1
|
Camelo-Filho AE, Lima PLGSB, da Rosa RF, Soares TBS, Pessoa ALS, Nóbrega PR, Braga-Neto P. Nerve Ultrasound Detects Nerve Atrophy in Patients With Ataxia-Telangiectasia: A Pilot Study. Muscle Nerve 2025; 71:1091-1095. [PMID: 40087145 DOI: 10.1002/mus.28396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 03/06/2025] [Accepted: 03/07/2025] [Indexed: 03/16/2025]
Abstract
INTRODUCTION/AIMS Ataxia-telangiectasia (A-T) is a genetic multisystem neurodegenerative disorder characterized by cerebellar ataxia, oculocutaneous telangiectasia, extrapyramidal involvement, peripheral sensorimotor neuropathy, immunodeficiency, pulmonary disease, and an increased risk of malignancy that ultimately determines the shortened lifespan in many patients. A-T nerve ultrasonographic characteristics remain underexplored. This pilot study aimed to characterize the ultrasonographic morphology of peripheral nerves in patients with A-T. METHODS Ultrasound cross-sectional areas (CSAs) of the median, ulnar, sural, and tibial nerves were obtained from three A-T patients and were compared to reference values. Nerve conduction studies and electromyography were also performed. Given the small sample size and the exploratory nature of this study, formal statistical analyses were not performed, and descriptive statistics were presented for the data. RESULTS Nerve CSAs in A-T patients were smaller than in healthy controls at all measurement sites. DISCUSSION Nerve ultrasound revealed atrophy in the peripheral nerves of A-T patients. This reduction in nerve size may distinguish A-T and highlights the utility of nerve ultrasound as a non-invasive diagnostic tool for peripheral sensorimotor neuropathy. These findings may have important implications for early detection in clinical practice.
Collapse
Affiliation(s)
- Antonio E Camelo-Filho
- Division of Neurology, Department of Clinical Medicine, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil
| | - Pedro L G S B Lima
- Division of Neurology, Department of Clinical Medicine, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil
| | - Rodrigo F da Rosa
- Division of Neurology, Department of Clinical Medicine, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil
| | - Tito B S Soares
- Center of Health Sciences, Universidade Estadual do Ceará, Fortaleza, Ceará, Brazil
| | - André L S Pessoa
- Division of Neurology, Department of Clinical Medicine, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil
- Albert Sabin Hospital, Fortaleza, Ceará, Brazil
| | - Paulo R Nóbrega
- Division of Neurology, Department of Clinical Medicine, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil
| | - Pedro Braga-Neto
- Division of Neurology, Department of Clinical Medicine, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil
- Center of Health Sciences, Universidade Estadual do Ceará, Fortaleza, Ceará, Brazil
| |
Collapse
|
2
|
Stoltze U, Junk SV, Byrjalsen A, Cavé H, Cazzaniga G, Elitzur S, Fronkova E, Hjalgrim LL, Kuiper RP, Lundgren L, Mescher M, Mikkelsen T, Pastorczak A, Strullu M, Trka J, Wadt K, Izraeli S, Borkhardt A, Schmiegelow K. Overt and covert genetic causes of pediatric acute lymphoblastic leukemia. Leukemia 2025; 39:1031-1045. [PMID: 40128563 DOI: 10.1038/s41375-025-02535-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 01/08/2025] [Accepted: 02/10/2025] [Indexed: 03/26/2025]
Abstract
Pediatric acute lymphoblastic leukemia (pALL) is the most common childhood malignancy, yet its etiology remains incompletely understood. However, over the course of three waves of germline genetic research, several non-environmental causes have been identified. Beginning with trisomy 21, seven overt cancer predisposition syndromes (CPSs)-characterized by broad clinical phenotypes that include an elevated risk of pALL-were first described. More recently, newly described CPSs conferring high risk of pALL are increasingly covert, with six exhibiting only minimal or no non-cancer features. These 13 CPSs now represent the principal known hereditary causes of pALL, and human pangenomic data indicates a strong negative selection against mutations in the genes associated with these conditions. Collectively they affect approximately 1 in 450 newborns, of which just a minority will develop the disease. As evidenced by tailored leukemia care protocols for children with trisomy 21, there is growing recognition that CPSs warrant specialized diagnostic, therapeutic, and long-term management strategies. In this review, we investigate the evidence that the 12 other CPSs associated with high risk of pALL may also see benefits from specialized care - even if these needs are often incompletely mapped or addressed in the clinic. Given the rarity of each syndrome, collaborative international research and shared data initiatives will be crucial for advancing knowledge and improving outcomes for these patients.
