1
|
Bouras A, Lefol C, Ruano E, Grand-Masson C, Wang Q. PMS2 or PMS2CL? Characterization of variants detected in the 3' of the PMS2 gene. Genes Chromosomes Cancer 2024; 63:e23193. [PMID: 37534630 DOI: 10.1002/gcc.23193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/04/2023] Open
Abstract
PMS2 germline pathogenic variants are one of the major causes for Lynch syndrome and constitutional mismatch repair deficiencies. Variant identification in the 3' region of this gene is complicated by the presence of the pseudogene PMS2CL which shares a high sequence homology with PMS2. Consequently, short-fragment screening strategies (NGS, Sanger) may fail to discriminate variant's gene localization. Using a comprehensive analysis strategy, we assessed 42 NGS-detected variants in 76 patients and found 32 localized on PMS2 while 6 on PMS2CL. Interestingly, four variants were detected in either of them in different patients. Clinical phenotype was well correlated to genotype, making it very helpful in variant assessment. Our findings emphasize the necessity of more specific complementary analyses to confirm the gene origin of each variant detected in different individuals in order to avoid variant misinterpretation. In addition, we characterized two PMS2 genomic alterations involving Alu-mediated tandem duplication and gene conversion. Those mechanisms seemed to be particularly favored in PMS2 which contribute to frequent genomic rearrangements in the 3' region of the gene.
Collapse
Affiliation(s)
- Ahmed Bouras
- Centre Léon Bérard, Laboratory of Constitutional Genetics for Frequent Cancer HCL-CLB, Lyon, France
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, Lyon, France
| | - Cedrick Lefol
- Centre Léon Bérard, Laboratory of Constitutional Genetics for Frequent Cancer HCL-CLB, Lyon, France
| | - Eric Ruano
- Centre Léon Bérard, Laboratory of Constitutional Genetics for Frequent Cancer HCL-CLB, Lyon, France
| | - Chloé Grand-Masson
- Centre Léon Bérard, Laboratory of Constitutional Genetics for Frequent Cancer HCL-CLB, Lyon, France
| | - Qing Wang
- Centre Léon Bérard, Laboratory of Constitutional Genetics for Frequent Cancer HCL-CLB, Lyon, France
| |
Collapse
|
2
|
Stasiak M, Kolenda T, Kozłowska-Masłoń J, Sobocińska J, Poter P, Guglas K, Paszkowska A, Bliźniak R, Teresiak A, Kazimierczak U, Lamperska K. The World of Pseudogenes: New Diagnostic and Therapeutic Targets in Cancers or Still Mystery Molecules? Life (Basel) 2021; 11:life11121354. [PMID: 34947885 PMCID: PMC8705536 DOI: 10.3390/life11121354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 02/07/2023] Open
Abstract
Pseudogenes were once considered as “junk DNA”, due to loss of their functions as a result of the accumulation of mutations, such as frameshift and presence of premature stop-codons and relocation of genes to inactive heterochromatin regions of the genome. Pseudogenes are divided into two large groups, processed and unprocessed, according to their primary structure and origin. Only 10% of all pseudogenes are transcribed into RNAs and participate in the regulation of parental gene expression at both transcriptional and translational levels through senseRNA (sRNA) and antisense RNA (asRNA). In this review, about 150 pseudogenes in the different types of cancers were analyzed. Part of these pseudogenes seem to be useful in molecular diagnostics and can be detected in various types of biological material including tissue as well as biological fluids (liquid biopsy) using different detection methods. The number of pseudogenes, as well as their function in the human genome, is still unknown. However, thanks to the development of various technologies and bioinformatic tools, it was revealed so far that pseudogenes are involved in the development and progression of certain diseases, especially in cancer.
Collapse
Affiliation(s)
- Maciej Stasiak
- Greater Poland Cancer Centre, Laboratory of Cancer Genetics, Garbary 15, 61-866 Poznan, Poland; (M.S.); (J.K.-M.); (J.S.); (K.G.); (A.P.); (R.B.); (A.T.)
- Greater Poland Cancer Centre, Research and Implementation Unit, Garbary 15, 61-866 Poznan, Poland;
| | - Tomasz Kolenda
- Greater Poland Cancer Centre, Laboratory of Cancer Genetics, Garbary 15, 61-866 Poznan, Poland; (M.S.); (J.K.-M.); (J.S.); (K.G.); (A.P.); (R.B.); (A.T.)
