1
|
Mistry NA, Roellinger SE, Manninen MC, Gandham M, Koganti T, Balan J, Basu S, Blake EJ, Tandale PP, Holdren MA, Hoenig MF, Urban RM, Veith RL, Kendzior MC, Wang C, Gupta S, Shen W. Variant Detection in 3' Exons of PMS2 Using Exome Sequencing Data. J Mol Diagn 2024; 26:843-850. [PMID: 38925456 DOI: 10.1016/j.jmoldx.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/11/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
PMS2 is one of the DNA-mismatch repair genes included in routine genetic testing for Lynch syndrome and colorectal, ovarian, and endometrial cancers. PMS2 is also included in the American College of Medical Genetics and Genomics' List of Secondary Findings Genes in the context of clinical exome and genome sequencing. However, sequencing of PMS2 by short-read-based next-generation sequencing technologies is complicated by the presence of the pseudogene PMS2CL, and is often supplemented by long-range-based approaches, such as long-range PCR or long-read-based next-generation sequencing, which increases the complexity and cost. This article describes a bioinformatics homology triage workflow that can eliminate the need for long-read-based testing for PMS2 in the vast majority of patients undergoing exome sequencing, thus simplifying PMS2 testing and reducing the associated cost.
Collapse
Affiliation(s)
- Nipun A Mistry
- Division of Computational Biology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota
| | - Samantha E Roellinger
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Matthew C Manninen
- Division of Computational Biology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota
| | - Mallika Gandham
- Division of Computational Biology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota
| | - Tejaswi Koganti
- Division of Computational Biology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota
| | - Jagadheshwar Balan
- Division of Computational Biology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota
| | - Shubham Basu
- Division of Computational Biology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota
| | - Emily J Blake
- Division of Computational Biology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota
| | - Pratyush P Tandale
- Division of Computational Biology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota
| | - Megan A Holdren
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Megan F Hoenig
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Rhianna M Urban
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Rebecca L Veith
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | | | - Chen Wang
- Division of Computational Biology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota
| | - Sounak Gupta
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Wei Shen
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
2
|
Bouras A, Lefol C, Ruano E, Grand-Masson C, Wang Q. PMS2 or PMS2CL? Characterization of variants detected in the 3' of the PMS2 gene. Genes Chromosomes Cancer 2024; 63:e23193. [PMID: 37534630 DOI: 10.1002/gcc.23193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/04/2023] Open
Abstract
PMS2 germline pathogenic variants are one of the major causes for Lynch syndrome and constitutional mismatch repair deficiencies. Variant identification in the 3' region of this gene is complicated by the presence of the pseudogene PMS2CL which shares a high sequence homology with PMS2. Consequently, short-fragment screening strategies (NGS, Sanger) may fail to discriminate variant's gene localization. Using a comprehensive analysis strategy, we assessed 42 NGS-detected variants in 76 patients and found 32 localized on PMS2 while 6 on PMS2CL. Interestingly, four variants were detected in either of them in different patients. Clinical phenotype was well correlated to genotype, making it very helpful in variant assessment. Our findings emphasize the necessity of more specific complementary analyses to confirm the gene origin of each variant detected in different individuals in order to avoid variant misinterpretation. In addition, we characterized two PMS2 genomic alterations involving Alu-mediated tandem duplication and gene conversion. Those mechanisms seemed to be particularly favored in PMS2 which contribute to frequent genomic rearrangements in the 3' region of the gene.
Collapse
Affiliation(s)
- Ahmed Bouras
- Centre Léon Bérard, Laboratory of Constitutional Genetics for Frequent Cancer HCL-CLB, Lyon, France
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, Lyon, France
| | - Cedrick Lefol
- Centre Léon Bérard, Laboratory of Constitutional Genetics for Frequent Cancer HCL-CLB, Lyon, France
| | - Eric Ruano
- Centre Léon Bérard, Laboratory of Constitutional Genetics for Frequent Cancer HCL-CLB, Lyon, France
| | - Chloé Grand-Masson
- Centre Léon Bérard, Laboratory of Constitutional Genetics for Frequent Cancer HCL-CLB, Lyon, France
| | - Qing Wang
- Centre Léon Bérard, Laboratory of Constitutional Genetics for Frequent Cancer HCL-CLB, Lyon, France
| |
Collapse
|
3
|
Côrtes L, Basso TR, Villacis RAR, Souza JDS, Jørgensen MMA, Achatz MI, Rogatto SR. Co-Occurrence of Germline Genomic Variants and Copy Number Variations in Hereditary Breast and Colorectal Cancer Patients. Genes (Basel) 2023; 14:1580. [PMID: 37628631 PMCID: PMC10454294 DOI: 10.3390/genes14081580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
Hereditary Breast and Ovarian Cancer (HBOC) syndrome is an autosomal dominant disease associated with a high risk of developing breast, ovarian, and other malignancies. Lynch syndrome is caused by mutations in mismatch repair genes predisposing to colorectal and endometrial cancers, among others. A rare phenotype overlapping hereditary colorectal and breast cancer syndromes is poorly characterized. Three breast and colorectal cancer unrelated patients fulfilling clinical criteria for HBOC were tested by whole exome sequencing. A family history of colorectal cancer was reported in two patients (cases 2 and 3). Several variants and copy number variations were identified, which potentially contribute to the cancer risk or prognosis. All patients presented copy number imbalances encompassing PMS2 (two deletions and one duplication), a known gene involved in the DNA mismatch repair pathway. Two patients showed gains covering the POLE2 (cases 1 and 3), which is associated with DNA replication. Germline potentially damaging variants were found in PTCH1 (patient 3), MAT1A, and WRN (patient 2). Overall, concurrent genomic alterations were described that may increase the risk of cancer appearance in HBOC patients with breast and colorectal cancers.
Collapse
Affiliation(s)
- Luiza Côrtes
- Department of Clinical Genetics, University Hospital of Southern Denmark, Beriderbakken 4, 7100 Vejle, Denmark; (L.C.); (T.R.B.); (M.M.A.J.)
- Tocogynecoly Graduation Program, Botucatu Medical School, University of São Paulo State—UNESP, Botucatu 18618-687, SP, Brazil
| | - Tatiane Ramos Basso
- Department of Clinical Genetics, University Hospital of Southern Denmark, Beriderbakken 4, 7100 Vejle, Denmark; (L.C.); (T.R.B.); (M.M.A.J.)
| | - Rolando André Rios Villacis
- Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasília—UnB, Brasília 70910-900, DF, Brazil;
| | | | - Mads Malik Aagaard Jørgensen
- Department of Clinical Genetics, University Hospital of Southern Denmark, Beriderbakken 4, 7100 Vejle, Denmark; (L.C.); (T.R.B.); (M.M.A.J.)
| | - Maria Isabel Achatz
- Cancer Genetics Unit, Oncology Branch, Hospital Sirio-Libanês, São Paulo 01308-050, SP, Brazil;
| | - Silvia Regina Rogatto
- Department of Clinical Genetics, University Hospital of Southern Denmark, Beriderbakken 4, 7100 Vejle, Denmark; (L.C.); (T.R.B.); (M.M.A.J.)
- Institute of Regional Health Research, Faculty of Health Sciences, University of Southern Denmark, 5000 Odense, Denmark
- Danish Colorectal Cancer Center South, 7100 Vejle, Denmark
| |
Collapse
|
4
|
Matsubayashi H, Oishi T, Sasaki K, Abe M, Kiyozumi Y, Higashigawa S, Niiya F, Sato J, Ishiwatari H, Imai K, Hotta K, Kishida Y, Takada K, Ono H, Yamazaki K, Yasui H, Kenmotsu H, Kado N, Kagawa H, Shiomi A, Sugiura T, Bando E, Nishimura S, Hatakeyama K, Serizawa M, Harada R, Sugino T. Discordance of microsatellite instability and mismatch repair immunochemistry occurs depending on the cancer type. Hum Pathol 2022; 135:54-64. [PMID: 36596344 DOI: 10.1016/j.humpath.2022.12.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 11/12/2022] [Accepted: 12/27/2022] [Indexed: 01/01/2023]
Abstract
Microsatellite instability (MSI) and deficiency of mismatch repair (dMMR) are key markers for predicting the response of immune checkpoint inhibitors (ICIs) and screening for Lynch syndrome (LS). This study examined the incidences of and factors associated with the concordance of MSI and MMR in human cancers. A total of 518 formalin-fixed cancer tissues were analyzed for MSI and MMR immunohistochemistry (IHC). MSI was analyzed by a PCR-based method using Promega markers. Concordance with MMR expression and factors associated with concordance were analyzed. In 2 colorectal cancer samples, MMR IHC failed due to inadequate staining conditions. In the remaining 516 cancers, a high level of MSI (MSI-H) was identified in 113 cases, and dMMR was identified in 112. The concordance of MSI and MMR IHC was 98.3%. Only 9 cases (4 pancreatobiliary, 3 colorectal, and 2 endometrial cancers) were discordant. Of the 113 MSI-H cases, 4 (3.5%) were proficient MMR (pMMR); of the 403 microsatellite stability (MSS) cases, 5 (1.2%) were dMMR. The independent factors associated with MSI-H/dMMR included meeting Amsterdam II criteria, assay purpose, and sampling method. Multivariate analysis revealed that cancer type (gastrointestinal cancers or others) was associated with concordance of MSI and MMR IHC. Three LS cases with pancreatic or endometrial cancer demonstrated MSS and dMMR, and one biliary cancer showed MSI-H and pMMR. Discordance between MSI and MMR IHC occasionally occurs in pancreaticobiliary and endometrial cancers. When suspected, both MSI and MMR IHC should be done to judge the ICI indication and screen for LS.