Collapse
Affiliation(s)
- Ulrik Stoltze
- Department of Childhood and Adolescent Medicine, Rigshospitalet, Copenhagen, Denmark.
- Department of Clinical Genetics, Rigshospitalet, Copenhagen, Denmark.
| | - Stefanie V Junk
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Anna Byrjalsen
- Department of Childhood and Adolescent Medicine, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Genetics, Rigshospitalet, Copenhagen, Denmark
| | - Hélène Cavé
- Department of Genetics, Robert Debré University Hospital, APHP, Paris, France
- University Paris Cité, Paris, France
- INSERM UMR_S1131 - Institut de Recherche Saint-Louis, Paris France, Paris, France
| | - Giovanni Cazzaniga
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Sarah Elitzur
- Department of Pediatric Hematology and Oncology, Schneider Children's Medical Center and Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Eva Fronkova
- Childhood Leukaemia Investigation Prague, Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Lisa Lyngsie Hjalgrim
- Department of Childhood and Adolescent Medicine, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Medicine, Copenhagen University, Copenhagen, Denmark
| | - Roland P Kuiper
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
- Department of Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Louise Lundgren
- Department of Childhood and Adolescent Medicine, Rigshospitalet, Copenhagen, Denmark
| | - Melina Mescher
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Theis Mikkelsen
- Department of Childhood and Adolescent Medicine, Rigshospitalet, Copenhagen, Denmark
| | - Agata Pastorczak
- Department of Pediatrics, Oncology, and Hematology, Medical University of Lodz, Lodz, Poland
- Department of Genetic Predisposition to Cancer, Medical University of Lodz, Lodz, Poland
| | - Marion Strullu
- University Paris Cité, Paris, France
- INSERM UMR_S1131 - Institut de Recherche Saint-Louis, Paris France, Paris, France
- Pediatric Hematology and Immunology Department, Robert Debré Academic Hospital, GHU AP-HP Nord Paris, Paris, France
| | - Jan Trka
- Childhood Leukaemia Investigation Prague, Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Karin Wadt
- Department of Clinical Genetics, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Medicine, Copenhagen University, Copenhagen, Denmark
| | - Shai Izraeli
- Department of Pediatric Hematology and Oncology, Schneider Children's Medical Center and Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Arndt Borkhardt
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Kjeld Schmiegelow
- Department of Childhood and Adolescent Medicine, Rigshospitalet, Copenhagen, Denmark.
- Department of Clinical Medicine, Faculty of Medicine, Copenhagen University, Copenhagen, Denmark.
| |
Collapse
|
3
|
Beyls E, Duthoo E, Backers L, Claes K, De Bruyne M, Pottie L, Bordon V, Bonroy C, Tavernier SJ, Claes KBM, Vral A, Baeyens A, Haerynck F. Investigating Chromosomal Radiosensitivity in Inborn Errors of Immunity: Insights from DNA Repair Disorders and Beyond. J Clin Immunol 2025; 45:75. [PMID: 39945898 PMCID: PMC11825639 DOI: 10.1007/s10875-025-01858-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 01/20/2025] [Indexed: 02/16/2025]
Abstract
Human inborn errors of immunity (IEI) represent a diverse group of genetic disorders affecting the innate and/or adaptive immune system. Some IEI entities comprise defects in DNA repair factors, resulting in (severe) combined immunodeficiencies, bone marrow failure, predisposition to malignancies, and potentially resulting in radiosensitivity (RS). While other IEI subcategories such as common variable immunodeficiency (CVID) and immune dysregulation disorders also associate with lymphoproliferative and malignant complications, the occurrence of RS phenotypes in the broader IEI population is not well characterized. Nonetheless, identifying RS in IEI patients through functional testing is crucial to reconsider radiation-related therapeutic protocols and to improve overall patient management. This study aimed to investigate chromosomal RS in a diverse cohort of 107 IEI patients using the G0 cytokinesis-block micronucleus (MN) assay. Our findings indicate significant variability in RS across specific genetic and phenotypical subgroups. Severe RS was detected in all ataxia-telangiectasia (AT) patients, a FANCI deficient and ERCC6L2 deficient patient, but not in any other IEI patient included in this cohort. Age emerged as an influencing factor for both spontaneous and radiation-induced MN yields, while the manifestation of additional clinical features, including infection susceptibility, immune dysregulation, or malignancies did not associate with increased MN levels. Our extensive analysis of RS in the IEI population underscores the clinical importance of RS assessment in AT patients and supports RS testing in all IEI patients suspected of having a DNA repair disorder associated with RS.