- Greater Poland Cancer Centre, Research and Implementation Unit, Garbary 15, 61-866 Poznan, Poland;
- Correspondence: or (T.K.); or (K.L.)
| | - Joanna Kozłowska-Masłoń
- Greater Poland Cancer Centre, Laboratory of Cancer Genetics, Garbary 15, 61-866 Poznan, Poland; (M.S.); (J.K.-M.); (J.S.); (K.G.); (A.P.); (R.B.); (A.T.)
- Greater Poland Cancer Centre, Research and Implementation Unit, Garbary 15, 61-866 Poznan, Poland;
- Faculty of Biology, Institute of Human Biology and Evolution, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Joanna Sobocińska
- Greater Poland Cancer Centre, Laboratory of Cancer Genetics, Garbary 15, 61-866 Poznan, Poland; (M.S.); (J.K.-M.); (J.S.); (K.G.); (A.P.); (R.B.); (A.T.)
- Greater Poland Cancer Centre, Research and Implementation Unit, Garbary 15, 61-866 Poznan, Poland;
| | - Paulina Poter
- Greater Poland Cancer Centre, Research and Implementation Unit, Garbary 15, 61-866 Poznan, Poland;
- Greater Poland Cancer Center, Department of Oncologic Pathology and Prophylaxis, Poznan University of Medical Sciences, Garbary 15, 61-866 Poznan, Poland
- Department of Pathology, Pomeranian Medical University, Rybacka 1, 70-204 Szczecin, Poland
| | - Kacper Guglas
- Greater Poland Cancer Centre, Laboratory of Cancer Genetics, Garbary 15, 61-866 Poznan, Poland; (M.S.); (J.K.-M.); (J.S.); (K.G.); (A.P.); (R.B.); (A.T.)
- Greater Poland Cancer Centre, Research and Implementation Unit, Garbary 15, 61-866 Poznan, Poland;
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, 61 Zwirki and Wigury, 02-091 Warsaw, Poland
| | - Anna Paszkowska
- Greater Poland Cancer Centre, Laboratory of Cancer Genetics, Garbary 15, 61-866 Poznan, Poland; (M.S.); (J.K.-M.); (J.S.); (K.G.); (A.P.); (R.B.); (A.T.)
- Greater Poland Cancer Centre, Research and Implementation Unit, Garbary 15, 61-866 Poznan, Poland;
- Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznan, Poland
| | - Renata Bliźniak
- Greater Poland Cancer Centre, Laboratory of Cancer Genetics, Garbary 15, 61-866 Poznan, Poland; (M.S.); (J.K.-M.); (J.S.); (K.G.); (A.P.); (R.B.); (A.T.)
- Greater Poland Cancer Centre, Research and Implementation Unit, Garbary 15, 61-866 Poznan, Poland;
| | - Anna Teresiak
- Greater Poland Cancer Centre, Laboratory of Cancer Genetics, Garbary 15, 61-866 Poznan, Poland; (M.S.); (J.K.-M.); (J.S.); (K.G.); (A.P.); (R.B.); (A.T.)
- Greater Poland Cancer Centre, Research and Implementation Unit, Garbary 15, 61-866 Poznan, Poland;
| | - Urszula Kazimierczak
- Department of Cancer Immunology, Medical Biotechnology, Poznan University of Medical Sciences, 8 Rokietnicka Street, 60-806 Poznan, Poland;
| | - Katarzyna Lamperska
- Greater Poland Cancer Centre, Laboratory of Cancer Genetics, Garbary 15, 61-866 Poznan, Poland; (M.S.); (J.K.-M.); (J.S.); (K.G.); (A.P.); (R.B.); (A.T.)
- Greater Poland Cancer Centre, Research and Implementation Unit, Garbary 15, 61-866 Poznan, Poland;
- Correspondence: or (T.K.); or (K.L.)
