1
|
Serrano C, Teixeira CSS, Cooper DN, Carneiro J, Lopes-Marques M, Stenson PD, Amorim A, Prata MJ, Sousa SF, Azevedo L. Compensatory epistasis explored by molecular dynamics simulations. Hum Genet 2021; 140:1329-1342. [PMID: 34173867 DOI: 10.1007/s00439-021-02307-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/20/2021] [Indexed: 11/24/2022]
Abstract
A non-negligible proportion of human pathogenic variants are known to be present as wild type in at least some non-human mammalian species. The standard explanation for this finding is that molecular mechanisms of compensatory epistasis can alleviate the mutations' otherwise pathogenic effects. Examples of compensated variants have been described in the literature but the interacting residue(s) postulated to play a compensatory role have rarely been ascertained. In this study, the examination of five human X-chromosomally encoded proteins (FIX, GLA, HPRT1, NDP and OTC) allowed us to identify several candidate compensated variants. Strong evidence for a compensated/compensatory pair of amino acids in the coagulation FIXa protein (involving residues 270 and 271) was found in a variety of mammalian species. Both amino acid residues are located within the 60-loop, spatially close to the 39-loop that performs a key role in coagulation serine proteases. To understand the nature of the underlying interactions, molecular dynamics simulations were performed. The predicted conformational change in the 39-loop consequent to the Glu270Lys substitution (associated with hemophilia B) appears to impair the protein's interaction with its substrate but, importantly, such steric hindrance is largely mitigated in those proteins that carry the compensatory residue (Pro271) at the neighboring amino acid position.
Collapse
Affiliation(s)
- Catarina Serrano
- i3S, Instituto de Investigação e Inovação em Saúde, Population Genetics and Evolution Group, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, Rua Júlio Amaral de Carvalho 45, 4200-135, Porto, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, Rua Do Campo Alegre, s/n, 4169-007, Porto, Portugal
| | - Carla S S Teixeira
- UCIBIO/REQUIMTE, BioSIM, Departamento de Biomedicina, Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| | - David N Cooper
- Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK
| | - João Carneiro
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208, Matosinhos, Portugal
| | - Mónica Lopes-Marques
- i3S, Instituto de Investigação e Inovação em Saúde, Population Genetics and Evolution Group, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, Rua Júlio Amaral de Carvalho 45, 4200-135, Porto, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, Rua Do Campo Alegre, s/n, 4169-007, Porto, Portugal
| | - Peter D Stenson
- Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK
| | - António Amorim
- i3S, Instituto de Investigação e Inovação em Saúde, Population Genetics and Evolution Group, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, Rua Júlio Amaral de Carvalho 45, 4200-135, Porto, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, Rua Do Campo Alegre, s/n, 4169-007, Porto, Portugal
| | - Maria J Prata
- i3S, Instituto de Investigação e Inovação em Saúde, Population Genetics and Evolution Group, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, Rua Júlio Amaral de Carvalho 45, 4200-135, Porto, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, Rua Do Campo Alegre, s/n, 4169-007, Porto, Portugal
| | - Sérgio F Sousa
- UCIBIO/REQUIMTE, BioSIM, Departamento de Biomedicina, Faculdade de Medicina da Universidade do Porto, Porto, Portugal.
| | - Luísa Azevedo
- i3S, Instituto de Investigação e Inovação em Saúde, Population Genetics and Evolution Group, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal.
- IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, Rua Júlio Amaral de Carvalho 45, 4200-135, Porto, Portugal.
- Department of Biology, Faculty of Sciences, University of Porto, Rua Do Campo Alegre, s/n, 4169-007, Porto, Portugal.
| |
Collapse
|
2
|
Anthropological Prosociality via Sub-Group Level Selection. Integr Psychol Behav Sci 2021; 56:180-205. [PMID: 33893612 DOI: 10.1007/s12124-021-09606-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2021] [Indexed: 10/21/2022]
Abstract
A perennial challenge of evolutionary psychology is explaining prosocial traits such as a preference for fairness rather than inequality, compassion towards suffering, and an instinctive ability to coordinate within small teams. Considering recent fossil evidence and a novel logical test, we deem present explanations insufficiently explanatory of the divergence of hominins. In answering this question, we focus on the divergence of hominins from the last common ancestor (LCA) shared with Pan. We consider recent fossil discoveries that indicate the LCA was bipedal, which reduces the cogency of this explanation for hominin development. We also review evolutionary theory that claims to explain how hominins developed into modern humans, however it is found that no mechanism differentiates hominins from other primates. Either the mechanism was available to the last common ancestor (LCA) (with P. troglodytes as its proxy), or because early hominins had insufficient cognition to utilise the mechanism. A novel mechanism, sub-group level selection (sGLS) is hypothesised by triangulating two pieces of data rarely considered by evolutionary biologists. These are behavioural dimorphism of Pan (chimpanzees and bonobos) that remain identifiable in modern humans, and the social behaviour of primate troops in a savannah ecology. We then contend that sGLS supplied an exponential effect which was available to LCA who left the forest, but was not sufficiently available to any other primates. In conclusion, while only indirectly supported by various evidence, sGLS is found to be singularly and persuasively explanatory of human's unique evolutionary story.