Collapse
Affiliation(s)
- Elien Beyls
- Primary Immunodeficiency Research Lab (PIRL), Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Center for Primary Immunodeficiency, Jeffrey Modell Diagnosis and Research Center, Ghent University Hospital, Ghent, Belgium
- Department of Human Structure and Repair, Ghent University, Ghent, Belgium
| | - Evi Duthoo
- Primary Immunodeficiency Research Lab (PIRL), Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Center for Primary Immunodeficiency, Jeffrey Modell Diagnosis and Research Center, Ghent University Hospital, Ghent, Belgium
- Department of Human Structure and Repair, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University Hospital, Ghent, Belgium
| | - Lynn Backers
- Primary Immunodeficiency Research Lab (PIRL), Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University Hospital, Ghent, Belgium
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Karlien Claes
- Primary Immunodeficiency Research Lab (PIRL), Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Center for Primary Immunodeficiency, Jeffrey Modell Diagnosis and Research Center, Ghent University Hospital, Ghent, Belgium
| | - Marieke De Bruyne
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Lore Pottie
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Victoria Bordon
- Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, Belgium
| | - Carolien Bonroy
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
- Department of Laboratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Simon J Tavernier
- Primary Immunodeficiency Research Lab (PIRL), Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Center for Primary Immunodeficiency, Jeffrey Modell Diagnosis and Research Center, Ghent University Hospital, Ghent, Belgium
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Unit of Molecular Signal Transduction in Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Kathleen B M Claes
- Cancer Research Institute Ghent (CRIG), Ghent University Hospital, Ghent, Belgium
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Anne Vral
- Cancer Research Institute Ghent (CRIG), Ghent University Hospital, Ghent, Belgium
- Radiobiology Lab, Department of Human Structure and Repair, Ghent University, Ghent, Belgium
| | - Ans Baeyens
- Cancer Research Institute Ghent (CRIG), Ghent University Hospital, Ghent, Belgium
- Radiobiology Lab, Department of Human Structure and Repair, Ghent University, Ghent, Belgium
| | - Filomeen Haerynck
- Primary Immunodeficiency Research Lab (PIRL), Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium.
- Center for Primary Immunodeficiency, Jeffrey Modell Diagnosis and Research Center, Ghent University Hospital, Ghent, Belgium.
- Department of Pediatric Respiratory and Infectious Medicine, Ghent University Hospital, Ghent, Belgium.
