
| | - Camilo Vélez-Monsalve
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital- Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - Isabel Lorda-Sánchez
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital- Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - Julián Nevado
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
- Institute of Medical & Molecular Genetics (INGEMM), Hospital Universitario La Paz, Universidad Autónoma de Madrid, IdiPAZ, Madrid, Spain
| | - María José Trujillo-Tiebas
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital- Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - Pablo Lapunzina
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
- Institute of Medical & Molecular Genetics (INGEMM), Hospital Universitario La Paz, Universidad Autónoma de Madrid, IdiPAZ, Madrid, Spain
| | - Carmen Ayuso
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital- Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
- * E-mail: (CA); (MC)
| | - Marta Corton
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital- Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
- * E-mail: (CA); (MC)
| |
Collapse
|
6
|
Celestino-Soper PBS, Simpson E, Tumbleson Brink D, Lynnes TC, Dlouhy S, Vatta M, Yeley J, Brown C, Bai S. Intragenic CFTR Duplication and 5T/12TG Variant in a Patient with Non-Classic Cystic Fibrosis. Sci Rep 2016; 6:38776. [PMID: 27996019 PMCID: PMC5172161 DOI: 10.1038/srep38776] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 11/10/2016] [Indexed: 11/09/2022] Open
Abstract
Cystic fibrosis (CF) is an autosomal recessive disorder characterized by the accumulation of sticky and heavy mucus that can damage several organs. CF shows variable expressivity in affected individuals, but it typically causes respiratory and digestive complications as well as congenital bilateral absence of the vas deferens in males. Individuals with classic CF usually have variants that produce a defective protein from both alleles of the CFTR gene. Individuals with other variants may present with classic, non-classic, or milder forms of CF due to lower levels of functional CFTR protein. This article reports the genetic analysis of a female with features of asthma and mild or non-classic CF. CFTR sequencing demonstrated that she is a carrier for a maternally derived 5T/12TG variant. Deletion/duplication analysis by multiplex ligation-dependent probe amplification (MLPA) showed the presence of an intragenic paternally derived duplication involving exons 7-11 of the CFTR gene. This duplication is predicted to result in the production of a truncated CFTR protein lacking the terminal part of the nucleotide-binding domain 1 (NBD1) and thus is likely to be a non-functioning allele. The combination of this large intragenic duplication and 5T/12TG is the probable cause of the mild or non-classic CF features in this individual.
Collapse
Affiliation(s)
| | - Edward Simpson
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Danika Tumbleson Brink
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Ty C. Lynnes
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Stephen Dlouhy
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Matteo Vatta
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Krannert Institute of Cardiology, Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Jana Yeley
- Division of Pulmonary, Allergy, Critical Care, Occupational, and Sleep Medicine, Indiana University, Indianapolis, IN, 46202, USA
| | - Cynthia Brown
- Division of Pulmonary, Allergy, Critical Care, Occupational, and Sleep Medicine, Indiana University, Indianapolis, IN, 46202, USA
| | - Shaochun Bai
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| |
Collapse
|
7
|
Günther S, Elert-Dobkowska E, Soehn AS, Hinreiner S, Yoon G, Heller R, Hellenbroich Y, Hübner CA, Ray PN, Hehr U, Bauer P, Sulek A, Beetz C. High Frequency of Pathogenic Rearrangements in SPG11 and Extensive Contribution of Mutational Hotspots and Founder Alleles. Hum Mutat 2016; 37:703-9. [PMID: 27071356 DOI: 10.1002/humu.23000] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 03/11/2016] [Accepted: 03/29/2016] [Indexed: 12/27/2022]
Abstract
Biallelic loss-of-function mutations in SPG11 cause a wide spectrum of recessively inherited, neurodegenerative disorders including hereditary spastic paraplegia (HSP), amyotrophic lateral sclerosis, and Charcot-Marie-Tooth disease. By comprehensive screening of three large cohorts of HSP index patients, we identified 83 alleles with "small" mutations and 13 alleles that carry large genomic rearrangements. Including relevant data from previous studies, we estimate that copy number variants (CNVs) account for ∼19% of pathogenic SPG11 alleles. The breakpoints for all novel and some previously reported CNVs were determined by long-range PCR and sequencing. This revealed several Alu-associated recombination hotspots. We also found evidence for additional mutational mechanisms, including for a two-step event in which an Alu retrotransposition preceded the actual rearrangement. Apparently independent samples with identical breakpoints were analyzed by microsatellite PCRs. The resulting haplotypes suggested the existence of two rearrangement founder alleles. Our findings widen the spectra of mutations and mutational mechanisms in SPG11, underscore the pivotal role played by Alus, and are of high diagnostic relevance for a wide spectrum of clinical phenotypes including the most frequent form of recessive HSP.