Collapse
|
3
|
Sharma V, Hiller M. Losses of human disease-associated genes in placental mammals. NAR Genom Bioinform 2019; 2:lqz012. [PMID: 33575564 PMCID: PMC7671337 DOI: 10.1093/nargab/lqz012] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 08/24/2019] [Accepted: 10/08/2019] [Indexed: 02/07/2023] Open
Abstract
We systematically investigate whether losses of human disease-associated genes occurred in other mammals during evolution. We first show that genes lost in any of 62 non-human mammals generally have a lower degree of pleiotropy, and are highly depleted in essential and disease-associated genes. Despite this under-representation, we discovered multiple genes implicated in human disease that are truly lost in non-human mammals. In most cases, traits resembling human disease symptoms are present but not deleterious in gene-loss species, exemplified by losses of genes causing human eye or teeth disorders in poor-vision or enamel-less mammals. We also found widespread losses of PCSK9 and CETP genes, where loss-of-function mutations in humans protect from atherosclerosis. Unexpectedly, we discovered losses of disease genes (TYMP, TBX22, ABCG5, ABCG8, MEFV, CTSE) where deleterious phenotypes do not manifest in the respective species. A remarkable example is the uric acid-degrading enzyme UOX, which we found to be inactivated in elephants and manatees. While UOX loss in hominoids led to high serum uric acid levels and a predisposition for gout, elephants and manatees exhibit low uric acid levels, suggesting alternative ways of metabolizing uric acid. Together, our results highlight numerous mammals that are 'natural knockouts' of human disease genes.
Collapse
Affiliation(s)
- Virag Sharma
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany.,Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany.,Center for Systems Biology Dresden, 01307 Dresden, Germany
| | - Michael Hiller
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany.,Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany.,Center for Systems Biology Dresden, 01307 Dresden, Germany
| |
Collapse
|
4
|
The genomic landscape of evolutionary convergence in mammals, birds and reptiles. Nat Ecol Evol 2017; 1:41. [PMID: 28812724 DOI: 10.1038/s41559-016-0041] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 11/23/2016] [Indexed: 01/11/2023]
Abstract
Many lineage-defining (nodal) mutations possess high functionality. However, differentiating adaptive nodal mutations from those that are functionally compensated remains challenging. To address this challenge, we identified functional nodal mutations (fNMs) in ~3,400 nuclear DNA (nDNA) and 4 mitochondrial DNA (mtDNA) protein structures from 91 and 1,003 species, respectively, representing the entire mammalian, bird and reptile phylogeny. A screen for candidate compensatory mutations among co-occurring amino acid changes in close structural proximity revealed that such compensated fNMs encompass 37% and 27% of the mtDNA and nDNA datasets, respectively. Analysis of the remaining (non-compensated) mutations, which are enriched for adaptive mutations, showed that birds and mammals share most such recurrent fNMs (N = 51). Among the latter, we discovered mutations in thermoregulation-related genes. These represent the best candidates to explain the molecular basis of convergent body thermoregulation in birds and mammals. Our analysis reveals the landscape of possible mutational compensation and convergence in amniote phylogeny.
Collapse
|
5
|
Human MAMLD1 Gene Variations Seem Not Sufficient to Explain a 46,XY DSD Phenotype. PLoS One 2015; 10:e0142831. [PMID: 26580071 PMCID: PMC4646284 DOI: 10.1371/journal.pone.0142831] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 10/26/2015] [Indexed: 12/31/2022] Open
Abstract
MAMLD1 is thought to cause disordered sex development in 46,XY patients. But its role is controversial because some MAMLD1 variants are also detected in normal individuals, several MAMLD1 mutations have wild-type activity in functional tests, and the male Mamld1-knockout mouse has normal genitalia and reproduction. Our aim was to search for MAMLD1 variations in 108 46,XY patients with disordered sex development, and to test them functionally. We detected MAMDL1 variations and compared SNP frequencies in controls and patients. We tested MAMLD1 transcriptional activity on promoters involved in sex development and assessed the effect of MAMLD1 on androgen production. MAMLD1 expression in normal steroid-producing tissues and mutant MAMLD1 protein expression were also assessed. Nine MAMLD1 mutations (7 novel) were characterized. In vitro, most MAMLD1 variants acted similarly to wild type. Only the L210X mutation showed loss of function in all tests. We detected no effect of wild-type or MAMLD1 variants on CYP17A1 enzyme activity in our cell experiments, and Western blots revealed no significant differences for MAMLD1 protein expression. MAMLD1 was expressed in human adult testes and adrenals. In conclusion, our data support the notion that MAMLD1 sequence variations may not suffice to explain the phenotype in carriers and that MAMLD1 may also have a role in adult life.