| |
Collapse
|
3
|
Development and Validation of a 34-Gene Inherited Cancer Predisposition Panel Using Next-Generation Sequencing. BIOMED RESEARCH INTERNATIONAL 2020; 2020:3289023. [PMID: 32090079 PMCID: PMC6998746 DOI: 10.1155/2020/3289023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 08/04/2019] [Indexed: 12/18/2022]
Abstract
The use of genetic testing to identify individuals with hereditary cancer syndromes has been widely adopted by clinicians for management of inherited cancer risk. The objective of this study was to develop and validate a 34-gene inherited cancer predisposition panel using targeted capture-based next-generation sequencing (NGS). The panel incorporates genes underlying well-characterized cancer syndromes, such as BRCA1 and BRCA2 (BRCA1/2), along with more recently discovered genes associated with increased cancer risk. We performed a validation study on 133 unique specimens, including 33 with known variant status; known variants included single nucleotide variants (SNVs) and small insertions and deletions (Indels), as well as copy-number variants (CNVs). The analytical validation study achieved 100% sensitivity and specificity for SNVs and small Indels, with 100% sensitivity and 98.0% specificity for CNVs using in-house developed CNV flagging algorithm. We employed a microarray comparative genomic hybridization (aCGH) method for all specimens that the algorithm flags as CNV-positive for confirmation. In combination with aCGH confirmation, CNV detection specificity improved to 100%. We additionally report results of the first 500 consecutive specimens submitted for clinical testing with the 34-gene panel, identifying 53 deleterious variants in 13 genes in 49 individuals. Half of the detected pathogenic/likely pathogenic variants were found in BRCA1 (23%), BRCA2 (23%), or the Lynch syndrome-associated genes PMS2 (4%) and MLH1 (2%). The other half were detected in 9 other genes: MUTYH (17%), CHEK2 (15%), ATM (4%), PALB2 (4%), BARD1 (2%), CDH1 (2%), CDKN2A (2%), RAD51C (2%), and RET (2%). Our validation studies and initial clinical data demonstrate that a 34-gene inherited cancer predisposition panel can provide clinically significant information for cancer risk assessment.
Collapse
|
4
|
Chong A, Chong G, Foulkes WD, Saskin A. Reclassification of a frequent African‐origin variant from
PMS2
to the pseudogene
PMS2CL. Hum Mutat 2020; 41:749-752. [DOI: 10.1002/humu.23978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/09/2019] [Accepted: 12/26/2019] [Indexed: 11/07/2022]
Affiliation(s)
- Anne‐Sophie Chong
- Lady Davis Institute, Segal Cancer Centre Jewish General Hospital Montréal Québec Canada
- Department of Human Genetics McGill University Montréal Québec Canada
| | - George Chong
- Lady Davis Institute, Segal Cancer Centre Jewish General Hospital Montréal Québec Canada
- Department of Human Genetics McGill University Montréal Québec Canada
| | - William D. Foulkes
- Lady Davis Institute, Segal Cancer Centre Jewish General Hospital Montréal Québec Canada
- Department of Human Genetics McGill University Montréal Québec Canada
| | - Avi Saskin
- Lady Davis Institute, Segal Cancer Centre Jewish General Hospital Montréal Québec Canada
- Department of Human Genetics McGill University Montréal Québec Canada
| |
Collapse
|
5
|
Chen X, Wan L, Wang W, Xi WJ, Yang AG, Wang T. Re-recognition of pseudogenes: From molecular to clinical applications. Theranostics 2020; 10:1479-1499. [PMID: 32042317 PMCID: PMC6993246 DOI: 10.7150/thno.40659] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 11/12/2019] [Indexed: 12/14/2022] Open
Abstract
Pseudogenes were initially regarded as "nonfunctional" genomic elements that did not have protein-coding abilities due to several endogenous inactivating mutations. Although pseudogenes are widely expressed in prokaryotes and eukaryotes, for decades, they have been largely ignored and classified as gene "junk" or "relics". With the widespread availability of high-throughput sequencing analysis, especially omics technologies, knowledge concerning pseudogenes has substantially increased. Pseudogenes are evolutionarily conserved and derive primarily from a mutation or retrotransposon, conferring the pseudogene with a "gene repository" role to store and expand genetic information. In contrast to previous notions, pseudogenes have a variety of functions at the DNA, RNA and protein levels for broadly participating in gene regulation to influence the development and progression of certain diseases, especially cancer. Indeed, some pseudogenes have been proven to encode proteins, strongly contradicting their "trash" identification, and have been confirmed to have tissue-specific and disease subtype-specific expression, indicating their own value in disease diagnosis. Moreover, pseudogenes have been correlated with the life expectancy of patients and exhibit great potential for future use in disease treatment, suggesting that they are promising biomarkers and therapeutic targets for clinical applications. In this review, we summarize the natural properties, functions, disease involvement and clinical value of pseudogenes. Although our knowledge of pseudogenes remains nascent, this field deserves more attention and deeper exploration.