Collapse
Affiliation(s)
- Sven Günther
- Department of Clinical Chemistry and Laboratory Medicine, Jena University Hospital, Jena, Germany
| | | | - Anne S Soehn
- Institute of Medical Genetics and Applied Genomics, University Hospital of Tuebingen, Tuebingen, Germany
| | - Sophie Hinreiner
- Center for Human Genetics, and Department of Human Genetics, University of Regensburg, Regensburg, Germany
| | - Grace Yoon
- Division of Clinical and Metabolic Genetics, Department of Paediatrics, University of Toronto, The Hospital for Sick Children, Toronto, Canada
| | - Raoul Heller
- Institute of Human Genetics, University Hospital of Cologne, Cologne, Germany
| | | | | | - Peter N Ray
- Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Ute Hehr
- Center for Human Genetics, and Department of Human Genetics, University of Regensburg, Regensburg, Germany
| | - Peter Bauer
- Institute of Medical Genetics and Applied Genomics, University Hospital of Tuebingen, Tuebingen, Germany
| | - Anna Sulek
- Department of Genetics, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Christian Beetz
- Department of Clinical Chemistry and Laboratory Medicine, Jena University Hospital, Jena, Germany
| |
Collapse
|
8
|
Hsiao MC, Piotrowski A, Callens T, Fu C, Wimmer K, Claes KBM, Messiaen L. Decoding NF1 Intragenic Copy-Number Variations. Am J Hum Genet 2015; 97:238-49. [PMID: 26189818 DOI: 10.1016/j.ajhg.2015.06.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 06/05/2015] [Indexed: 11/30/2022] Open
Abstract
Genomic rearrangements can cause both Mendelian and complex disorders. Currently, several major mechanisms causing genomic rearrangements, such as non-allelic homologous recombination (NAHR), non-homologous end joining (NHEJ), fork stalling and template switching (FoSTeS), and microhomology-mediated break-induced replication (MMBIR), have been proposed. However, to what extent these mechanisms contribute to gene-specific pathogenic copy-number variations (CNVs) remains understudied. Furthermore, few studies have resolved these pathogenic alterations at the nucleotide-level. Accordingly, our aim was to explore which mechanisms contribute to a large, unique set of locus-specific non-recurrent genomic rearrangements causing the genetic neurocutaneous disorder neurofibromatosis type 1 (NF1). Through breakpoint-spanning PCR as well as array comparative genomic hybridization, we have identified the breakpoints in 85 unrelated individuals carrying an NF1 intragenic CNV. Furthermore, we characterized the likely rearrangement mechanisms of these 85 CNVs, along with those of two additional previously published NF1 intragenic CNVs. Unlike the most typical recurrent rearrangements mediated by flanking low-copy repeats (LCRs), NF1 intragenic rearrangements vary in size, location, and rearrangement mechanisms. We propose the DNA-replication-based mechanisms comprising both FoSTeS and/or MMBIR and serial replication stalling to be the predominant mechanisms leading to NF1 intragenic CNVs. In addition to the loop within a 197-bp palindrome located in intron 40, four Alu elements located in introns 1, 2, 3, and 50 were also identified as intragenic-rearrangement hotspots within NF1.
Collapse
Affiliation(s)
- Meng-Chang Hsiao
- Medical Genomics Laboratory, Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Arkadiusz Piotrowski
- Medical Genomics Laboratory, Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA; Faculty of Pharmacy, Medical University of Gdansk, 80-416 Gdansk, Poland
| | - Tom Callens
- Medical Genomics Laboratory, Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Chuanhua Fu
- Medical Genomics Laboratory, Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Katharina Wimmer
- Division of Human Genetics, Medical University Innsbruck, Peter-Mayr-Straße 1, 6020 Innsbruck, Austria
| | - Kathleen B M Claes
- Center for Medical Genetics, Ghent University Hospital, De Pintelaan, 185 9000 Gent, Belgium
| | - Ludwine Messiaen
- Medical Genomics Laboratory, Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
9
|
Zhou L, Palais RA, Paxton CN, Geiersbach KB, Wittwer CT. Copy Number Assessment by Competitive PCR with Limiting Deoxynucleotide Triphosphates and High-Resolution Melting. Clin Chem 2015; 61:724-33. [DOI: 10.1373/clinchem.2014.236208] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Accepted: 02/02/2015] [Indexed: 11/06/2022]
Abstract
Abstract
BACKGROUND
DNA copy number variation is associated with genetic disorders and cancer. Available methods to discern variation in copy number are typically costly, slow, require specialized equipment, and/or lack precision.