| |
Collapse
|
4
|
Salami F, Shad TM, Fathi N, Mojtahedi H, Esmaeili M, Shahkarami S, Afrakoti LGMP, Amirifar P, Delavari S, Nosrati H, Razavi A, Ranjouri MR, Yousefpour M, Esfahani ZH, Azizi G, Ashrafi M, Rezaei N, Yazdani R, Abolhassani H. ATM Expression and Activation in Ataxia Telangiectasia Patients with and without Class Switch Recombination Defects. J Clin Immunol 2025; 45:67. [PMID: 39853455 PMCID: PMC11762072 DOI: 10.1007/s10875-025-01857-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 01/18/2025] [Indexed: 01/26/2025]
Abstract
BACKGROUND Ataxia telangiectasia mutated (ATM) kinase plays a critical role in DNA double-strand break (DSB) repair. Ataxia telangiectasia (A-T) patients exhibit abnormalities in immunoglobulin isotype expression and class switch recombination (CSR). This study investigates the role of residual ATM kinase expression and activity in the severity of A-T disease. METHODS A-T patients with defined genetic diagnoses were classified based on CSR and based on the severity of their medical complications. Isolated peripheral blood mononuclear cells from any patient were evaluated before and after exposure to 0.5 Gy ionizing radiation for one minute. Western blotting was performed to identify the expression of ATM and phosphorylated ATM (p-ATM) proteins compared to age-sex-matched healthy controls. RESULTS In severe A-T patients (n = 6), the majority (66.7%) had frameshift mutations, while 33.3% had nonsense mutations in the ATM gene. The mild group (n = 3) had two cases of splice errors and one missense mutation. All patients with CSR defect had elevated IgM serum levels, whereas all switched immunoglobulins were reduced in them. Expression of ATM and p-ATM proteins was significantly lower (p = 0.01) in all patients compared to healthy controls, both pre-and post- and post-radiation. Additionally, low ATM and p-ATM protein expression levels were linked with the clinical severity of patients but were not correlated with CSR defects. CONCLUSION Expression and activation of ATM protein were defective in A-T patients compared to healthy controls. Altered expression of ATM and p-ATM proteins may have potential clinical implications for prognostic evaluation and symptom severity assessment in individuals with A-T.
Collapse
Affiliation(s)
- Fereshte Salami
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children´s Medical Center, Tehran University of Medical Sciences, 62 Qarib St., Keshavarz Blvd, Tehran, 14194, Iran
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Tannaz Moeini Shad
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children´s Medical Center, Tehran University of Medical Sciences, 62 Qarib St., Keshavarz Blvd, Tehran, 14194, Iran
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nazanin Fathi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children´s Medical Center, Tehran University of Medical Sciences, 62 Qarib St., Keshavarz Blvd, Tehran, 14194, Iran
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Hanieh Mojtahedi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children´s Medical Center, Tehran University of Medical Sciences, 62 Qarib St., Keshavarz Blvd, Tehran, 14194, Iran
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Marzie Esmaeili
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children´s Medical Center, Tehran University of Medical Sciences, 62 Qarib St., Keshavarz Blvd, Tehran, 14194, Iran
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Sepideh Shahkarami
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children´s Medical Center, Tehran University of Medical Sciences, 62 Qarib St., Keshavarz Blvd, Tehran, 14194, Iran
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians- Universität München (LMU), Munich, Germany
- Medical Genetics Network (Megene), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | | | - Parisa Amirifar
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children´s Medical Center, Tehran University of Medical Sciences, 62 Qarib St., Keshavarz Blvd, Tehran, 14194, Iran
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Samaneh Delavari
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children´s Medical Center, Tehran University of Medical Sciences, 62 Qarib St., Keshavarz Blvd, Tehran, 14194, Iran
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Hassan Nosrati
- Department of Radiotherapy Oncology, Cancer Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Azadehsadat Razavi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children´s Medical Center, Tehran University of Medical Sciences, 62 Qarib St., Keshavarz Blvd, Tehran, 14194, Iran
| | - Mohammad Reza Ranjouri
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children´s Medical Center, Tehran University of Medical Sciences, 62 Qarib St., Keshavarz Blvd, Tehran, 14194, Iran
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mahsa Yousefpour
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children´s Medical Center, Tehran University of Medical Sciences, 62 Qarib St., Keshavarz Blvd, Tehran, 14194, Iran
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Zahra Hamidi Esfahani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children´s Medical Center, Tehran University of Medical Sciences, 62 Qarib St., Keshavarz Blvd, Tehran, 14194, Iran
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Gholamreza Azizi
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, USA
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Mahmoudreza Ashrafi
- Department of Pediatric Neurology, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children´s Medical Center, Tehran University of Medical Sciences, 62 Qarib St., Keshavarz Blvd, Tehran, 14194, Iran
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Reza Yazdani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children´s Medical Center, Tehran University of Medical Sciences, 62 Qarib St., Keshavarz Blvd, Tehran, 14194, Iran.
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Hassan Abolhassani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children´s Medical Center, Tehran University of Medical Sciences, 62 Qarib St., Keshavarz Blvd, Tehran, 14194, Iran.