Collapse
Affiliation(s)
- Hiroyuki Matsubayashi
- Division of Genetic Medicine Promotion, Shizuoka, 411-8777, Japan; Division of Endoscopy, Shizuoka, 411-8777, Japan.
| | - Takuma Oishi
- Division of Pathology, Shizuoka, 411-8777, Japan
| | - Keiko Sasaki
- Division of Pathology, Shizuoka, 411-8777, Japan
| | - Masato Abe
- Division of Pathology, Shizuoka, 411-8777, Japan
| | - Yoshimi Kiyozumi
- Division of Genetic Medicine Promotion, Shizuoka, 411-8777, Japan
| | | | | | - Junya Sato
- Division of Endoscopy, Shizuoka, 411-8777, Japan
| | | | | | | | | | | | - Hiroyuki Ono
- Division of Endoscopy, Shizuoka, 411-8777, Japan
| | | | - Hirofumi Yasui
- Division of Genetic Medicine Promotion, Shizuoka, 411-8777, Japan; Division of Gastrointestinal Oncology, Shizuoka, 411-8777, Japan
| | - Hirotsugu Kenmotsu
- Division of Genetic Medicine Promotion, Shizuoka, 411-8777, Japan; Division of Thoracic Oncology, Shizuoka, 411-8777, Japan
| | - Nobuhiro Kado
- Division of Genetic Medicine Promotion, Shizuoka, 411-8777, Japan; Division of Gynecology, Shizuoka, 411-8777, Japan
| | - Hiroyasu Kagawa
- Division of Colon and Rectal Surgery, Shizuoka, 411-8777, Japan
| | - Akio Shiomi
- Division of Colon and Rectal Surgery, Shizuoka, 411-8777, Japan
| | - Teichi Sugiura
- Division of Hepato-Biliary-Pancreatic Surgery, Shizuoka, 411-8777, Japan
| | - Etsuro Bando
- Division of Gastric Surgery, Shizuoka, 411-8777, Japan
| | - Seiichiro Nishimura
- Division of Genetic Medicine Promotion, Shizuoka, 411-8777, Japan; Division of Breast Surgery, Shizuoka, 411-8777, Japan
| | - Keiichi Hatakeyama
- Division of Clinical Research Center, Shizuoka Cancer Center, Shizuoka, 411-8777, Japan
| | - Masakuni Serizawa
- Division of Clinical Research Center, Shizuoka Cancer Center, Shizuoka, 411-8777, Japan
| | - Rina Harada
- Division of Genetic Medicine Promotion, Shizuoka, 411-8777, Japan
| | | |
Collapse
|
5
|
Rojahn S, Hambuch T, Adrian J, Gafni E, Gileta A, Hatchell H, Johnson B, Kallman B, Karfilis K, Kautzer C, Kennemer M, Kirk L, Kvitek D, Lettes J, Macrae F, Mendez F, Paul J, Pellegrino M, Preciado R, Risinger J, Schultz M, Spurka L, Swamy S, Truty R, Usem N, Velenich A, Aradhya S. Scalable detection of technically challenging variants through modified next-generation sequencing. Mol Genet Genomic Med 2022; 10:e2072. [PMID: 36251442 PMCID: PMC9747563 DOI: 10.1002/mgg3.2072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 09/23/2022] [Accepted: 09/30/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Some clinically important genetic variants are not easily evaluated with next-generation sequencing (NGS) methods due to technical challenges arising from high- similarity copies (e.g., PMS2, SMN1/SMN2, GBA1, HBA1/HBA2, CYP21A2), repetitive short sequences (e.g., ARX polyalanine repeats, FMR1 AGG interruptions in CGG repeats, CFTR poly-T/TG repeats), and other complexities (e.g., MSH2 Boland inversions). METHODS We customized our NGS processes to detect the technically challenging variants mentioned above with adaptations including target enrichment and bioinformatic masking of similar sequences. Adaptations were validated with samples of known genotypes. RESULTS Our adaptations provided high-sensitivity and high-specificity detection for most of the variants and provided a high-sensitivity primary assay to be followed with orthogonal disambiguation for the others. The sensitivity of the NGS adaptations was 100% for all of the technically challenging variants. Specificity was 100% for those in PMS2, GBA1, SMN1/SMN2, and HBA1/HBA2, and for the MSH2 Boland inversion; 97.8%-100% for CYP21A2 variants; and 85.7% for ARX polyalanine repeats. CONCLUSIONS NGS assays can detect technically challenging variants when chemistries and bioinformatics are jointly refined. The adaptations described support a scalable, cost-effective path to identifying all clinically relevant variants within a single sample.
Collapse
|
6
|
Zhao S, Chen L, Zang Y, Liu W, Liu S, Teng F, Xue F, Wang Y. Endometrial cancer in Lynch syndrome. Int J Cancer 2021; 150:7-17. [PMID: 34398969 DOI: 10.1002/ijc.33763] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/05/2021] [Accepted: 08/09/2021] [Indexed: 12/11/2022]
Abstract
Lynch syndrome (LS) is an autosomal dominant inherited disease caused by germline pathogenic variants (PVs) in mismatch repair (MMR) genes. LS-associated endometrial cancer (LS-EC) is the most common extraintestinal sentinel cancer caused by germline PVs in MMR genes, including MLH1, MSH2, MSH6 and PMS2. The clinicopathologic features of LS-EC include early age of onset, lower body mass index (BMI), endometrioid carcinoma and lower uterine segment involvement. There has been significant progress in screening, diagnosis, surveillance, prevention and treatment of LS-EC. Many studies support universal screening for LS among patients with EC. Screening mainly involves a combination of traditional clinical criteria and molecular techniques, including MMR-immunohistochemistry (MMR-IHC), microsatellite instability (MSI) testing, MLH1 promoter methylation testing and gene sequencing. The effectiveness of endometrial biopsy and transvaginal ultrasound (TVS) for clinical monitoring of asymptomatic women with LS are uncertain yet. Preventive strategies include hysterectomy and bilateral salpingo-oophorectomy (BSO) as well as chemoprophylaxis using exogenous progestin or aspirin. Recent research has revealed the benefits of immunotherapy for LS-EC. The NCCN guidelines recommend pembrolizumab and nivolumab for treating patients with advanced or recurrent microsatellite instability-high (MSI-H)/mismatch repair-deficient (dMMR) EC.
Collapse
Affiliation(s)
- Shuangshuang Zhao
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, China
| | - Lingli Chen
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, China
| | - Yuqin Zang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, China
| | - Wenlu Liu
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, China
| | - Shiqi Liu
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, China
| | - Fei Teng
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, China
| | - Fengxia Xue
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, China
| | - Yingmei Wang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
7
|
Huelsman KM, Basil JB, Sisson R, Lipe LR, Mahon B, Draper DJ. Somatic Tumor Profile Analysis in a Patient with Germline PMS2 Mutation and Synchronous Ovarian and Uterine Carcinomas. J Pers Med 2021; 11:jpm11070634. [PMID: 34357101 PMCID: PMC8307264 DOI: 10.3390/jpm11070634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/25/2021] [Accepted: 07/01/2021] [Indexed: 11/23/2022] Open
Abstract
Lynch syndrome patients with synchronous endometrial and ovarian cancer (SEOC) are rare. When these cases occur, they are most often endometrioid histology and early grade. Early-grade tumors are not often sent for somatic tumor profiling. We present a 39 year old SEOC patient with germline PMS2 Lynch syndrome and clinical tumor analysis leading to insight regarding the origin and cause of these tumors, with potential therapy options. PMS2-related SEOC is less common due to lower risks for these cancers associated with germline PMS2 mutation compared to other Lynch genes. While synchronous cancers are not common, they are more likely to occur with Lynch syndrome. Tumor profiling with next-generation sequencing of 648 genes identified sixteen shared somatic actionable and biologically relevant mutations. This case is a rare example of a patient with PMS2 germline Lynch syndrome with shared somatic variants that demonstrate clonality of the two tumors arising from one common site.
Collapse
Affiliation(s)
- Karen M. Huelsman
- TriHealth Cancer Institute, Cincinnati, OH 45220, USA; (J.B.B.); (D.J.D.)