METHODS
Multiplex PCR with different primer pairs and limiting deoxynucleotide triphosphates (dNTPs) (3–12 μmol/L) were used for relative quantification and copy number assessment. Small PCR products (50–121 bp) were designed with 1 melting domain, well-separated Tms, minimal internal sequence variation, and no common homologs. PCR products were displayed as melting curves on derivative plots and normalized to the reference peak. Different copy numbers of each target clustered together and were grouped by unbiased hierarchical clustering.
RESULTS
Duplex PCR of a reference gene and a target gene was used to detect copy number variation in chromosomes X, Y, 13, 18, 21, epidermal growth factor receptor (EGFR), survival of motor neuron 1, telomeric (SMN1), and survival of motor neuron 2, centromeric (SMN2). Triplex PCR was used for X and Y and CFTR exons 2 and 3. Blinded studies of 50 potential trisomic samples (13, 18, 21, or normal) and 50 samples with potential sex chromosome abnormalities were concordant to karyotyping, except for 2 samples that were originally mosaics that displayed a single karyotype after growth. Large cystic fibrosis transmembrane conductance regulator (ATP-binding cassette sub-family C, member 7) (CFTR) deletions, EGFR amplifications, and SMN1 and SMN2 copy number assessments were also demonstrated. Under ideal conditions, copy number changes of 1.11-fold or lower could be discerned with CVs of about 1%.
CONCLUSIONS
Relative quantification by restricting the dNTP concentration with melting curve display is a simple and precise way to assess targeted copy number variation.
Collapse
Affiliation(s)
- Luming Zhou
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT
| | | | - Christian N Paxton
- ARUP Institute for Clinical and Experimental Pathology, Salt Lake City, UT
| | - Katherine B Geiersbach
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT
- ARUP Institute for Clinical and Experimental Pathology, Salt Lake City, UT
| | - Carl T Wittwer
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT
- ARUP Institute for Clinical and Experimental Pathology, Salt Lake City, UT
| |
Collapse
|
10
|
Vasson A, Leroux C, Orhant L, Boimard M, Toussaint A, Leroy C, Commere V, Ghiotti T, Deburgrave N, Saillour Y, Atlan I, Fouveaut C, Beldjord C, Valleix S, Leturcq F, Dodé C, Bienvenu T, Chelly J, Cossée M. Custom oligonucleotide array-based CGH: a reliable diagnostic tool for detection of exonic copy-number changes in multiple targeted genes. Eur J Hum Genet 2013; 21:977-87. [PMID: 23340513 PMCID: PMC3746255 DOI: 10.1038/ejhg.2012.279] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 10/31/2012] [Accepted: 11/13/2012] [Indexed: 11/09/2022] Open
Abstract
The frequency of disease-related large rearrangements (referred to as copy-number mutations, CNMs) varies among genes, and search for these mutations has an important place in diagnostic strategies. In recent years, CGH method using custom-designed high-density oligonucleotide-based arrays allowed the development of a powerful tool for detection of alterations at the level of exons and made it possible to provide flexibility through the possibility of modeling chips. The aim of our study was to test custom-designed oligonucleotide CGH array in a diagnostic laboratory setting that analyses several genes involved in various genetic diseases, and to compare it with conventional strategies. To this end, we designed a 12-plex CGH array (135k; 135 000 probes/subarray) (Roche Nimblegen) with exonic and intronic oligonucleotide probes covering 26 genes routinely analyzed in the laboratory. We tested control samples with known CNMs and patients for whom genetic causes underlying their disorders were unknown. The contribution of this technique is undeniable. Indeed, it appeared reproducible, reliable and sensitive enough to detect heterozygous single-exon deletions or duplications, complex rearrangements and somatic mosaicism. In addition, it improves reliability of CNM detection and allows determination of boundaries precisely enough to direct targeted sequencing of breakpoints. All of these points, associated with the possibility of a simultaneous analysis of several genes and scalability 'homemade' make it a valuable tool as a new diagnostic approach of CNMs.