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Biomedicum, Karolinska Institute, Solnavägen 9, floor 9D, Stockholm, 17165, Sweden.
| |
Collapse
|
5
|
Mehri A, Toosi MB, Tavasoli AR, Saberi-Karimian M. The Latest Developments for the Treatment of Ataxia Telangiectasia: A Narrative Review. CEREBELLUM (LONDON, ENGLAND) 2024; 23:2607-2615. [PMID: 39327359 DOI: 10.1007/s12311-024-01746-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/20/2024] [Indexed: 09/28/2024]
Abstract
Ataxia telangiectasia (AT), Louis-Bar syndrome, is a rare neurodegenerative disorder caused by autosomal recessive biallelic mutations within the ataxia telangiectasia mutated (ATM) gene. Currently, there are no curative therapies available for this disorder. This review provides an overview of the latest advances in treatment methods including 1- Acetyl-DL-leucine, 2- Bone Marrow Transplantation, 3- Gene Therapy, 4- Dexamethasone, and finally 5- Red Blood Cells (RBCs) as a carrier for dexamethasone (encapsulation of dexamethasone sodium phosphate into autologous erythrocytes, known as EryDex). Most of the treatments under investigation are in the early stages, except for the EryDex System. It appears that the EryDex system and N-Acetyl-DL-Leucine may hold promise as potential treatment options.
Collapse
Affiliation(s)
- Ali Mehri
- Endoscopic and Minimally Invasive Surgery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehran Beiraghi Toosi
- Department of Pediatric Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Reza Tavasoli
- Pediatric Neurology Division, Pediatrics Center of Excellence, Myelin Disorders Clinic, Children's Medical Center, Tehran University of Medical Sciences, No. 61, Gharib Street, Keshavarz Blvd, Tehran, 1419733151, Iran
- Pediatric Headache Program, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA
| | - Maryam Saberi-Karimian
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- International UNESCO center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
6
|
Collyer J, Rajan DS. Ataxia telangiectasia. Semin Pediatr Neurol 2024; 52:101169. [PMID: 39622612 DOI: 10.1016/j.spen.2024.101169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/29/2024] [Accepted: 10/29/2024] [Indexed: 12/07/2024]
Abstract
Ataxia telangiectasia (AT) is a rare neurocutaneous syndrome that results from biallelic pathogenic variants in the ataxia telangiectasia mutated (ATM) gene, named for its characteristic cerebellar ataxia in the early toddler years and variable oculocutaneous telangiectasias in the school age years. While its name only hints at neurologic and cutaneous manifestations, this multisystemic disorder also has important immunologic, oncologic, respiratory, and endocrinologic implications. This article will review the function of the ATM gene, the neurologic manifestations of AT, non-neurologic complications, mimickers of AT (including other disorders of defective DNA repair), and the realm of therapeutic research for AT.
Collapse
Affiliation(s)
- John Collyer
- UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA.
| | - Deepa S Rajan
- UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA.
| |
Collapse
|
7
|
Reichlmeir M, Duecker RP, Röhrich H, Key J, Schubert R, Abell K, Possemato AP, Stokes MP, Auburger G. The ataxia-telangiectasia disease protein ATM controls vesicular protein secretion via CHGA and microtubule dynamics via CRMP5. Neurobiol Dis 2024; 203:106756. [PMID: 39615799 DOI: 10.1016/j.nbd.2024.106756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 11/25/2024] [Accepted: 11/25/2024] [Indexed: 12/16/2024] Open
Abstract
The autosomal recessive disease ataxia-telangiectasia (A-T) presents with cerebellar degeneration, immunodeficiency, radiosensitivity, capillary dilatations, and pulmonary infections. Most symptoms outside the nervous system can be explained by failures of the disease protein ATM as a Ser/Thr-kinase to coordinate DNA damage repair. However, ATM in adult neurons has cytoplasmic localization and vesicle association, where its roles remain unclear. Here, we defined novel ATM protein targets in human neuroblastoma cells, and filtered initial pathogenesis events in ATM-null mouse cerebellum. Profiles of global proteome and phosphoproteomics - both direct ATM/ATR substrates and overall phosphorylation changes - confirmed previous findings for NBN, MRE11, MDC1, CHEK1, EIF4EBP1, AP3B2, PPP2R5C, SYN1 and SLC2A1. Even stronger downregulation of ATM/ATR substrate phosphopeptides after ATM-depletion was documented for CHGA, EXPH5, NBEAL2 and CHMP6 as key factors of protein secretion and endosome dynamics, as well as for CRMP5, DISP2, PHACTR1, PLXNC1, INA and TPX2 as neurite extension factors. Prominent effects on semaphorin-CRMP5-microtubule signals and ATM association with CRMP5 were validated. As a functional consequence, microtubules were stabilized, and neurite retraction ensued. The impact of ATM on secretory granules confirms previous ATM-null cerebellar transcriptome findings. This study provides the first link of A-T neural atrophy to growth cone collapse and aberrant microtubule dynamics.