- Correspondence: ; Tel.: +1-513-862-2759; Fax: +1-513-852-3169
| | - Jack B. Basil
- TriHealth Cancer Institute, Cincinnati, OH 45220, USA; (J.B.B.); (D.J.D.)
| | - Rebecca Sisson
- Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA;
| | | | | | - David J. Draper
- TriHealth Cancer Institute, Cincinnati, OH 45220, USA; (J.B.B.); (D.J.D.)
| |
Collapse
|
8
|
O'Connor LP, Lebastchi AH, Fasaye GA, Dikoglu E, Daneshvar MA, Ahdoot M, Merino MJ, Pinto PA. 'Case of the Month' from the National Cancer Institute, Bethesda, MD, USA: investigating genetic aberrations in a patient with high-risk prostate cancer. BJU Int 2021; 127:171-174. [PMID: 33547722 DOI: 10.1111/bju.15273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Luke P O'Connor
- Center for Cancer Research, Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Amir H Lebastchi
- Center for Cancer Research, Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Grace-Ann Fasaye
- Center for Cancer Research, Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Esra Dikoglu
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Michael A Daneshvar
- Center for Cancer Research, Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Michael Ahdoot
- Center for Cancer Research, Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Maria J Merino
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Peter A Pinto
- Center for Cancer Research, Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
9
|
Boujemaa M, Hamdi Y, Mejri N, Romdhane L, Ghedira K, Bouaziz H, El Benna H, Labidi S, Dallali H, Jaidane O, Ben Nasr S, Haddaoui A, Rahal K, Abdelhak S, Boussen H, Boubaker MS. Germline copy number variations in BRCA1/2 negative families: Role in the molecular etiology of hereditary breast cancer in Tunisia. PLoS One 2021; 16:e0245362. [PMID: 33503040 PMCID: PMC7840007 DOI: 10.1371/journal.pone.0245362] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 12/28/2020] [Indexed: 12/24/2022] Open
Abstract
Hereditary breast cancer accounts for 5-10% of all breast cancer cases. So far, known genetic risk factors account for only 50% of the breast cancer genetic component and almost a quarter of hereditary cases are carriers of pathogenic mutations in BRCA1/2 genes. Hence, the genetic basis for a significant fraction of familial cases remains unsolved. This missing heritability may be explained in part by Copy Number Variations (CNVs). We herein aimed to evaluate the contribution of CNVs to hereditary breast cancer in Tunisia. Whole exome sequencing was performed for 9 BRCA negative cases with a strong family history of breast cancer and 10 matched controls. CNVs were called using the ExomeDepth R-package and investigated by pathway analysis and web-based bioinformatic tools. Overall, 483 CNVs have been identified in breast cancer patients. Rare CNVs affecting cancer genes were detected, of special interest were those disrupting APC2, POU5F1, DOCK8, KANSL1, TMTC3 and the mismatch repair gene PMS2. In addition, common CNVs known to be associated with breast cancer risk have also been identified including CNVs on APOBECA/B, UGT2B17 and GSTT1 genes. Whereas those disrupting SULT1A1 and UGT2B15 seem to correlate with good clinical response to tamoxifen. Our study revealed new insights regarding CNVs and breast cancer risk in the Tunisian population. These findings suggest that rare and common CNVs may contribute to disease susceptibility. Those affecting mismatch repair genes are of interest and require additional attention since it may help to select candidates for immunotherapy leading to better outcomes.
Collapse
Affiliation(s)
- Maroua Boujemaa
- Laboratory of Biomedical Genomics and Oncogenetics, LR16IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Yosr Hamdi
- Laboratory of Biomedical Genomics and Oncogenetics, LR16IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
- Laboratory of Human and Experimental Pathology, Institut Pasteur de Tunis, Tunis, Tunisia
| | - Nesrine Mejri
- Laboratory of Biomedical Genomics and Oncogenetics, LR16IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
- Medical Oncology Department, Abderrahman Mami Hospital, Faculty of Medicine Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Lilia Romdhane
- Laboratory of Biomedical Genomics and Oncogenetics, LR16IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
- Department of Biology, Faculty of Science of Bizerte, University of Carthage, Jarzouna, Tunisia
| | - Kais Ghedira
- Laboratory of Bioinformatics, Biomathematics and Biostatistics, LR16IPT09, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Hanen Bouaziz
- Laboratory of Biomedical Genomics and Oncogenetics, LR16IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
- Surgical Oncology Department, Salah Azaiez Institute of Cancer, Tunis, Tunisia
| | - Houda El Benna
- Laboratory of Biomedical Genomics and Oncogenetics, LR16IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
- Medical Oncology Department, Abderrahman Mami Hospital, Faculty of Medicine Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Soumaya Labidi
- Laboratory of Biomedical Genomics and Oncogenetics, LR16IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
- Medical Oncology Department, Abderrahman Mami Hospital, Faculty of Medicine Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Hamza Dallali
- Laboratory of Biomedical Genomics and Oncogenetics, LR16IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Olfa Jaidane
- Surgical Oncology Department, Salah Azaiez Institute of Cancer, Tunis, Tunisia
| | - Sonia Ben Nasr
- Department of Medical Oncology, Military Hospital of Tunis, Tunis, Tunisia
| | | | - Khaled Rahal
- Surgical Oncology Department, Salah Azaiez Institute of Cancer, Tunis, Tunisia
| | - Sonia Abdelhak
- Laboratory of Biomedical Genomics and Oncogenetics, LR16IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Hamouda Boussen
- Laboratory of Biomedical Genomics and Oncogenetics, LR16IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
- Medical Oncology Department, Abderrahman Mami Hospital, Faculty of Medicine Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Mohamed Samir Boubaker
- Laboratory of Biomedical Genomics and Oncogenetics, LR16IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
- Laboratory of Human and Experimental Pathology, Institut Pasteur de Tunis, Tunis, Tunisia
| |
Collapse
|
10
|
Crosbie EJ, Ryan NAJ, Arends MJ, Bosse T, Burn J, Cornes JM, Crawford R, Eccles D, Frayling IM, Ghaem-Maghami S, Hampel H, Kauff ND, Kitchener HC, Kitson SJ, Manchanda R, McMahon RFT, Monahan KJ, Menon U, Møller P, Möslein G, Rosenthal A, Sasieni P, Seif MW, Singh N, Skarrott P, Snowsill TM, Steele R, Tischkowitz M, Evans DG. The Manchester International Consensus Group recommendations for the management of gynecological cancers in Lynch syndrome. Genet Med 2019; 21:2390-2400. [PMID: 30918358 PMCID: PMC6774998 DOI: 10.1038/s41436-019-0489-y] [Citation(s) in RCA: 142] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 03/06/2019] [Indexed: 12/15/2022] Open
Abstract
PURPOSE There are no internationally agreed upon clinical guidelines as to which women with gynecological cancer would benefit from Lynch syndrome screening or how best to manage the risk of gynecological cancer in women with Lynch syndrome. The Manchester International Consensus Group was convened in April 2017 to address this unmet need. The aim of the Group was to develop clear and comprehensive clinical guidance regarding the management of the gynecological sequelae of Lynch syndrome based on existing evidence and expert opinion from medical professionals and patients. METHODS Stakeholders from Europe and North America worked together over a two-day workshop to achieve consensus on best practice. RESULTS Guidance was developed in four key areas: (1) whether women with gynecological cancer should be screened for Lynch syndrome and (2) how this should be done, (3) whether there was a role for gynecological surveillance in women at risk of Lynch syndrome, and (4) what preventive measures should be recommended for women with Lynch syndrome to reduce their risk of gynecological cancer. CONCLUSION This document provides comprehensive clinical guidance that can be referenced by both patients and clinicians so that women with Lynch syndrome can expect and receive appropriate standards of care.
Collapse
Affiliation(s)
- Emma J Crosbie
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, St Mary's Hospital, Manchester, UK.
- Directorate of Gynaecology, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK.
- Prevention Early Detection Theme, NIHR Biomedical Research Centre, The Christie NHS Foundation Trust, Manchester, UK.