Collapse
Affiliation(s)
- Aurélie Vasson
- Assistance Publique-Hôpitaux de Paris, Laboratoire de Biochimie et Génétique Moléculaire, Hôpital Cochin, APHP, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Moore JM, Wimberly H, Thornton PC, Rosenberg SM, Hastings PJ. Gross chromosomal rearrangement mediated by DNA replication in stressed cells: evidence from Escherichia coli. Ann N Y Acad Sci 2012; 1267:103-9. [PMID: 22954223 DOI: 10.1111/j.1749-6632.2012.06587.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Gross chromosomal rearrangements (GCRs), or changes in chromosome structure, play central roles in evolution and are central to cancer formation and progression. GCRs underlie copy number variation (CNV), and therefore genomic disorders that stem from CNV. We study amplification in Escherichia coli as a model system to understand mechanisms and circumstances of GCR formation. Here, we summarize observations that led us to postulate that GCR occurs by a replicative mechanism as part of activated stress responses. We report that we do not find RecA to be downregulated by stress on a population basis and that constitutive expression of RecA does not inhibit amplification, as would be expected if downregulation of RecA made cells permissive for nonhomologous recombination. Strains deleted for the genes for three proteins that inhibit RecA activity, psiB, dinI, and recX, all show unaltered amplification, suggesting that if they do downregulate RecA indirectly, this activity does not promote amplification.
Collapse
Affiliation(s)
- J M Moore
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA
| | | | | | | | | |
Collapse
|
12
|
Abstract
Cystic fibrosis (CF) is defined as the most common life shortening genetic disorder in the Caucasian populations. The cloning of the gene responsible for the disease - the CFTR (Cystic Fibrosis Transmembrane conductance Regulator) gene - twenty years ago has greatly improved our knowledge of the pathophysiology of CF. That disease is characterized by a highly phenotypic variability and the CFTR mutations cannot explain all the variability observed in the disease severity. The possible influence of the environment and modifier genes has therefore been evocated. Several genetic variants coding for genes involved in the physiopathology of the disease have been studied, like genes involve in the immunity and the inflammatory response. Some of these genes have indeed been shown to influence the disease severity. A new approach has also been developed, analyzing the whole genome. This review summarizes the genetic basis of CF in its classical and atypical forms, as well as the work performed in the field of modifier genes.
Collapse
|
13
|
A wide methodological approach to identify a large duplication in CFTR gene in a CF patient uncharacterised by sequencing analysis. J Cyst Fibros 2012; 10:412-7. [PMID: 21852204 DOI: 10.1016/j.jcf.2011.06.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 06/17/2011] [Accepted: 06/18/2011] [Indexed: 02/03/2023]
Abstract
BACKGROUND PCR-based diagnostic procedures are not able to characterise 6% of CF alleles. Recently, the application of array-CGH and of CFTR mRNA analysis has allowed the identification of new copy number mutations and splicing defects, that account for 2% and 13% of CF alleles, respectively, in the Italian population. METHODS Here, we report the characterisation of a large duplication in CFTR gene through different methods: MLPA assay, RT-PCR and high-resolution array-CGH. RESULTS We identified a large duplication, involving exons 6b-16, in a patient heterozygous for F508del mutation. This duplication produces an abnormal transcript with an out of frame addition of 2244 nucleotides and leads to the insertion of 8 amino-acid residues in the protein, followed by a stop codon. CONCLUSIONS We propose a wide methodological approach based on MLPA assay, RT-PCR and high-resolution array-CGH to routinely analyse CF patients uncharacterised for one or both CFTR alleles.