Collapse
|
6
|
Povysil G, Tzika A, Vogt J, Haunschmid V, Messiaen L, Zschocke J, Klambauer G, Hochreiter S, Wimmer K. panelcn.MOPS: Copy-number detection in targeted NGS panel data for clinical diagnostics. Hum Mutat 2017; 38:889-897. [PMID: 28449315 PMCID: PMC5518446 DOI: 10.1002/humu.23237] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 04/21/2017] [Accepted: 04/22/2017] [Indexed: 11/10/2022]
Abstract
Targeted next‐generation‐sequencing (NGS) panels have largely replaced Sanger sequencing in clinical diagnostics. They allow for the detection of copy‐number variations (CNVs) in addition to single‐nucleotide variants and small insertions/deletions. However, existing computational CNV detection methods have shortcomings regarding accuracy, quality control (QC), incidental findings, and user‐friendliness. We developed panelcn.MOPS, a novel pipeline for detecting CNVs in targeted NGS panel data. Using data from 180 samples, we compared panelcn.MOPS with five state‐of‐the‐art methods. With panelcn.MOPS leading the field, most methods achieved comparably high accuracy. panelcn.MOPS reliably detected CNVs ranging in size from part of a region of interest (ROI), to whole genes, which may comprise all ROIs investigated in a given sample. The latter is enabled by analyzing reads from all ROIs of the panel, but presenting results exclusively for user‐selected genes, thus avoiding incidental findings. Additionally, panelcn.MOPS offers QC criteria not only for samples, but also for individual ROIs within a sample, which increases the confidence in called CNVs. panelcn.MOPS is freely available both as R package and standalone software with graphical user interface that is easy to use for clinical geneticists without any programming experience. panelcn.MOPS combines high sensitivity and specificity with user‐friendliness rendering it highly suitable for routine clinical diagnostics.
Collapse
Affiliation(s)
- Gundula Povysil
- Institute of Bioinformatics, Johannes Kepler University Linz, Linz, Austria
| | - Antigoni Tzika
- Division of Human Genetics, Medical University Innsbruck, Innsbruck, Austria
| | - Julia Vogt
- Division of Human Genetics, Medical University Innsbruck, Innsbruck, Austria
| | - Verena Haunschmid
- Institute of Bioinformatics, Johannes Kepler University Linz, Linz, Austria
| | - Ludwine Messiaen
- Medical Genomics Laboratory, Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama
| | - Johannes Zschocke
- Division of Human Genetics, Medical University Innsbruck, Innsbruck, Austria
| | - Günter Klambauer
- Institute of Bioinformatics, Johannes Kepler University Linz, Linz, Austria
| | - Sepp Hochreiter
- Institute of Bioinformatics, Johannes Kepler University Linz, Linz, Austria
| | - Katharina Wimmer
- Division of Human Genetics, Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
7
|
González-Acosta M, Del Valle J, Navarro M, Thompson BA, Iglesias S, Sanjuan X, Paúles MJ, Padilla N, Fernández A, Cuesta R, Teulé À, Plotz G, Cadiñanos J, de la Cruz X, Balaguer F, Lázaro C, Pineda M, Capellá G. Elucidating the clinical significance of two PMS2 missense variants coexisting in a family fulfilling hereditary cancer criteria. Fam Cancer 2017; 16:501-507. [PMID: 28365877 DOI: 10.1007/s10689-017-9981-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The clinical spectrum of germline mismatch repair (MMR) gene variants continues increasing, encompassing Lynch syndrome, Constitutional MMR Deficiency (CMMRD), and the recently reported MSH3-associated polyposis. Genetic diagnosis of these hereditary cancer syndromes is often hampered by the presence of variants of unknown significance (VUS) and overlapping phenotypes. Two PMS2 VUS, c.2149G>A (p.V717M) and c.2444C>T (p.S815L), were identified in trans in one individual diagnosed with early-onset colorectal cancer (CRC) who belonged to a family fulfilling clinical criteria for hereditary cancer. Clinico-pathological data, multifactorial likelihood calculations and functional analyses were used to refine their clinical significance. Likelihood analysis based on cosegregation and tumor data classified the c.2444C>T variant as pathogenic, which was supported by impaired MMR activity associated with diminished protein expression in functional assays. Conversely, the c.2149G>A variant displayed MMR proficiency and protein stability. These results, in addition to the conserved PMS2 expression in normal tissues and the absence of germline microsatellite instability (gMSI) in the biallelic carrier ruled out a CMMRD diagnosis. The use of comprehensive strategies, including functional and clinico-pathological information, is mandatory to improve the clinical interpretation of naturally occurring MMR variants. This is critical for appropriate clinical management of cancer syndromes associated to MMR gene mutations.