| | - Neil A J Ryan
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, St Mary's Hospital, Manchester, UK
- Division of Evolution and Genomic Medicine, University of Manchester, St Mary's Hospital, Manchester, UK
| | - Mark J Arends
- Division of Pathology & Centre for Comparative Pathology, Cancer Research UK Edinburgh Centre, Institute of Genetics & Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Tjalling Bosse
- Pathology Department, Leiden University Medical Center, Leiden, the Netherlands
| | - John Burn
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | | | - Robin Crawford
- Department of Gynaecological Oncology, Addenbrookes Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Diana Eccles
- Faculty of Medicine, University of Southampton, University Hospital Southampton, Southampton, UK
| | - Ian M Frayling
- Institute of Cancer and Genetics, Cardiff University, Cardiff, UK
| | | | - Heather Hampel
- Division of Human Genetics, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Noah D Kauff
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA
| | - Henry C Kitchener
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, St Mary's Hospital, Manchester, UK
| | - Sarah J Kitson
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, St Mary's Hospital, Manchester, UK
| | - Ranjit Manchanda
- Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Raymond F T McMahon
- Department of Histopathology, Manchester University NHS Foundation Trust, Manchester, UK
| | | | - Usha Menon
- MRC Clinical Trials Unit at UCL, Institute of Clinical Trials and Methodology, London, UK
| | - Pål Møller
- Department of Tumor Biology, Institute of Cancer Research, The Norwegian Radium Hospital, part of Oslo University Hospital, Oslo, Norway
- Research Group Inherited Cancer, Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
- Center for Hereditary Tumors, Helios University Hospital Wuppertal, University of Witten-, Herdecke, Germany
| | - Gabriela Möslein
- Center for Hereditary Tumors, Helios University Hospital Wuppertal, University of Witten-, Herdecke, Germany
| | - Adam Rosenthal
- Department of Women's Cancer, UCL EGA Institute for Women's Health, University College London, London, UK
| | - Peter Sasieni
- School of Cancer and Pharmaceutical Sciences, Kings College London, London, UK
| | - Mourad W Seif
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, St Mary's Hospital, Manchester, UK
- Directorate of Gynaecology, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Naveena Singh
- Department of Cellular Pathology, Barts Health NHS Trust, London, UK
| | - Pauline Skarrott
- Lynch Syndrome UK, Linden House, 9/11 Main Street, Ingleton, Carnforth, UK
| | - Tristan M Snowsill
- Peninsula Technology Assessment Group (PenTAG), University of Exeter, Exeter, UK
- Health Economics Group, University of Exeter, Exeter, UK
| | - Robert Steele
- Division of Cancer, Medical Research Institute, Ninewells Hospital and Medical School, Dundee, UK
| | - Marc Tischkowitz
- Academic Laboratory of Medical Genetics, University of Cambridge, Cambridge, UK
- National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, UK
| | - D Gareth Evans
- Prevention Early Detection Theme, NIHR Biomedical Research Centre, The Christie NHS Foundation Trust, Manchester, UK
- Division of Evolution and Genomic Medicine, University of Manchester, St Mary's Hospital, Manchester, UK
- Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| |
Collapse
|
11
|
Okkels H, Lagerstedt-Robinsson K, Wikman FP, Hansen TVO, Lolas I, Lindberg LJ, Krarup HB. Detection of PMS2 Mutations by Screening Hereditary Nonpolyposis Colon Cancer Families from Denmark and Sweden. Genet Test Mol Biomarkers 2019; 23:688-695. [PMID: 31433215 DOI: 10.1089/gtmb.2018.0316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Background and Aims: Hereditary nonpolyposis colon cancer (HNPCC) and Lynch syndrome (LS) are characterized by defects in the mismatch repair (MMR) system, which protects the integrity of the genome. Pathogenic variants in four MMR genes (MLH1, MSH2, MSH6, and PMS2) are responsible for LS, an autosomal, dominant hereditary disease that occurs with a frequency of 2-5% among all colorectal cancer cases. It has been estimated that ∼2-5% of all pathogenic variants found in the four MMR genes in LS cases are detected in the PMS2 gene. An overview of detected variants is presented here. Materials and Methods: Long-range (LR) PMS2 polymerase chain reaction (PCR) and PMS2 multiplex ligation probe amplification (MLPA) assays were used to detect PMS2 variants in ∼1500 probands. In a subset of the probands, pathogenic PMS2 variants were detected by next-generation sequencing, and all detected variants were confirmed by LR-PCR combined with an MLPA assay. Results: A summary of PMS2 mutation analyses performed on colon cancer patients from molecular diagnostic laboratories in Denmark and Sweden is presented. By screening ∼1500 HNPCC probands, a total of 40 different PMS2 variants were detected in 71 probands (5%); 20 variants were classified as pathogenic (C5), 2 variants as likely pathogenic (C4), 15 variants as variants of unknown significance (VUSs) (C3), 1 variant as likely benign (C2), and 2 variants as benign (C1). In total, 22/71 (31%) of the probands carried a pathogenic sequence variant. Among the probands with isolated loss of pPMS2 expression, the fraction of pathogenic variants was 20/35 (55%). Conclusions: Approximately 5% of the probands found in the Danish and Swedish populations presented here carried a PMS2 variant. In this study, six novel pathogenic variants and seven VUSs are reported.
Collapse
Affiliation(s)
- Henrik Okkels
- Section of Molecular Diagnostics, Department of Clinical Chemistry, Aalborg University Hospital, Aalborg, Denmark
| | - Kristina Lagerstedt-Robinsson
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Friedrik P Wikman
- Department of Molecular Medicine (MOMA), Århus University Hospital, Århus, Denmark
| | - Thomas V O Hansen
- Department of Clinical Genetics, University Hospital of Copenhagen, Copenhagen, Denmark.,Center for Genomic Medicine, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Ihab Lolas
- Section of Molecular Diagnostics, Department of Clinical Chemistry, Aalborg University Hospital, Aalborg, Denmark
| | - Lars Joachim Lindberg
- The Danish HNPCC Registry, Clinical Research Centre, Copenhagen University Hospital, Hvidovre, Denmark
| | - Henrik B Krarup
- Section of Molecular Diagnostics, Department of Clinical Chemistry, Aalborg University Hospital, Aalborg, Denmark
| |
Collapse
|
12
|
Syndrome CMMRD (déficience constitutionnelle des gènes MMR) : bases génétiques et aspects cliniques. Bull Cancer 2019; 106:162-172. [DOI: 10.1016/j.bulcan.2018.10.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/02/2018] [Accepted: 10/07/2018] [Indexed: 11/19/2022]
|
13
|
Suerink M, Ripperger T, Messiaen L, Menko FH, Bourdeaut F, Colas C, Jongmans M, Goldberg Y, Nielsen M, Muleris M, van Kouwen M, Slavc I, Kratz C, Vasen HF, Brugiѐres L, Legius E, Wimmer K. Constitutional mismatch repair deficiency as a differential diagnosis of neurofibromatosis type 1: consensus guidelines for testing a child without malignancy. J Med Genet 2018; 56:53-62. [PMID: 30415209 DOI: 10.1136/jmedgenet-2018-105664] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 10/05/2018] [Accepted: 10/10/2018] [Indexed: 12/15/2022]
Abstract
Constitutional mismatch repair deficiency (CMMRD) is a rare childhood cancer predisposition syndrome caused by biallelic germline mutations in one of four mismatch-repair genes. Besides very high tumour risks, CMMRD phenotypes are often characterised by the presence of signs reminiscent of neurofibromatosis type 1 (NF1). Because NF1 signs may be present prior to tumour onset, CMMRD is a legitimate differential diagnosis in an otherwise healthy child suspected to have NF1/Legius syndrome without a detectable underlying NF1/SPRED1 germline mutation. However, no guidelines indicate when to counsel and test for CMMRD in this setting. Assuming that CMMRD is rare in these patients and that expected benefits of identifying CMMRD prior to tumour onset should outweigh potential harms associated with CMMRD counselling and testing in this setting, we aimed at elaborating a strategy to preselect, among children suspected to have NF1/Legius syndrome without a causative NF1/SPRED1 mutation and no overt malignancy, those children who have a higher probability of having CMMRD. At an interdisciplinary workshop, we discussed estimations of the frequency of CMMRD as a differential diagnosis of NF1 and potential benefits and harms of CMMRD counselling and testing in a healthy child with no malignancy. Preselection criteria and strategies for counselling and testing were developed and reviewed in two rounds of critical revisions. Existing diagnostic CMMRD criteria were adapted to serve as a guideline as to when to consider CMMRD as differential diagnosis of NF1/Legius syndrome. In addition, counselling and testing strategies are suggested to minimise potential harms.
Collapse
Affiliation(s)
- Manon Suerink
- Department of Clinical Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Tim Ripperger
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Ludwine Messiaen
- Department of Genetics, University of Alabama, Birmingham, Alabama, USA
| | - Fred H Menko
- Family Cancer Clinic, Antoni van Leeuwenhoek Hospital and The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Franck Bourdeaut
- Département d'Oncologie Pédiatrique et d'Adolescents Jeunes Adultes, Institut Curie, Paris, France
| | - Chrystelle Colas
- Department of Genetics, Institut Curie, Paris Sciences Lettres Research University, Paris, France.,Centre de Recherche Saint-Antoine, Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Paris, France
| | - Marjolijn Jongmans
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.,Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Yael Goldberg
- Recanati Genetics Institute, Beilinson Hospital, Rabin Medical Center, Petah Tikva, Israel
| | - Maartje Nielsen
- Department of Clinical Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Martine Muleris
- Centre de Recherche Saint-Antoine, Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Paris, France
| | - Mariëtte van Kouwen
- Department of Gastroenterology and Hepatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Irene Slavc
- Department of Pediatrics, Medical University Vienna, Vienna, Austria
| | - Christian Kratz
- Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Hans F Vasen
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Laurence Brugiѐres
- Children and Adolescent Oncology Department, Gustave Roussy Cancer Institute, Villejuif, France
| | - Eric Legius
- Department of Human Genetics, University Hospital Leuven and KU Leuven, Leuven, Belgium
| | - Katharina Wimmer
- Division of Human Genetics, Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
14
|
Gould GM, Grauman PV, Theilmann MR, Spurka L, Wang IE, Melroy LM, Chin RG, Hite DH, Chu CS, Maguire JR, Hogan GJ, Muzzey D. Detecting clinically actionable variants in the 3' exons of PMS2 via a reflex workflow based on equivalent hybrid capture of the gene and its pseudogene. BMC MEDICAL GENETICS 2018; 19:176. [PMID: 30268105 PMCID: PMC6162901 DOI: 10.1186/s12881-018-0691-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 09/20/2018] [Indexed: 12/14/2022]
Abstract
Background Hereditary cancer screening (HCS) for germline variants in the 3′ exons of PMS2, a mismatch repair gene implicated in Lynch syndrome, is technically challenging due to homology with its pseudogene PMS2CL. Sequences of PMS2 and PMS2CL are so similar that next-generation sequencing (NGS) of short fragments—common practice in multigene HCS panels—may identify the presence of a variant but fail to disambiguate whether its origin is the gene or the pseudogene. Molecular approaches utilizing longer DNA fragments, such as long-range PCR (LR-PCR), can definitively localize variants in PMS2, yet applying such testing to all samples can have logistical and economic drawbacks. Methods To address these drawbacks, we propose and characterize a reflex workflow for variant discovery in the 3′ exons of PMS2. We cataloged the natural variation in PMS2 and PMS2CL in 707 samples and designed hybrid-capture probes to enrich the gene and pseudogene with equal efficiency. For PMS2 exon 11, NGS reads were aligned, filtered using gene-specific variants, and subject to standard diploid variant calling. For PMS2 exons 12–15, the NGS reads were permissively aligned to PMS2, and variant calling was performed with the expectation of observing four alleles (i.e., tetraploid calling). In this reflex workflow, short-read NGS identifies potentially reportable variants that are then subject to disambiguation via LR-PCR-based testing. Results Applying short-read NGS screening to 299 HCS samples and cell lines demonstrated >99% analytical sensitivity and >99% analytical specificity for single-nucleotide variants (SNVs) and short insertions and deletions (indels), as well as >96% analytical sensitivity and >99% analytical specificity for copy-number variants. Importantly, 92% of samples had resolved genotypes from short-read NGS alone, with the remaining 8% requiring LR-PCR reflex. Conclusion Our reflex workflow mitigates the challenges of screening in PMS2 and serves as a guide for clinical laboratories performing multigene HCS. To facilitate future exploration and testing of PMS2 variants, we share the raw and processed LR-PCR data from commercially available cell lines, as well as variant frequencies from a diverse patient cohort. Electronic supplementary material The online version of this article (10.1186/s12881-018-0691-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Peter V Grauman
- Counsyl, 180 Kimball Way, South San Francisco, CA, 94080, USA
| | | | - Lindsay Spurka
- Counsyl, 180 Kimball Way, South San Francisco, CA, 94080, USA
| | - Irving E Wang
- Counsyl, 180 Kimball Way, South San Francisco, CA, 94080, USA
| | - Laura M Melroy
- Counsyl, 180 Kimball Way, South San Francisco, CA, 94080, USA
| | - Robert G Chin
- Counsyl, 180 Kimball Way, South San Francisco, CA, 94080, USA
| | - Dustin H Hite
- Counsyl, 180 Kimball Way, South San Francisco, CA, 94080, USA
| | - Clement S Chu
- Counsyl, 180 Kimball Way, South San Francisco, CA, 94080, USA
| | - Jared R Maguire
- Counsyl, 180 Kimball Way, South San Francisco, CA, 94080, USA
| | - Gregory J Hogan
- Counsyl, 180 Kimball Way, South San Francisco, CA, 94080, USA
| | - Dale Muzzey
- Counsyl, 180 Kimball Way, South San Francisco, CA, 94080, USA.