Collapse
|
14
|
Abstract
Array-based genome-wide segmental aneuploidy screening detects both de novo and inherited copy number variations (CNVs). In sporadic patients de novo CNVs are interpreted as potentially pathogenic. However, a deletion, transmitted from a healthy parent, may be pathogenic if it overlaps with a mutated second allele inherited from the other healthy parent. To detect such events, we performed multiplex enrichment and next-generation sequencing of the entire coding sequence of all genes within unique hemizygous deletion regions in 20 patients (1.53 Mb capture footprint). Out of the detected 703 non-synonymous single-nucleotide variants (SNVs), 8 represented variants being unmasked by a hemizygous deletion. Although evaluation of inheritance patterns, Grantham matrix scores, evolutionary conservation and bioinformatic predictions did not consistently indicate pathogenicity of these variants, no definitive conclusions can be drawn without functional validation. However, in one patient with severe mental retardation, lack of speech, microcephaly, cheilognathopalatoschisis and bilateral hearing loss, we discovered a second smaller deletion, inherited from the other healthy parent, resulting in loss of both alleles of the highly conserved heat shock factor binding protein 1 (HSBP1) gene. Conceivably, inherited deletions may unmask rare pathogenic variants that may exert a phenotypic impact through a recessive mode of gene action.
Collapse
|
15
|
Maranda B, Fan L, Soucy JF, Simard L, Mitchell GA. Spinal muscular atrophy: clinical validation of a single-tube multiplex real time PCR assay for determination of SMN1 and SMN2 copy numbers. Clin Biochem 2011; 45:88-91. [PMID: 22085534 DOI: 10.1016/j.clinbiochem.2011.10.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Revised: 10/22/2011] [Accepted: 10/30/2011] [Indexed: 01/07/2023]
Abstract
OBJECTIVES To describe and validate a new protocol for molecular diagnosis of spinal muscular atrophy (SMA), a frequent neuromuscular disease of childhood. DESIGN AND METHODS SMA is caused in most cases by homozygous deletion of the SMN1 gene. We describe a triplex quantitative real-time PCR method in which fragments of SMN1, SMN2 (a nearly-identical neighboring gene with markedly reduced function) and of a control gene, CFTR, are amplified in the same tube. RESULTS We validated this method in three ways. First, testing the same samples ten times yielded CV values <4.6%. Second, in 104 previously-genotyped individuals, SMN copy numbers identical to those of the previously-determined genotype was unambiguously obtained in all cases. Finally, results using the technique in practice are described and analyzed for reproducibility of amplification efficiency and for inter-run variability. CONCLUSIONS In over 1200 samples, this technique has proven accurate, fast, economical and reproducible.
Collapse
Affiliation(s)
- Bruno Maranda
- Department of Genetics, CHUS and Université de Sherbrooke, Sherbrooke, Québec, Canada
| | | | | | | | | |
Collapse
|
16
|
Duguépéroux I, Scotet V, Audrézet MP, Saliou AH, Collet M, Blayau M, Schmitt S, Kitzis A, Fresquet F, Müller F, Férec C. Nonvisualization of fetal gallbladder increases the risk of cystic fibrosis. Prenat Diagn 2011; 32:21-8. [PMID: 22052729 DOI: 10.1002/pd.2866] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 08/18/2011] [Accepted: 08/18/2011] [Indexed: 01/23/2023]
Abstract
OBJECTIVE The aim of our study is to evaluate the prevalence of cystic fibrosis (CF) in fetuses referred for genetic testing because of ultrasonographic sign (nonvisualized fetal gallbladder--NVFGB). METHOD We reviewed the results of CFTR gene analysis over the period 2002 to 2009 in all consecutive cases referred because of NVFGB in Western France. We correlated these data with the presence of a more classical ultrasonographic finding (fetal echogenic bowel - FEB). RESULTS Cystic fibrosis was diagnosed in 5 of the 37 fetuses with NVFGB (13.5%, 95% confidence interval (CI): [2.5%; 24.5%]) and in only 9 of the 229 other cases referred because of FEB (3.9%, 95% CI: [3.2%; 14.7%]). In our series, all CF-affected fetuses with NVFGB also had FEB. The risk of CF was 11.6-fold higher in fetuses with both indications (NVFGB + FEB) than in fetuses with isolated FEB (45.5% vs 3.9%, RR = 11.6, 95% CI: [4.7%; 28.8%], p = 0.0001). We also estimated that the residual risk of CF was less than 1 in 68 (1.5%) when a single mutation was identified in the fetus by our molecular protocol. CONCLUSION Ultrasonographic evidence of NVFGB is an additional risk factor for CF in cases with FEB.