Collapse
Affiliation(s)
- Maribel González-Acosta
- Hereditary Cancer Program, Catalan Institute of Oncology (ICO), IDIBELL and CIBERONC, Av. Gran Via de l'Hospitalet, 199-203, 08908, Hospitalet de Llobregat (Barcelona), Spain
| | - Jesús Del Valle
- Hereditary Cancer Program, Catalan Institute of Oncology (ICO), IDIBELL and CIBERONC, Av. Gran Via de l'Hospitalet, 199-203, 08908, Hospitalet de Llobregat (Barcelona), Spain
| | - Matilde Navarro
- Hereditary Cancer Program, Catalan Institute of Oncology (ICO), IDIBELL and CIBERONC, Av. Gran Via de l'Hospitalet, 199-203, 08908, Hospitalet de Llobregat (Barcelona), Spain
| | - Bryony A Thompson
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA.,Centre for Epidemiology and Biostatistics, School of Population and Global Health, University of Melbourne, Melbourne, Australia
| | - Sílvia Iglesias
- Hereditary Cancer Program, Catalan Institute of Oncology (ICO), IDIBELL and CIBERONC, Av. Gran Via de l'Hospitalet, 199-203, 08908, Hospitalet de Llobregat (Barcelona), Spain
| | - Xavier Sanjuan
- Pathology Department, Hospital Universitari de Bellvitge, IDIBELL, Hospitalet de Llobregat (Barcelona), Spain
| | - María José Paúles
- Pathology Department, Hospital Universitari de Bellvitge, IDIBELL, Hospitalet de Llobregat (Barcelona), Spain
| | - Natàlia Padilla
- Research Unit in Translational Bioinformatics, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Anna Fernández
- Hereditary Cancer Program, Catalan Institute of Oncology (ICO), IDIBELL and CIBERONC, Av. Gran Via de l'Hospitalet, 199-203, 08908, Hospitalet de Llobregat (Barcelona), Spain
| | - Raquel Cuesta
- Hereditary Cancer Program, Catalan Institute of Oncology (ICO), IDIBELL and CIBERONC, Av. Gran Via de l'Hospitalet, 199-203, 08908, Hospitalet de Llobregat (Barcelona), Spain
| | - Àlex Teulé
- Hereditary Cancer Program, Catalan Institute of Oncology (ICO), IDIBELL and CIBERONC, Av. Gran Via de l'Hospitalet, 199-203, 08908, Hospitalet de Llobregat (Barcelona), Spain
| | - Guido Plotz
- Medical Clinic 1, Johann Wolfgang Goethe-University, Frankfurt, Germany
| | - Juan Cadiñanos
- Instituto de Medicina Oncológica y Molecular de Asturias (IMOMA), Oviedo, Spain
| | - Xavier de la Cruz
- Research Unit in Translational Bioinformatics, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain.,ICREA, Barcelona, Spain
| | - Francesc Balaguer
- Department of Gastroenterology, Hospital Clínic, Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBERehd), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Conxi Lázaro
- Hereditary Cancer Program, Catalan Institute of Oncology (ICO), IDIBELL and CIBERONC, Av. Gran Via de l'Hospitalet, 199-203, 08908, Hospitalet de Llobregat (Barcelona), Spain
| | - Marta Pineda
- Hereditary Cancer Program, Catalan Institute of Oncology (ICO), IDIBELL and CIBERONC, Av. Gran Via de l'Hospitalet, 199-203, 08908, Hospitalet de Llobregat (Barcelona), Spain
| | - Gabriel Capellá
- Hereditary Cancer Program, Catalan Institute of Oncology (ICO), IDIBELL and CIBERONC, Av. Gran Via de l'Hospitalet, 199-203, 08908, Hospitalet de Llobregat (Barcelona), Spain.