Collapse
|
6
|
Liu L, Tamura K, Sanderford M, Gray VE, Kumar S. A Molecular Evolutionary Reference for the Human Variome. Mol Biol Evol 2015; 33:245-54. [PMID: 26464126 DOI: 10.1093/molbev/msv198] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Widespread sequencing efforts are revealing unprecedented amount of genomic variation in populations. Such information is routinely used to derive consensus reference sequences and to infer positions subject to natural selection. Here, we present a new molecular evolutionary method for estimating neutral evolutionary probabilities (EPs) of each amino acid, or nucleotide state at a genomic position without using intraspecific polymorphism data. Because EPs are derived independently of population-level information, they serve as null expectations that can be used to evaluate selective forces on alleles at both polymorphic and monomorphic positions in populations. We applied this method to coding sequences in the human genome and produced a comprehensive evolutionary variome reference for all human proteins. We found that EPs accurately predict neutral and disease-associated alleles. Through an analysis of discordance between allelic EPs and their observed population frequencies, we discovered thousands of novel candidate sites for nonneutral evolution in human proteins. Many of these were validated in a joint analysis of disease-associated variants and population data. The EP method is also directly applicable to the analysis of noncoding sequences and genomic analyses of nonmodel species.
Collapse
Affiliation(s)
- Li Liu
- Department of Biomedical Informatics, Arizona State University, Scottsdale Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphila
| | - Koichiro Tamura
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo, Japan
| | - Maxwell Sanderford
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphila
| | - Vanessa E Gray
- Department of Genome Sciences, University of Washington, Seattle
| | - Sudhir Kumar
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphila Department of Biology, Temple University, Philadelphila Center for Excellence in Genome Medicine and Research, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
7
|
Abstract
Deleterious or 'disease-associated' mutations are mutations that lead to disease with high phenotype penetrance: they are inherited in a simple Mendelian manner, or, in the case of cancer, accumulate in somatic cells leading directly to disease. However, in some cases, the amino acid that is substituted resulting in disease is the wild-type native residue in the functionally equivalent protein in another species. Such examples are known as 'compensated pathogenic deviations' (CPDs) because, somewhere in the second species, there must be compensatory mutations that allow the protein to function normally despite having a residue which would cause disease in the first species. Depending on the nature of the mutations, compensation can occur in the same protein, or in a different protein with which it interacts. In principle, compensation can be achieved by a single mutation (most probably structurally close to the CPD), or by the cumulative effect of several mutations. Although it is clear that these effects occur in proteins, compensatory mutations are also important in RNA potentially having an impact on disease. As a much simpler molecule, RNA provides an interesting model for understanding mechanisms of compensatory effects, both by looking at naturally occurring RNA molecules and as a means of computational simulation. This review surveys the rather limited literature that has explored these effects. Understanding the nature of CPDs is important in understanding traversal along fitness landscape valleys in evolution. It could also have applications in treating diseases that result from such mutations.
Collapse
|
11
|
Zhang G, Pei Z, Ball EV, Mort M, Kehrer-Sawatzki H, Cooper DN. Cross-comparison of the genome sequences from human, chimpanzee, Neanderthal and a Denisovan hominin identifies novel potentially compensated mutations. Hum Genomics 2012; 5:453-84. [PMID: 21807602 PMCID: PMC3525967 DOI: 10.1186/1479-7364-5-5-453] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The recent publication of the draft genome sequences of the Neanderthal and a ~50,000-year-old archaic hominin from Denisova Cave in southern Siberia has ushered in a new age in molecular archaeology. We previously cross-compared the human, chimpanzee and Neanderthal genome sequences with respect to a set of disease-causing/disease-associated missense and regulatory mutations (Human Gene Mutation Database) and succeeded in identifying genetic variants which, although apparently pathogenic in humans, may represent a 'compensated' wild-type state in at least one of the other two species. Here, in an attempt to identify further 'potentially compensated mutations' (PCMs) of interest, we have compared our dataset of disease-causing/disease-associated mutations with their corresponding nucleotide positions in the Denisovan hominin, Neanderthal and chimpanzee genomes. Of the 15 human putatively disease-causing mutations that were found to be compensated in chimpanzee, Denisovan or Neanderthal, only a solitary F5 variant (Val1736Met) was specific to the Denisovan. In humans, this missense mutation is associated with activated protein C resistance and an increased risk of thromboembolism and recurrent miscarriage. It is unclear at this juncture whether this variant was indeed a PCM in the Denisovan or whether it could instead have been associated with disease in this ancient hominin.
Collapse
Affiliation(s)
- Guojie Zhang
- Bioinformatics Department, Beijing Genomics Institute at Shenzhen, China.
| | | | | | | | | | | |
Collapse
|