Collapse
|
17
|
Cooper DN, Bacolla A, Férec C, Vasquez KM, Kehrer-Sawatzki H, Chen JM. On the sequence-directed nature of human gene mutation: the role of genomic architecture and the local DNA sequence environment in mediating gene mutations underlying human inherited disease. Hum Mutat 2011; 32:1075-99. [PMID: 21853507 PMCID: PMC3177966 DOI: 10.1002/humu.21557] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2011] [Accepted: 06/17/2011] [Indexed: 12/21/2022]
Abstract
Different types of human gene mutation may vary in size, from structural variants (SVs) to single base-pair substitutions, but what they all have in common is that their nature, size and location are often determined either by specific characteristics of the local DNA sequence environment or by higher order features of the genomic architecture. The human genome is now recognized to contain "pervasive architectural flaws" in that certain DNA sequences are inherently mutation prone by virtue of their base composition, sequence repetitivity and/or epigenetic modification. Here, we explore how the nature, location and frequency of different types of mutation causing inherited disease are shaped in large part, and often in remarkably predictable ways, by the local DNA sequence environment. The mutability of a given gene or genomic region may also be influenced indirectly by a variety of noncanonical (non-B) secondary structures whose formation is facilitated by the underlying DNA sequence. Since these non-B DNA structures can interfere with subsequent DNA replication and repair and may serve to increase mutation frequencies in generalized fashion (i.e., both in the context of subtle mutations and SVs), they have the potential to serve as a unifying concept in studies of mutational mechanisms underlying human inherited disease.
Collapse
Affiliation(s)
- David N Cooper
- Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff, United Kingdom.
| | | | | | | | | | | |
Collapse
|
18
|
Bacolla A, Wang G, Jain A, Chuzhanova NA, Cer RZ, Collins JR, Cooper DN, Bohr VA, Vasquez KM. Non-B DNA-forming sequences and WRN deficiency independently increase the frequency of base substitution in human cells. J Biol Chem 2011; 286:10017-26. [PMID: 21285356 PMCID: PMC3060453 DOI: 10.1074/jbc.m110.176636] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 01/31/2011] [Indexed: 01/01/2023] Open
Abstract
Although alternative DNA secondary structures (non-B DNA) can induce genomic rearrangements, their associated mutational spectra remain largely unknown. The helicase activity of WRN, which is absent in the human progeroid Werner syndrome, is thought to counteract this genomic instability. We determined non-B DNA-induced mutation frequencies and spectra in human U2OS osteosarcoma cells and assessed the role of WRN in isogenic knockdown (WRN-KD) cells using a supF gene mutation reporter system flanked by triplex- or Z-DNA-forming sequences. Although both non-B DNA and WRN-KD served to increase the mutation frequency, the increase afforded by WRN-KD was independent of DNA structure despite the fact that purified WRN helicase was found to resolve these structures in vitro. In U2OS cells, ∼70% of mutations comprised single-base substitutions, mostly at G·C base-pairs, with the remaining ∼30% being microdeletions. The number of mutations at G·C base-pairs in the context of NGNN/NNCN sequences correlated well with predicted free energies of base stacking and ionization potentials, suggesting a possible origin via oxidation reactions involving electron loss and subsequent electron transfer (hole migration) between neighboring bases. A set of ∼40,000 somatic mutations at G·C base pairs identified in a lung cancer genome exhibited similar correlations, implying that hole migration may also be involved. We conclude that alternative DNA conformations, WRN deficiency and lung tumorigenesis may all serve to increase the mutation rate by promoting, through diverse pathways, oxidation reactions that perturb the electron orbitals of neighboring bases. It follows that such "hole migration" is likely to play a much more widespread role in mutagenesis than previously anticipated.