| |
Collapse
|
8
|
PMS2 inactivation by a complex rearrangement involving an HERV retroelement and the inverted 100-kb duplicon on 7p22.1. Eur J Hum Genet 2016; 24:1598-1604. [PMID: 27329736 DOI: 10.1038/ejhg.2016.75] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 05/12/2016] [Accepted: 05/26/2016] [Indexed: 11/08/2022] Open
Abstract
Biallelic PMS2 mutations are responsible for more than half of all cases of constitutional mismatch repair deficiency (CMMRD), a recessively inherited childhood cancer predisposition syndrome. The mismatch repair gene PMS2 is partly embedded within one copy of an inverted 100-kb low-copy repeat (LCR) on 7p22.1. In an individual with CMMRD syndrome, PMS2 was found to be homozygously inactivated by a complex chromosomal rearrangement, which separates the 5'-part from the 3'-part of the gene. The rearrangement involves sequences of the inverted 100-kb LCR and a human endogenous retrovirus element and may be associated with an inversion that is indistinguishable from the known inversion polymorphism affecting the ~0.7-Mb sequence intervening the LCR. Its formation is best explained by a replication-based mechanism (RBM) such as fork stalling and template switching/microhomology-mediated break-induced replication (FoSTeS/MMBIR). This finding supports the hypothesis that the inverted LCR can not only facilitate the formation of the non-allelic homologous recombination-mediated inversion polymorphism but it also promotes the occurrence of more complex rearrangements that can be associated with a large inversion, as well, but are mediated by a RBM. This further suggests that among the inversion polymorphism on 7p22.1, more complex rearrangements might be hidden. Furthermore, as the locus is embedded in a common fragile site (CFS) region, this rearrangement also supports the recently raised hypothesis that CFS sequence motifs may facilitate replication-based rearrangement mechanisms.
Collapse
|
9
|
Vitiello M, Tuccoli A, Poliseno L. Long non-coding RNAs in cancer: implications for personalized therapy. Cell Oncol (Dordr) 2014; 38:17-28. [PMID: 25113790 DOI: 10.1007/s13402-014-0180-x] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2014] [Indexed: 02/06/2023] Open
Abstract
Long non-coding RNAs (lncRNAs, pseudogenes and circRNAs) have recently come into light as powerful players in cancer pathogenesis and it is becoming increasingly clear that they have the potential of greatly contributing to the spread and success of personalized cancer medicine. In this concise review, we briefly introduce these three classes of long non-coding RNAs. We then discuss their applications as diagnostic and prognostic biomarkers. Finally, we describe their appeal as targets and as drugs, while pointing out the limitations that still lie ahead of their definitive entry into clinical practice.
Collapse
Affiliation(s)
- Marianna Vitiello
- Oncogenomics Unit, Core Research Laboratory, Istituto Toscano Tumori c/o IFC-CNR, via Moruzzi 1, 56124, Pisa, Italy
| | | | | |
Collapse
|
10
|
Wimmer K, Wernstedt A. PMS2 gene mutational analysis: direct cDNA sequencing to circumvent pseudogene interference. Methods Mol Biol 2014; 1167:289-302. [PMID: 24823786 DOI: 10.1007/978-1-4939-0835-6_20] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The presence of highly homologous pseudocopies can compromise the mutation analysis of a gene of interest. In particular, when using PCR-based strategies, pseudogene co-amplification has to be effectively prevented. This is often achieved by using primers designed to be parental gene specific according to the reference sequence and by applying stringent PCR conditions. However, there are cases in which this approach is of limited utility. For example, it has been shown that the PMS2 gene exchanges sequences with one of its pseudogenes, named PMS2CL. This results in functional PMS2 alleles containing pseudogene-derived sequences at their 3'-end and in nonfunctional PMS2CL pseudogene alleles that contain gene-derived sequences. Hence, the paralogues cannot be distinguished according to the reference sequence. This shortcoming can be effectively circumvented by using direct cDNA sequencing. This approach is based on the selective amplification of PMS2 transcripts in two overlapping 1.6-kb RT-PCR products. In addition to avoiding pseudogene co-amplification and allele dropout, this method has also the advantage that it allows to effectively identify deletions, splice mutations, and de novo retrotransposon insertions that escape the detection of most DNA-based mutation analysis protocols.