Collapse
Affiliation(s)
- Marina Reichlmeir
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Exp. Neurology, Heinrich Hoffmann Str. 7, 60590 Frankfurt am Main, Germany.
| | - Ruth Pia Duecker
- Division for Allergy, Pneumatology and Cystic Fibrosis, Department for Children and Adolescence, Goethe-University, Frankfurt am Main, Germany.
| | - Hanna Röhrich
- Institute for Experimental Pediatric Hematology and Oncology, Medical Faculty, Goethe-University Frankfurt, Komturstrasse 3a, 60528 Frankfurt am Main, Germany.
| | - Jana Key
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Exp. Neurology, Heinrich Hoffmann Str. 7, 60590 Frankfurt am Main, Germany.
| | - Ralf Schubert
- Division for Allergy, Pneumatology and Cystic Fibrosis, Department for Children and Adolescence, Goethe-University, Frankfurt am Main, Germany.
| | - Kathryn Abell
- Cell Signaling Technology, Inc., Danvers, MA 01923, USA.
| | | | | | - Georg Auburger
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Exp. Neurology, Heinrich Hoffmann Str. 7, 60590 Frankfurt am Main, Germany.
| |
Collapse
|
8
|
Zhou Q, Chen M, Tao E. Novel pathogenic ATM mutation with ataxia-telangiectasia in a Chinese family. Front Genet 2024; 15:1491649. [PMID: 39678378 PMCID: PMC11638744 DOI: 10.3389/fgene.2024.1491649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 10/28/2024] [Indexed: 12/17/2024] Open
Abstract
Ataxia-Telangiectasia (A-T) is a rare, autosomal recessive disorder characterized by progressive cerebellar ataxia, oculocutaneous telangiectasia, immunodeficiency, and increased cancer risk. Mutations in the ATM gene, which is essential for DNA damage repair, underlie this condition. This study reports a novel homozygous frameshift mutation (ATM_ex20 c.3062delT, p. Val1021fs) in a Chinese family with two affected siblings. The mutation, located in exon 20, has not been previously documented, expanding the spectrum of ATM mutations. The proband and her older sister presented with classic A-T symptoms, including gait instability and conjunctival telangiectasia. Both siblings presented with immunodeficiency, characterized by low immunoglobulin A (IgA) levels, slightly elevated IgM levels, and elevated alpha-fetoprotein (AFP). Cranial magnetic resonance imaging (MRI) findings revealed cerebellar atrophy and cerebral white matter lesions in both sisters. Interestingly, while both sisters shared the same mutation, their clinical severity differed, highlighting the complexity of genotype-phenotype correlations in A-T. The parents and an unaffected sister were heterozygous carriers, consistent with autosomal recessive inheritance. This study underscores the importance of genetic testing in A-T diagnosis and provides new insights into the genetic diversity of ATM-related diseases. Further research is needed to understand the broader implications of this mutation.