Collapse
Affiliation(s)
- Albino Bacolla
- From the Department of Molecular Carcinogenesis, Science Park-Research Division, The University of Texas, M. D. Anderson Cancer Center, Smithville, Texas 78957
| | - Guliang Wang
- From the Department of Molecular Carcinogenesis, Science Park-Research Division, The University of Texas, M. D. Anderson Cancer Center, Smithville, Texas 78957
| | - Aklank Jain
- From the Department of Molecular Carcinogenesis, Science Park-Research Division, The University of Texas, M. D. Anderson Cancer Center, Smithville, Texas 78957
| | - Nadia A. Chuzhanova
- the School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, United Kingdom
| | - Regina Z. Cer
- the Advanced Biomedical Computing Center, SAIC-Frederick, Inc., NCI-Frederick, Frederick, Maryland 21702
| | - Jack R. Collins
- the Advanced Biomedical Computing Center, SAIC-Frederick, Inc., NCI-Frederick, Frederick, Maryland 21702
| | - David N. Cooper
- the Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff, CF14 4XN, United Kingdom, and
| | - Vilhelm A. Bohr
- the Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224
| | - Karen M. Vasquez
- From the Department of Molecular Carcinogenesis, Science Park-Research Division, The University of Texas, M. D. Anderson Cancer Center, Smithville, Texas 78957
| |
Collapse
|
19
|
Abstract
The number of known mutations in human nuclear genes, underlying or associated with human inherited disease, has now exceeded 100,000 in more than 3700 different genes (Human Gene Mutation Database). However, for a variety of reasons, this figure is likely to represent only a small proportion of the clinically relevant genetic variants that remain to be identified in the human genome (the 'mutome'). With the advent of next-generation sequencing, we are currently witnessing a revolution in medical genetics. In particular, whole-genome sequencing (WGS) has the potential to identify all disease-causing or disease-associated DNA variants in a given individual. Here, we use examples of recent advances in our understanding of mutational/pathogenic mechanisms to guide our thinking about possible locations outwith gene-coding sequences for those disease-causing or disease-associated variants that are likely so often to have been overlooked because of the inadequacy of current mutation screening protocols. Such considerations are important not only for improving mutation-screening strategies but also for enhancing the interpretation of findings derived from genome-wide association studies, whole-exome sequencing and WGS. An improved understanding of the human mutome will not only lead to the development of improved diagnostic testing procedures but should also improve our understanding of human genome biology.
Collapse
Affiliation(s)
- J M Chen
- Etablissement Français du Sang (EFS) - Bretagne, Brest, France.
| | | | | |
Collapse
|
20
|
Poot M, van der Smagt J, Brilstra E, Bourgeron T. Disentangling the Myriad Genomics of Complex Disorders, Specifically Focusing on Autism, Epilepsy, and Schizophrenia. Cytogenet Genome Res 2011; 135:228-40. [DOI: 10.1159/000334064] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
21
|
Scotet V, Duguépéroux I, Audrézet MP, Audebert-Bellanger S, Muller M, Blayau M, Férec C. Focus on cystic fibrosis and other disorders evidenced in fetuses with sonographic finding of echogenic bowel: 16-year report from Brittany, France. Am J Obstet Gynecol 2010; 203:592.e1-6. [PMID: 20932506 DOI: 10.1016/j.ajog.2010.08.033] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Revised: 04/30/2010] [Accepted: 08/17/2010] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Pregnancies medical follow-up and ultrasonography development have enabled detection of fetal echogenic bowel, a sign associated with various pathologies, including cystic fibrosis. Based on the long experience of a region where cystic fibrosis is frequent (Brittany, France), we describe disorders diagnosed in fetal echogenic bowel fetuses and assess ultrasonography ability in detecting cystic fibrosis in utero. STUDY DESIGN We reviewed the cases of fetal echogenic bowel diagnosed in pregnant women living in Brittany and referred for CFTR gene analysis over the 1992-2007 period (n = 289). RESULTS A disorder was diagnosed in 32.2% of the fetuses, cystic fibrosis being the most commonly identified (7.6%). We also found digestive malformations (7.0%), chromosomal abnormalities (3.7%), and maternofetal infections (3.7%). Combining these data with our ongoing newborn screening program since 1989 showed that ultrasonography enabled diagnosis of 10.7% of the cystic fibrosis cases. CONCLUSION This study highlights the importance of pregnancy ultrasound examinations and their efficiency in detecting cystic fibrosis.
Collapse
|
22
|
Cooper DN, Chen JM, Ball EV, Howells K, Mort M, Phillips AD, Chuzhanova N, Krawczak M, Kehrer-Sawatzki H, Stenson PD. Genes, mutations, and human inherited disease at the dawn of the age of personalized genomics. Hum Mutat 2010; 31:631-55. [PMID: 20506564 DOI: 10.1002/humu.21260] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The number of reported germline mutations in human nuclear genes, either underlying or associated with inherited disease, has now exceeded 100,000 in more than 3,700 different genes. The availability of these data has both revolutionized the study of the morbid anatomy of the human genome and facilitated "personalized genomics." With approximately 300 new "inherited disease genes" (and approximately 10,000 new mutations) being identified annually, it is pertinent to ask how many "inherited disease genes" there are in the human genome, how many mutations reside within them, and where such lesions are likely to be located? To address these questions, it is necessary not only to reconsider how we define human genes but also to explore notions of gene "essentiality" and "dispensability."Answers to these questions are now emerging from recent novel insights into genome structure and function and through complete genome sequence information derived from multiple individual human genomes. However, a change in focus toward screening functional genomic elements as opposed to genes sensu stricto will be required if we are to capitalize fully on recent technical and conceptual advances and identify new types of disease-associated mutation within noncoding regions remote from the genes whose function they disrupt.