| |
Collapse
|
15
|
Niu BT, Hammond RFL, Leen SLS, Faruqi AZ, Trevisan G, Gilks CB, Singh N. Artefactual punctate MLH1 staining can lead to erroneous reporting of isolated PMS2 loss. Histopathology 2018; 73:703-705. [DOI: 10.1111/his.13663] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Bonnie T Niu
- Department of Pathology and Laboratory Medicine; Vancouver General Hospital and University of British Columbia; Vancouver BC Canada
| | - Rory F L Hammond
- Department of Cellular Pathology Barts Health NHS Trust; London UK
| | - Sarah L S Leen
- Department of Cellular Pathology Barts Health NHS Trust; London UK
| | - Asma Z Faruqi
- Department of Cellular Pathology Barts Health NHS Trust; London UK
| | - Giorgia Trevisan
- Department of Cellular Pathology Barts Health NHS Trust; London UK
| | - C Blake Gilks
- Department of Pathology and Laboratory Medicine; Vancouver General Hospital and University of British Columbia; Vancouver BC Canada
| | - Naveena Singh
- Department of Cellular Pathology Barts Health NHS Trust; London UK
| |
Collapse
|
16
|
Herman DS, Smith C, Liu C, Vaughn CP, Palaniappan S, Pritchard CC, Shirts BH. Efficient Detection of Copy Number Mutations in PMS2 Exons with a Close Homolog. J Mol Diagn 2018; 20:512-521. [PMID: 29792936 DOI: 10.1016/j.jmoldx.2018.03.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 03/23/2018] [Indexed: 01/25/2023] Open
Abstract
Detection of 3' PMS2 copy-number mutations that cause Lynch syndrome is difficult because of highly homologous pseudogenes. To improve the accuracy and efficiency of clinical screening for these mutations, we developed a new method to analyze standard capture-based, next-generation sequencing data to identify deletions and duplications in PMS2 exons 9 to 15. The approach captures sequences using PMS2 targets, maps sequences randomly among regions with equal mapping quality, counts reads aligned to homologous exons and introns, and flags read count ratios outside of empirically derived reference ranges. The method was trained on 1352 samples, including 8 known positives, and tested on 719 samples, including 17 known positives. Clinical implementation of the first version of this method detected new mutations in the training (N = 7) and test (N = 2) sets that had not been identified by our initial clinical testing pipeline. The described final method showed complete sensitivity in both sample sets and false-positive rates of 5% (training) and 7% (test), dramatically decreasing the number of cases needing additional mutation evaluation. This approach leveraged the differences between gene and pseudogene to distinguish between PMS2 and PMS2CL copy-number mutations. These methods enable efficient and sensitive Lynch syndrome screening for 3' PMS2 copy-number mutations and may be applied similarly to other genomic regions with highly homologous pseudogenes.
Collapse
Affiliation(s)
- Daniel S Herman
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Laboratory Medicine, University of Washington, Seattle, Washington.
| | - Christina Smith
- Department of Laboratory Medicine, University of Washington, Seattle, Washington
| | - Chang Liu
- Department of Laboratory Medicine, University of Washington, Seattle, Washington
| | | | - Selvi Palaniappan
- Department of Clinical Genomics, Ambry Genetics, Aliso Viejo, California
| | - Colin C Pritchard
- Department of Laboratory Medicine, University of Washington, Seattle, Washington
| | - Brian H Shirts
- Department of Laboratory Medicine, University of Washington, Seattle, Washington
| |
Collapse
|
17
|
Wimmer K, Rosenbaum T, Messiaen L. Connections between constitutional mismatch repair deficiency syndrome and neurofibromatosis type 1. Clin Genet 2017; 91:507-519. [PMID: 27779754 DOI: 10.1111/cge.12904] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 10/18/2016] [Accepted: 10/20/2016] [Indexed: 12/13/2022]
Abstract
Constitutional mismatch repair (MMR) deficiency (CMMRD) is a rare childhood cancer susceptibility syndrome resulting from biallelic germline loss-of-function mutations in one of the MMR genes. Individuals with CMMRD have high risk to develop a broad spectrum of malignancies and frequently display features reminiscent of neurofibromatosis type 1 (NF1). Evaluation of the clinical findings of genetically proven CMMRD patients shows that not only multiple café-au-lait macules but also any of the diagnostic features of NF1 may be present in a CMMRD patient. This phenotypic overlap may lead to misdiagnosis of CMMRD patients as having NF1, which impedes adequate management of the patients and their families. The spectrum of CMMRD-associated childhood malignancies includes high-grade glioma, acute myeloid leukaemia or rhabdomyosarcoma, also reported as associated with NF1. Reported associations between NF1 and these malignancies are to a large extent based on studies that neither proved the presence of an NF1 germline mutation nor ruled-out CMMRD in the affected. Hence, these associations are challenged by our current knowledge of the phenotypic overlap between NF1 and CMMRD and should be re-evaluated in future studies. Recent advances in the diagnostics of CMMRD should render it possible to definitely state or refute this diagnosis in these individuals.
Collapse
Affiliation(s)
- K Wimmer
- Division of Human Genetics, Medical University Innsbruck, Innsbruck, Austria
| | - T Rosenbaum
- Department of Pediatrics, Sana Kliniken Duisburg, Wedau Kliniken, Duisburg, Germany
| | - L Messiaen
- Medical Genomics Laboratory, Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
18
|
van der Klift HM, Mensenkamp AR, Drost M, Bik EC, Vos YJ, Gille HJJP, Redeker BEJW, Tiersma Y, Zonneveld JBM, García EG, Letteboer TGW, Olderode-Berends MJW, van Hest LP, van Os TA, Verhoef S, Wagner A, van Asperen CJ, Ten Broeke SW, Hes FJ, de Wind N, Nielsen M, Devilee P, Ligtenberg MJL, Wijnen JT, Tops CMJ. Comprehensive Mutation Analysis of PMS2 in a Large Cohort of Probands Suspected of Lynch Syndrome or Constitutional Mismatch Repair Deficiency Syndrome. Hum Mutat 2016; 37:1162-1179. [PMID: 27435373 DOI: 10.1002/humu.23052] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 07/06/2016] [Accepted: 07/07/2016] [Indexed: 01/01/2023]
Abstract
Monoallelic PMS2 germline mutations cause 5%-15% of Lynch syndrome, a midlife cancer predisposition, whereas biallelic PMS2 mutations cause approximately 60% of constitutional mismatch repair deficiency (CMMRD), a rare childhood cancer syndrome. Recently improved DNA- and RNA-based strategies are applied to overcome problematic PMS2 mutation analysis due to the presence of pseudogenes and frequent gene conversion events. Here, we determined PMS2 mutation detection yield and mutation spectrum in a nationwide cohort of 396 probands. Furthermore, we studied concordance between tumor IHC/MSI (immunohistochemistry/microsatellite instability) profile and mutation carrier state. Overall, we found 52 different pathogenic PMS2 variants explaining 121 Lynch syndrome and nine CMMRD patients. In vitro mismatch repair assays suggested pathogenicity for three missense variants. Ninety-one PMS2 mutation carriers (70%) showed isolated loss of PMS2 in their tumors, for 31 (24%) no or inconclusive IHC was available, and eight carriers (6%) showed discordant IHC (presence of PMS2 or loss of both MLH1 and PMS2). Ten cases with isolated PMS2 loss (10%; 10/97) harbored MLH1 mutations. We confirmed that recently improved mutation analysis provides a high yield of PMS2 mutations in patients with isolated loss of PMS2 expression. Application of universal tumor prescreening methods will however miss some PMS2 germline mutation carriers.