Collapse
Affiliation(s)
- Katharina Wimmer
- Division of Human Genetics, Medical University Innsbruck, Peter-Mayr-Strasse 1, Innsbruck, 6020, Austria,
| | | |
Collapse
|
11
|
Drost M, Koppejan H, de Wind N. Inactivation of DNA mismatch repair by variants of uncertain significance in the PMS2 gene. Hum Mutat 2013; 34:1477-80. [PMID: 24027009 DOI: 10.1002/humu.22426] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 08/05/2013] [Indexed: 01/14/2023]
Abstract
Lynch syndrome (LS) is a common cancer predisposition caused by an inactivating mutation in one of four DNA mismatch repair (MMR) genes. Frequently a variant of uncertain significance (VUS), rather than an obviously pathogenic mutation, is identified in one of these genes. The inability to define pathogenicity of such variants precludes targeted healthcare. Here, we have modified a cell-free assay to test VUS in the MMR gene PMS2 for functional activity. We have analyzed nearly all VUS in PMS2 found thus far and describe loss of MMR activity for five, suggesting the applicability of the assay for diagnosis of LS.
Collapse
Affiliation(s)
- Mark Drost
- Department of Toxicogenetics, Leiden University Medical Center, Leiden, The Netherlands
| | | | | |
Collapse
|
12
|
Agenesis of the corpus callosum and gray matter heterotopia in three patients with constitutional mismatch repair deficiency syndrome. Eur J Hum Genet 2012; 21:55-61. [PMID: 22692065 DOI: 10.1038/ejhg.2012.117] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Constitutional mismatch repair deficiency (CMMR-D) syndrome is a rare inherited childhood cancer predisposition caused by biallelic germline mutations in one of the four mismatch repair (MMR)-genes, MLH1, MSH2, MSH6 or PMS2. Owing to a wide tumor spectrum, the lack of specific clinical features and the overlap with other cancer predisposing syndromes, diagnosis of CMMR-D is often delayed in pediatric cancer patients. Here, we report of three new CMMR-D patients all of whom developed more than one malignancy. The common finding in these three patients is agenesis of the corpus callosum (ACC). Gray matter heterotopia is present in two patients. One of the 57 previously reported CMMR-D patients with brain tumors (therefore all likely had cerebral imaging) also had ACC. With the present report the prevalence of cerebral malformations is at least 4/60 (6.6%). This number is well above the population birth prevalence of 0.09-0.36 live births with these cerebral malformations, suggesting that ACC and heterotopia are features of CMMR-D. Therefore, the presence of cerebral malformations in pediatric cancer patients should alert to the possible diagnosis of CMMR-D. ACC and gray matter heterotopia are the first congenital malformations described to occur at higher frequency in CMMR-D patients than in the general population. Further systematic evaluations of CMMR-D patients are needed to identify possible other malformations associated with this syndrome.
Collapse
|
13
|
Wernstedt A, Valtorta E, Armelao F, Togni R, Girlando S, Baudis M, Heinimann K, Messiaen L, Staehli N, Zschocke J, Marra G, Wimmer K. Improved multiplex ligation-dependent probe amplification analysis identifies a deleterious PMS2 allele generated by recombination with crossover between PMS2 and PMS2CL. Genes Chromosomes Cancer 2012; 51:819-31. [PMID: 22585707 PMCID: PMC3398144 DOI: 10.1002/gcc.21966] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 04/02/2012] [Indexed: 11/08/2022] Open
Abstract
Heterozygous PMS2 germline mutations are associated with Lynch syndrome. Up to one third of these mutations are genomic deletions. Their detection is complicated by a pseudogene (PMS2CL), which--owing to extensive interparalog sequence exchange--closely resembles PMS2 downstream of exon 12. A recently redesigned multiplex ligation-dependent probe amplification (MLPA) assay identifies PMS2 copy number alterations with improved reliability when used with reference DNAs containing equal numbers of PMS2- and PMS2CL-specific sequences. We selected eight such reference samples--all publicly available--and used them with this assay to study 13 patients with PMS2-defective colorectal tumors. Three presented deleterious alterations: an Alu-mediated exon deletion; a 125-kb deletion encompassing PMS2 and four additional genes (two with tumor-suppressing functions); and a novel deleterious hybrid PMS2 allele produced by recombination with crossover between PMS2 and PMS2CL, with the breakpoint in intron 10 (the most 5' breakpoint of its kind reported thus far). We discuss mechanisms that might generate this allele in different chromosomal configurations (and their diagnostic implications) and describe an allele-specific PCR assay that facilitates its detection. Our data indicate that the redesigned PMS2 MLPA assay is a valid first-line option. In our series, it identified roughly a quarter of all PMS2 mutations.
Collapse
|