Collapse
Affiliation(s)
- David N Cooper
- Institute of Medical Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, United Kingdom.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Chen JM, Cooper DN, Férec C, Kehrer-Sawatzki H, Patrinos GP. Genomic rearrangements in inherited disease and cancer. Semin Cancer Biol 2010; 20:222-33. [PMID: 20541013 DOI: 10.1016/j.semcancer.2010.05.007] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Revised: 04/22/2010] [Accepted: 05/19/2010] [Indexed: 10/19/2022]
Abstract
Genomic rearrangements in inherited disease and cancer involve gross alterations of chromosomes or large chromosomal regions and can take the form of deletions, duplications, insertions, inversions or translocations. The characterization of a considerable number of rearrangement breakpoints has now been accomplished at the nucleotide sequence level, thereby providing an invaluable resource for the detailed study of the mutational mechanisms which underlie genomic recombination events. A better understanding of these mutational mechanisms is vital for improving the design of mutation detection strategies. At least five categories of mutational mechanism are known to give rise to genomic rearrangements: (i) homologous recombination including non-allelic homologous recombination (NAHR), gene conversion, single strand annealing (SSA) and break-induced replication (BIR), (ii) non-homologous end joining (NHEJ), (iii) microhomology-mediated replication-dependent recombination (MMRDR), (iv) long interspersed element-1 (LINE-1 or L1)-mediated retrotransposition and (v) telomere healing. Focussing on the first three of these general mechanisms, we compare and contrast their hallmark characteristics, and discuss the role of various local DNA sequence features (e.g. recombination-promoting motifs, repetitive sequences and sequences capable of non-B DNA formation) in mediating the recombination events that underlie gross genomic rearrangements. Finally, we explore how studies both at the level of the gene (using the neurofibromatosis type-1 gene as an example) and the whole genome (using data derived from cancer genome sequencing studies) are shaping our understanding of the impact of genomic rearrangements as a cause of human genetic disease.
Collapse
Affiliation(s)
- Jian-Min Chen
- Etablissement Français du Sang (EFS) - Bretagne, Brest, France.
| | | | | | | | | |
Collapse
|
24
|
de Becdelièvre A, Costa C, LeFloch A, Legendre M, Jouannic JM, Vigneron J, Bresson JL, Gobin S, Martin J, Goossens M, Girodon E. Notable contribution of large CFTR gene rearrangements to the diagnosis of cystic fibrosis in fetuses with bowel anomalies. Eur J Hum Genet 2010; 18:1166-9. [PMID: 20512161 DOI: 10.1038/ejhg.2010.80] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Grade III fetal bowel hyperechogenicity and/or loop dilatation observed at the second trimester of pregnancy can be due to several disease conditions, including cystic fibrosis (CF). Screening for frequent CF mutations is performed as a first step and, in certain situations, such as when a frequent CF mutation is found in the fetus, the increased risk of CF justifies an in-depth study of the second allele. To determine the contribution of large CFTR gene rearrangements in such cases, detected using a semiquantitative fluorescent multiplex PCR (QFM-PCR) assay, we collated data on 669 referrals related to suspicion of CF in fetuses from 1998 to 2009. Deletions were found in 5/70 cases in which QFM-PCR was applied, dele19, dele22_23, dele2_6b, dele14b_15 and dele6a_6b, of which the last three remain undescribed. In 3/5 cases, hyperechogenicity was associated with dilatation and/or gallbladder anomalies. Of the total cases of CF recognized in the subgroup of first-hand referrals, deletions represent 16.7% of CF alleles. Our study thus strengthens the need to consider large CFTR gene rearrangements in the diagnosis strategy of fetal bowel anomalies, in particular in the presence of multiple anomalies.
Collapse
Affiliation(s)
- Alix de Becdelièvre
- Service de Biochimie-Génétique et Inserm U955 Equipe 11, Groupe Hospitalier Henri Mondor-Albert Chenevier, APHP, Créteil, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|