Collapse
Affiliation(s)
- Heleen M van der Klift
- Department of Clinical Genetics, Leiden University Medical Centre, Leiden, The Netherlands. .,Department of Human Genetics, Leiden University Medical Centre, Leiden, The Netherlands.
| | - Arjen R Mensenkamp
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Mark Drost
- Department of Human Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Elsa C Bik
- Department of Clinical Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Yvonne J Vos
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Hans J J P Gille
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, The Netherlands
| | - Bert E J W Redeker
- Department of Clinical Genetics, Academic Medical Centre, Amsterdam, The Netherlands
| | - Yvonne Tiersma
- Department of Human Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - José B M Zonneveld
- Department of Clinical Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Encarna Gómez García
- Department of Clinical Genetics, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Tom G W Letteboer
- Department of Medical Genetics, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Maran J W Olderode-Berends
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Liselotte P van Hest
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, The Netherlands
| | - Theo A van Os
- Department of Clinical Genetics, Academic Medical Centre, Amsterdam, The Netherlands
| | - Senno Verhoef
- Netherlands Cancer Institute, Amsterdam, The Netherlands.,Clinical Genetics Service, Saint Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester, United Kingdom
| | - Anja Wagner
- Department of Clinical Genetics, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Christi J van Asperen
- Department of Clinical Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Sanne W Ten Broeke
- Department of Clinical Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Frederik J Hes
- Department of Clinical Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Niels de Wind
- Department of Human Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Maartje Nielsen
- Department of Clinical Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Peter Devilee
- Department of Human Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Marjolijn J L Ligtenberg
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Juul T Wijnen
- Department of Clinical Genetics, Leiden University Medical Centre, Leiden, The Netherlands.,Department of Human Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Carli M J Tops
- Department of Clinical Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| |
Collapse
|
19
|
Li J, Dai H, Feng Y, Tang J, Chen S, Tian X, Gorman E, Schmitt ES, Hansen TAA, Wang J, Plon SE, Zhang VW, Wong LJC. A Comprehensive Strategy for Accurate Mutation Detection of the Highly Homologous PMS2. J Mol Diagn 2016; 17:545-53. [PMID: 26320870 DOI: 10.1016/j.jmoldx.2015.04.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 04/07/2015] [Accepted: 04/29/2015] [Indexed: 10/23/2022] Open
Abstract
Germline mutations in the DNA mismatch repair gene PMS2 underlie the cancer susceptibility syndrome, Lynch syndrome. However, accurate molecular testing of PMS2 is complicated by a large number of highly homologous sequences. To establish a comprehensive approach for mutation detection of PMS2, we have designed a strategy combining targeted capture next-generation sequencing (NGS), multiplex ligation-dependent probe amplification, and long-range PCR followed by NGS to simultaneously detect point mutations and copy number changes of PMS2. Exonic deletions (E2 to E9, E5 to E9, E8, E10, E14, and E1 to E15), duplications (E11 to E12), and a nonsense mutation, p.S22*, were identified. Traditional multiplex ligation-dependent probe amplification and Sanger sequencing approaches cannot differentiate the origin of the exonic deletions in the 3' region when PMS2 and PMS2CL share identical sequences as a result of gene conversion. Our approach allows unambiguous identification of mutations in the active gene with a straightforward long-range-PCR/NGS method. Breakpoint analysis of multiple samples revealed that recurrent exon 14 deletions are mediated by homologous Alu sequences. Our comprehensive approach provides a reliable tool for accurate molecular analysis of genes containing multiple copies of highly homologous sequences and should improve PMS2 molecular analysis for patients with Lynch syndrome.
Collapse
Affiliation(s)
- Jianli Li
- Baylor Miraca Genetics Laboratories, Houston, Texas
| | | | - Yanming Feng
- Baylor Miraca Genetics Laboratories, Houston, Texas
| | - Jia Tang
- Baylor Miraca Genetics Laboratories, Houston, Texas
| | - Stella Chen
- Baylor Miraca Genetics Laboratories, Houston, Texas
| | - Xia Tian
- Baylor Miraca Genetics Laboratories, Houston, Texas
| | | | | | - Terah A A Hansen
- Central Washington Genetics Program, Yakima Valley Memorial Hospital, Yakima, Washington
| | - Jing Wang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Sharon E Plon
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Victor Wei Zhang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas.
| | - Lee-Jun C Wong
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas.
| |
Collapse
|
20
|
Ripperger T, Schlegelberger B. Acute lymphoblastic leukemia and lymphoma in the context of constitutional mismatch repair deficiency syndrome. Eur J Med Genet 2015; 59:133-42. [PMID: 26743104 DOI: 10.1016/j.ejmg.2015.12.014] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 11/28/2015] [Accepted: 12/01/2015] [Indexed: 12/15/2022]
Abstract
Constitutional mismatch repair deficiency (CMMRD) syndrome is one of the rare diseases associated with a high risk of cancer. Causative mutations are found in DNA mismatch repair genes PMS2, MSH6, MSH2 or MLH1 that are well known in the context of Lynch syndrome. CMMRD follows an autosomal recessive inheritance trait and is characterized by childhood brain tumors and hematological malignancies as well as gastrointestinal cancer in the second and third decades of life. There is a high risk of multiple cancers, occurring synchronously and metachronously. In general, the prognosis is poor. About one third of CMMRD patients develop hematological malignancies as primary (sometimes the only) malignancy or as secondary neoplasm. T-cell non-Hodgkin lymphomas, mainly of mediastinal origin, are the most frequent hematological malignancies. Besides malignant diseases, non-neoplastic features are frequently observed, e.g. café-au-lait spots sometimes resembling neurofibromatosis type I, hypopigmented skin lesions, numerous adenomatous polyps, multiple pilomatricomas, or impaired immunoglobulin class switch recombination. Within the present review, we summarize previously published CMMRD patients with at least one hematological malignancy, provide an overview of steps necessary to substantiate the diagnosis of CMMRD, and refer to the recent most relevant literature.
Collapse
Affiliation(s)
- Tim Ripperger
- Institute of Human Genetics, Hannover Medical School, Hannover, Germany.
| | | |
Collapse
|
21
|
Millson A, Lewis T, Pesaran T, Salvador D, Gillespie K, Gau CL, Pont-Kingdon G, Lyon E, Bayrak-Toydemir P. Processed Pseudogene Confounding Deletion/Duplication Assays for SMAD4. J Mol Diagn 2015; 17:576-82. [DOI: 10.1016/j.jmoldx.2015.05.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 04/23/2015] [Accepted: 05/06/2015] [Indexed: 11/25/2022] Open
|
22
|
Clendenning M, Walsh MD, Gelpi JB, Thibodeau SN, Lindor N, Potter JD, Newcomb P, LeMarchand L, Haile R, Gallinger S, Hopper JL, Jenkins MA, Rosty C, Young JP, Buchanan DD. Detection of large scale 3' deletions in the PMS2 gene amongst Colon-CFR participants: have we been missing anything? Fam Cancer 2014; 12:563-6. [PMID: 23288611 DOI: 10.1007/s10689-012-9597-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Current screening practices have been able to identify PMS2 mutations in 78 % of cases of colorectal cancer from the Colorectal Cancer Family Registry (Colon CFR) which showed solitary loss of the PMS2 protein. However the detection of large-scale deletions in the 3' end of the PMS2 gene has not been possible due to technical difficulties associated with pseudogene sequences. Here, we utilised a recently described MLPA/long-range PCR-based approach to screen the remaining 22 % (n = 16) of CRC-affected probands for mutations in the 3' end of the PMS2 gene. No deletions encompassing any or all of exons 12 through 15 were identified; therefore, our results suggest that 3' deletions in PMS2 are not a frequent occurrence in such families.
Collapse
Affiliation(s)
- Mark Clendenning
- Cancer and Population Studies, Queensland Institute of Medical Research, 300 Herston Road, Herston, QLD, 4006, Australia,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Wimmer K, Kratz CP, Vasen HFA, Caron O, Colas C, Entz-Werle N, Gerdes AM, Goldberg Y, Ilencikova D, Muleris M, Duval A, Lavoine N, Ruiz-Ponte C, Slavc I, Burkhardt B, Brugieres L. Diagnostic criteria for constitutional mismatch repair deficiency syndrome: suggestions of the European consortium 'care for CMMRD' (C4CMMRD). J Med Genet 2014; 51:355-65. [PMID: 24737826 DOI: 10.1136/jmedgenet-2014-102284] [Citation(s) in RCA: 316] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Constitutional mismatch repair deficiency (CMMRD) syndrome is a distinct childhood cancer predisposition syndrome that results from biallelic germline mutations in one of the four MMR genes, MLH1, MSH2, MSH6 or PMS2. The tumour spectrum is very broad, including mainly haematological, brain and intestinal tract tumours. Patients show a variety of non-malignant features that are indicative of CMMRD. However, currently no criteria that should entail diagnostic evaluation of CMMRD exist. We present a three-point scoring system for the suspected diagnosis CMMRD in a paediatric/young adult cancer patient. Tumours highly specific for CMMRD syndrome are assigned three points, malignancies overrepresented in CMMRD two points and all other malignancies one point. According to their specificity for CMMRD and their frequency in the general population, additional features are weighted with 1-2 points. They include multiple hyperpigmented and hypopigmented skin areas, brain malformations, pilomatricomas, a second childhood malignancy, a Lynch syndrome (LS)-associated tumour in a relative and parental consanguinity. According to the scoring system, CMMRD should be suspected in any cancer patient who reaches a minimum of three points by adding the points of the malignancy and the additional features. The diagnostic steps to confirm or refute the suspected diagnosis are outlined. We expect that application of the suggested strategy for CMMRD diagnosis will increase the number of patients being identified at the time when they develop their first tumour. This will allow adjustment of the treatment modalities, offering surveillance strategies for second malignancies and appropriate counselling of the entire family.