Collapse
Affiliation(s)
- Qiaomin Zhou
- Department of Eugenic Genetics, Wenling Maternal and Child Healthcare Hospital, Wenling, Zhejiang, China
| | - Minling Chen
- Department of Maternity, Wenling Maternal and Child Healthcare Hospital, Wenling, Zhejiang, China
| | - Enfu Tao
- Department of Neonatology and NICU, Wenling Maternal and Child Healthcare Hospital, Wenling, Zhejiang, China
| |
Collapse
|
9
|
Richardson ME, Holdren M, Brannan T, de la Hoya M, Spurdle AB, Tavtigian SV, Young CC, Zec L, Hiraki S, Anderson MJ, Walker LC, McNulty S, Turnbull C, Tischkowitz M, Schon K, Slavin T, Foulkes WD, Cline M, Monteiro AN, Pesaran T, Couch FJ. Specifications of the ACMG/AMP variant curation guidelines for the analysis of germline ATM sequence variants. Am J Hum Genet 2024; 111:2411-2426. [PMID: 39317201 PMCID: PMC11568761 DOI: 10.1016/j.ajhg.2024.08.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/29/2024] [Accepted: 08/29/2024] [Indexed: 09/26/2024] Open
Abstract
The ClinGen Hereditary Breast, Ovarian, and Pancreatic Cancer (HBOP) Variant Curation Expert Panel (VCEP) is composed of internationally recognized experts in clinical genetics, molecular biology, and variant interpretation. This VCEP made specifications for the American College of Medical Genetics and Association for Molecular Pathology (ACMG/AMP) guidelines for the ataxia telangiectasia mutated (ATM) gene according to the ClinGen protocol. These gene-specific rules for ATM were modified from the ACMG/AMP guidelines and were tested against 33 ATM variants of various types and classifications in a pilot curation phase. The pilot revealed a majority agreement between the HBOP VCEP classifications and the ClinVar-deposited classifications. Six pilot variants had conflicting interpretations in ClinVar, and re-evaluation with the VCEP's ATM-specific rules resulted in four that were classified as benign, one as likely pathogenic, and one as a variant of uncertain significance (VUS) by the VCEP, improving the certainty of interpretations in the public domain. Overall, 28 of the 33 pilot variants were not VUS, leading to an 85% classification rate. The ClinGen-approved, modified rules demonstrated value for improved interpretation of variants in ATM.
Collapse
Affiliation(s)
| | - Megan Holdren
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | | | - Miguel de la Hoya
- Molecular Oncology Laboratory, Hospital Clínico San Carlos, IdISSC, 28040 Madrid, Spain
| | - Amanda B Spurdle
- Population Health, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Sean V Tavtigian
- Department of Oncological Sciences and Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | | | | | | | | | - Logan C Walker
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Shannon McNulty
- Department of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Clare Turnbull
- Division of Genetics and Epidemiology, Institute of Cancer Research, London, UK
| | - Marc Tischkowitz
- Department of Medical Genetics, National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, UK
| | - Katherine Schon
- Department of Medical Genetics, National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, UK
| | - Thomas Slavin
- City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - William D Foulkes
- Departments of Human Genetics, McGill University, Montreal, QC, Canada
| | - Melissa Cline
- UC Santa Cruz Genomics Institute, Mail Stop: Genomics, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Alvaro N Monteiro
- Department of Cancer Epidemiology, H Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | | | - Fergus J Couch
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
10
|
Fekrvand S, Abolhassani H, Esfahani ZH, Fard NNG, Amiri M, Salehi H, Almasi-Hashiani A, Saeedi-Boroujeni A, Fathi N, Mohtashami M, Razavi A, Heidari A, Azizi G, Khanmohammadi S, Ahangarzadeh M, Saleki K, Hassanpour G, Rezaei N, Yazdani R. Cancer Trends in Inborn Errors of Immunity: A Systematic Review and Meta-Analysis. J Clin Immunol 2024; 45:34. [PMID: 39466473 DOI: 10.1007/s10875-024-01810-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 09/16/2024] [Indexed: 10/30/2024]
Abstract
BACKGROUND Patients with inborn errors of immunity (IEI) are susceptible to developing cancer due to defects in the immune system. The prevalence of cancer is higher in IEI patients compared to the immunocompetent population and cancers are considered as an important and common cause of death in IEI patients. OBJECTIVES To systematically review demographic, genetic and cancer-related data of IEI patients with a history of malignancy. Moreover, we performed a meta-analysis aiming to determine the frequency of cancer in patients with different types of IEI. METHODS We conducted electronic searches on Embase, Web of Science, PubMed, and Scopus (until September 2023) introducing terms related to IEI and cancer. Studies with human subjects with confirmed IEI who had