Collapse
Affiliation(s)
- Katharina Wimmer
- Division of Human Genetics, Medical University Innsbruck, Innsbruck, Austria
| | - Christian P Kratz
- Department of Pediatric Hematology & Oncology, Hannover Medical School, Hannover, Germany
| | - Hans F A Vasen
- Department of Gastroenterology & Hepatology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Olivier Caron
- Department of Medical Oncology, Gustave Roussy Cancer Institute, Villejuif, France
| | - Chrystelle Colas
- Department of Genetics, Pitié Salpêtrière Hospital, AP-HP, Paris, France INSERM, UMR_S 938, CDR Saint-Antoine, Paris, France Sorbonne Universités, UPMC Univ Paris 06, UMR_S 938, CDR Saint-Antoine, Paris, France
| | - Natacha Entz-Werle
- Pédiatrie Onco-Hématologie-Pédiatrie III-CHRU Hautepierre UdS-EA 3430, Strasbourg, France
| | - Anne-Marie Gerdes
- Department of Clinical Genetics, Copenhagen University Hospital Rigshospital, Copenhagen, Denmark
| | - Yael Goldberg
- Department of Oncology, Sharret Institute, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Denisa Ilencikova
- 2nd Pediatric Department of Children University Hospital, Comenius University, Bratislava, Slovakia
| | - Martine Muleris
- INSERM, UMR_S 938, CDR Saint-Antoine, Paris, France Sorbonne Universités, UPMC Univ Paris 06, UMR_S 938, CDR Saint-Antoine, Paris, France
| | - Alex Duval
- INSERM, UMR_S 938, CDR Saint-Antoine, Paris, France Sorbonne Universités, UPMC Univ Paris 06, UMR_S 938, CDR Saint-Antoine, Paris, France
| | - Noémie Lavoine
- Department of Children and Adolescents Oncology, Gustave Roussy Cancer Institute, Villejuif, France
| | - Clara Ruiz-Ponte
- Fundación Pública Galega de Medicina Xenómica (FPGMX) SERGAS, Grupo de Medicina Xenómica, IDIS, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERer), Santiago de Compostela, Spain
| | - Irene Slavc
- Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Brigit Burkhardt
- Department of Pediatric Hematology and Oncology, University Children's Hospital, Münster, Germany
| | - Laurence Brugieres
- Department of Children and Adolescents Oncology, Gustave Roussy Cancer Institute, Villejuif, France
| | | |
Collapse
|
24
|
Mensenkamp AR, Vogelaar IP, van Zelst-Stams WAG, Goossens M, Ouchene H, Hendriks-Cornelissen SJB, Kwint MP, Hoogerbrugge N, Nagtegaal ID, Ligtenberg MJL. Somatic mutations in MLH1 and MSH2 are a frequent cause of mismatch-repair deficiency in Lynch syndrome-like tumors. Gastroenterology 2014; 146:643-646.e8. [PMID: 24333619 DOI: 10.1053/j.gastro.2013.12.002] [Citation(s) in RCA: 256] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 11/27/2013] [Accepted: 12/05/2013] [Indexed: 01/03/2023]
Abstract
Lynch syndrome is caused by germline mutations in the mismatch repair (MMR) genes. Tumors are characterized by microsatellite instability (MSI). However, a considerable number of MSI-positive tumors have no known molecular mechanism of development. By using Sanger and ion semiconductor sequencing, 25 MSI-positive tumors were screened for somatic mutations and loss of heterozygosity in mutL homolog 1 (MLH1) and mutS homolog 2 (MSH2). In 13 of 25 tumors (8 MLH1-deficient and 5 MSH2-deficient tumors), we identified 2 somatic mutations in these genes. We conclude that 2 acquired events explain the MMR-deficiency in more than 50% of the MMR-deficient tumors without causal germline mutations or promoter methylation.
Collapse
Affiliation(s)
- Arjen R Mensenkamp
- Department of Human Genetics, Radboud university medical center, Nijmegen, The Netherlands.
| | - Ingrid P Vogelaar
- Department of Human Genetics, Radboud university medical center, Nijmegen, The Netherlands
| | | | - Monique Goossens
- Department of Pathology, Radboud university medical center, Nijmegen, The Netherlands
| | - Hicham Ouchene
- Department of Human Genetics, Radboud university medical center, Nijmegen, The Netherlands
| | | | - Michael P Kwint
- Department of Pathology, Radboud university medical center, Nijmegen, The Netherlands
| | - Nicoline Hoogerbrugge
- Department of Human Genetics, Radboud university medical center, Nijmegen, The Netherlands
| | - Iris D Nagtegaal
- Department of Pathology, Radboud university medical center, Nijmegen, The Netherlands
| | - Marjolijn J L Ligtenberg
- Department of Human Genetics, Radboud university medical center, Nijmegen, The Netherlands; Department of Pathology, Radboud university medical center, Nijmegen, The Netherlands
| |
Collapse
|
25
|
Predictive genetic testing of a bone marrow recipient-ethical issues involving unexpected results, gender issues, test accuracy, and implications for the donor. J Genet Couns 2013; 23:33-7. [PMID: 23990319 DOI: 10.1007/s10897-013-9643-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 08/02/2013] [Indexed: 10/26/2022]
Abstract
We present a case where an apparently straightforward Lynch syndrome predictive genetic test of DNA from a blood sample from a woman yielded an unexpected result of X/Y chromosome imbalance. Furthermore, it demonstrates the complexities of genetic testing in people who have had bone marrow transplants. This highlights the potential for multiple ethical and counselling challenges, including the inadvertent testing of the donor. Good communication between clinics and laboratories is essential to overcome such challenges and to minimise the provision of false results.
Collapse
|
26
|
Brea-Fernández A, Cameselle-Teijeiro J, Alenda C, Fernández-Rozadilla C, Cubiella J, Clofent J, Reñé J, Anido U, Milá M, Balaguer F, Castells A, Castellvi-Bel S, Jover R, Carracedo A, Ruiz-Ponte C. High incidence of large deletions in thePMS2gene in Spanish Lynch syndrome families. Clin Genet 2013; 85:583-8. [DOI: 10.1111/cge.12232] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 07/04/2013] [Accepted: 07/04/2013] [Indexed: 12/24/2022]
Affiliation(s)
- A.J. Brea-Fernández
- Grupo de Medicina Xenómica-USC; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER); Santiago de Compostela Spain
- Unidad de Investigación; Hospital General Universitario; Alicante Spain
| | - J.M. Cameselle-Teijeiro
- Servicio de Anatomía Patológica, Hospital Clínico Universitario, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS); Universidad de Santiago de Compostela; Santiago de Compostela Spain
| | - C. Alenda
- Servicio de Anatomía Patológica; Hospital General Universitario; Alicante Spain
| | - C. Fernández-Rozadilla
- Fundación Pública Galega de Medicina Xenómica (FPGMX)-SERGAS, Grupo de Medicina Xenómica; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER); Santiago de Compostela Spain
| | - J. Cubiella
- Servicio de Gastroenterología; Complexo Hospitalario Universitario de Ourense; Ourense Spain
| | - J. Clofent
- Sección Aparato Digestivo, Servicio de Medicina Interna; Hospital de Sagunto; Sagunto Spain
- Servicio de Gastroenterología; Complexo Hospitalario Universitario de Vigo; Spain
| | - J.M. Reñé
- Servicio de Gastroenterología; Hospital Arnau de Vilanova; Lleida Spain
| | - U. Anido
- Servicio de Oncología Clínica; Complexo Hospitalario Universitario de Santiago; Santiago de Compostela Spain
| | - M. Milá
- Servicio de Bioquímica y Genética Molecular, Hospital Clínic, IDIBAPS; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER); Barcelona Spain
| | - F. Balaguer
- Servicio de Gastroenterología, Institut de Malalties Digestives i Metabòliques, Hospital Clínic, IDIBAPS; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Universitat de Barcelona; Barcelona Spain
| | - A. Castells
- Servicio de Gastroenterología, Institut de Malalties Digestives i Metabòliques, Hospital Clínic, IDIBAPS; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Universitat de Barcelona; Barcelona Spain
| | - S. Castellvi-Bel
- Servicio de Gastroenterología, Institut de Malalties Digestives i Metabòliques, Hospital Clínic, IDIBAPS; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Universitat de Barcelona; Barcelona Spain
| | - R. Jover
- Unidad de Investigación; Hospital General Universitario; Alicante Spain
| | - A. Carracedo
- Grupo de Medicina Xenómica-USC; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER); Santiago de Compostela Spain
- Fundación Pública Galega de Medicina Xenómica (FPGMX)-SERGAS, Grupo de Medicina Xenómica; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER); Santiago de Compostela Spain
| | - C. Ruiz-Ponte
- Fundación Pública Galega de Medicina Xenómica (FPGMX)-SERGAS, Grupo de Medicina Xenómica; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER); Santiago de Compostela Spain
| |
Collapse
|
27
|
Borràs E, Pineda M, Cadiñanos J, Del Valle J, Brieger A, Hinrichsen I, Cabanillas R, Navarro M, Brunet J, Sanjuan X, Musulen E, van der Klift H, Lázaro C, Plotz G, Blanco I, Capellá G. Refining the role of PMS2 in Lynch syndrome: germline mutational analysis improved by comprehensive assessment of variants. J Med Genet 2013; 50:552-63. [PMID: 23709753 DOI: 10.1136/jmedgenet-2012-101511] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND AND AIM The majority of mismatch repair (MMR) gene mutations causing Lynch syndrome (LS) occur either in MLH1 or MSH2. However, the relative contribution of PMS2 is less well defined. The aim of this study was to evaluate the role of PMS2 in LS by assessing the pathogenicity of variants of unknown significance (VUS) detected in the mutational analysis of PMS2 in a series of Spanish patients. METHODS From a cohort of 202 LS suspected patients, 13 patients showing loss of PMS2 expression in tumours were screened for germline mutations in PMS2, using a long range PCR based strategy and multiplex ligation dependent probe amplification (MLPA). Pathogenicity assessment of PMS2 VUS was performed evaluating clinicopathological data, frequency in control population and in silico and in vitro analyses at the RNA and protein level. RESULTS Overall 25 different PMS2 DNA variants were detected. Fourteen were classified as polymorphisms. Nine variants were classified as pathogenic: seven alterations based on their molecular nature and two after demonstrating a functional defect (c.538-3C>G affected mRNA processing and c.137G>T impaired MMR activity). The c.1569C>G variant was classified as likely neutral while the c.384G>A remained as a VUS. We have also shown that the polymorphic variant c.59G>A is MMR proficient. CONCLUSIONS Pathogenic PMS2 mutations were detected in 69% of patients harbouring LS associated tumours with loss of PMS2 expression. In all, PMS2 mutations account for 6% of the LS cases identified. The comprehensive functional analysis shown here has been useful in the classification of PMS2 VUS and contributes to refining the role of PMS2 in LS.
Collapse
Affiliation(s)
- Ester Borràs
- Hereditary Cancer Program, Catalan Institute of Oncology, ICO-IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Vaughn CP, Baker CL, Samowitz WS, Swensen JJ. The frequency of previously undetectable deletions involving 3' Exons of the PMS2 gene. Genes Chromosomes Cancer 2012; 52:107-12. [PMID: 23012243 DOI: 10.1002/gcc.22011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 07/11/2012] [Accepted: 08/16/2012] [Indexed: 12/30/2022] Open
Abstract
Lynch syndrome is characterized by mutations in one of four mismatch repair genes, MLH1, MSH2, MSH6, or PMS2. Clinical mutation analysis of these genes includes sequencing of exonic regions and deletion/duplication analysis. However, detection of deletions and duplications in PMS2 has previously been confined to Exons 1-11 due to gene conversion between PMS2 and the pseudogene PMS2CL in the remaining 3' exons (Exons 12-15). We have recently described an MLPA-based method that permits detection of deletions of PMS2 Exons 12-15; however, the frequency of such deletions has not yet been determined. To address this question, we tested for 3' deletions in 58 samples that were reported to be negative for PMS2 mutations using previously available methods. All samples were from individuals whose tumors exhibited loss of PMS2 immunohistochemical staining without concomitant loss of MLH1 immunostaining. We identified seven samples in this cohort with deletions in the 3' region of PMS2, including three previously reported samples with deletions of Exons 13-15 (two samples) and Exons 14-15. Also detected were deletions of Exons 12-15, Exon 13, and Exon 14 (two samples). Breakpoint analysis of the intragenic deletions suggests they occurred through Alu-mediated recombination. Our results indicate that ∼12% of samples suspected of harboring a PMS2 mutation based on immunohistochemical staining, for which mutations have not yet been identified, would benefit from testing using the new methodology.
Collapse
Affiliation(s)
- Cecily P Vaughn
- ARUP Institute for Clinical and Experimental Pathology, Salt Lake City, UT 84108, USA
| | | | | | | |
Collapse
|
29
|
Agenesis of the corpus callosum and gray matter heterotopia in three patients with constitutional mismatch repair deficiency syndrome. Eur J Hum Genet 2012; 21:55-61. [PMID: 22692065 DOI: 10.1038/ejhg.2012.117] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Constitutional mismatch repair deficiency (CMMR-D) syndrome is a rare inherited childhood cancer predisposition caused by biallelic germline mutations in one of the four mismatch repair (MMR)-genes, MLH1, MSH2, MSH6 or PMS2. Owing to a wide tumor spectrum, the lack of specific clinical features and the overlap with other cancer predisposing syndromes, diagnosis of CMMR-D is often delayed in pediatric cancer patients. Here, we report of three new CMMR-D patients all of whom developed more than one malignancy. The common finding in these three patients is agenesis of the corpus callosum (ACC). Gray matter heterotopia is present in two patients. One of the 57 previously reported CMMR-D patients with brain tumors (therefore all likely had cerebral imaging) also had ACC. With the present report the prevalence of cerebral malformations is at least 4/60 (6.6%). This number is well above the population birth prevalence of 0.09-0.36 live births with these cerebral malformations, suggesting that ACC and heterotopia are features of CMMR-D. Therefore, the presence of cerebral malformations in pediatric cancer patients should alert to the possible diagnosis of CMMR-D. ACC and gray matter heterotopia are the first congenital malformations described to occur at higher frequency in CMMR-D patients than in the general population. Further systematic evaluations of CMMR-D patients are needed to identify possible other malformations associated with this syndrome.
Collapse
|
30
|
Tomsic J, Senter L, Liyanarachchi S, Clendenning M, Vaughn CP, Jenkins MA, Hopper JL, Young J, Samowitz W, de la Chapelle A. Recurrent and founder mutations in the PMS2 gene. Clin Genet 2012; 83:238-43. [PMID: 22577899 DOI: 10.1111/j.1399-0004.2012.01898.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 05/04/2012] [Indexed: 12/22/2022]
Abstract
Germline mutations in PMS2 are associated with Lynch syndrome (LS), the most common known cause of hereditary colorectal cancer. Mutation detection in PMS2 has been difficult due to the presence of several pseudogenes, but a custom-designed long-range PCR strategy now allows adequate mutation detection. Many mutations are unique. However, some mutations are observed repeatedly across individuals not known to be related due to the mutation being either recurrent, arising multiple times de novo at hot spots for mutations, or of founder origin, having occurred once in an ancestor. Previously, we observed 36 distinct mutations in a sample of 61 independently ascertained Caucasian probands of mixed European background with PMS2 mutations. Eleven of these mutations were detected in more than one individual not known to be related and of these, six were detected more than twice. These six mutations accounted for 31 (51%) ostensibly unrelated probands. Here, we performed genotyping and haplotype analysis in four mutations observed in multiple probands and found two (c.137G>T and exon 10 deletion) to be founder mutations and one (c.903G>T) a probable founder. One (c.1A>G) could not be evaluated for founder mutation status. We discuss possible explanations for the frequent occurrence of founder mutations in PMS2.
Collapse
Affiliation(s)
- J Tomsic
- Human Cancer Genetics Program, Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Wernstedt A, Valtorta E, Armelao F, Togni R, Girlando S, Baudis M, Heinimann K, Messiaen L, Staehli N, Zschocke J, Marra G, Wimmer K. Improved multiplex ligation-dependent probe amplification analysis identifies a deleterious PMS2 allele generated by recombination with crossover between PMS2 and PMS2CL. Genes Chromosomes Cancer 2012; 51:819-31. [PMID: 22585707 PMCID: PMC3398144 DOI: 10.1002/gcc.21966] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 04/02/2012] [Indexed: 11/08/2022] Open
Abstract
Heterozygous PMS2 germline mutations are associated with Lynch syndrome. Up to one third of these mutations are genomic deletions. Their detection is complicated by a pseudogene (PMS2CL), which--owing to extensive interparalog sequence exchange--closely resembles PMS2 downstream of exon 12. A recently redesigned multiplex ligation-dependent probe amplification (MLPA) assay identifies PMS2 copy number alterations with improved reliability when used with reference DNAs containing equal numbers of PMS2- and PMS2CL-specific sequences. We selected eight such reference samples--all publicly available--and used them with this assay to study 13 patients with PMS2-defective colorectal tumors. Three presented deleterious alterations: an Alu-mediated exon deletion; a 125-kb deletion encompassing PMS2 and four additional genes (two with tumor-suppressing functions); and a novel deleterious hybrid PMS2 allele produced by recombination with crossover between PMS2 and PMS2CL, with the breakpoint in intron 10 (the most 5' breakpoint of its kind reported thus far). We discuss mechanisms that might generate this allele in different chromosomal configurations (and their diagnostic implications) and describe an allele-specific PCR assay that facilitates its detection. Our data indicate that the redesigned PMS2 MLPA assay is a valid first-line option. In our series, it identified roughly a quarter of all PMS2 mutations.
Collapse
|