developed at least one malignancy during their lifetime were included. RESULTS A total number of 4607 IEI patients with a cancer history were included in the present study. Common variable immunodeficiency (CVID) had the highest number of reported cases (1284 cases), mainly due to a higher relative proportion of patients with predominantly antibody deficiencies (PAD) and their increased life expectancy contributing to the higher detection and reporting of cancers among these patients. The most common malignancy was hematologic/blood cancers (3026 cases, mainly diffuse large B cell lymphoma). A total number of 1173 cases (55.6%) succumbed to cancer, with the highest rate of bone marrow failure (64.9%). Among the patients with monogenic defects in IEI-associated genes, the majority of cases had ATM deficiency (926 cases), but the highest cancer frequency rate belonged to NBS1 deficiency (50.5%). 1928 cases out of total 4607 eligible cases had detailed data to allow further statistical analysis that revealed BRCA2 deficiency had the earliest cancer development (~ 38 months), lowest cure frequency, and highest fatality rate (85%), while ATM deficiency had the lowest cure frequency and highest fatality rate (72%) among total cases reviewed with exclusion of Fanconi anemia. CONCLUSION The overall reported cancer frequency in the cases reviewed with and without exclusion of Fanconi anemia was 11.1% (95% confidence interval: 9.8-12.5%) and 12.0% (95% confidence interval: 10.6-13.5%), respectively. Our study revealed that the incidence of cancer is significantly dependent on the molecular and pathway defects in IEI patients, and individualized early screening and appropriate treatment, might improve the prognosis of these patients.
Collapse
Affiliation(s)
- Saba Fekrvand
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Hassan Abolhassani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Division of Clinical Immunology, Department of Biosciences and Nutrition, Karolinska Institutet, Karolinska University Hospital, Stockholm, Huddinge, Sweden
| | - Zahra Hamidi Esfahani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Najmeh Nameh Goshay Fard
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mahboube Amiri
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Helia Salehi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Almasi-Hashiani
- Department of Epidemiology, School of Health, Arak University of Medical Sciences, Arak, Iran
| | - Ali Saeedi-Boroujeni
- Department of Basic Medical Sciences, Faculty of Medicine, Abadan University of Medical Sciences, Abadan, Iran
| | - Nazanin Fathi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Maryam Mohtashami
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Azadehsadat Razavi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Arash Heidari
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Gholamreza Azizi
- Noncommunicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Shaghayegh Khanmohammadi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Milad Ahangarzadeh
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Kiarash Saleki
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
- Department of E-Learning, Virtual School of Medical Education and Management, Shahid Beheshti University of MedicalSciences (SBMU), Tehran, Iran
- USERN Office, Babol University of Medical Sciences, Babol, Iran
| | - Gholamreza Hassanpour
- Center for Research of Endemic Parasites of Iran, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Reza Yazdani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
11
|
Jenni R, Klaa H, Khamessi O, Chikhaoui A, Najjar D, Ghedira K, Kraoua I, Turki I, Yacoub-Youssef H. Clinical and genetic spectrum of Ataxia Telangiectasia Tunisian patients: Bioinformatic analysis unveil mechanisms of ATM variants pathogenicity. Int J Biol Macromol 2024; 278:134444. [PMID: 39098699 DOI: 10.1016/j.ijbiomac.2024.134444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/28/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024]
Abstract
Ataxia Telangiectasia (AT) is a rare multisystemic neurodegenerative disease caused by biallelic mutations in the ATM gene. Few clinical studies on AT disease have been conducted in Tunisia, however, the mutational landscape is still undefined. Our aim is to determine the clinical and genetic spectrum of AT Tunisian patients and to explore the potential underlying mechanism of variant pathogenicity. Sanger sequencing was performed for nine AT patients. A comprehensive computational analysis was conducted to evaluate the possible pathogenic effect of ATM identified variants. Genetic screening of ATM gene has identified nine different variants from which six have not been previously reported. In silico analysis has predicted a pathogenic effect of identified mutations. This was corroborated by a structural bioinformatics study based on molecular modeling and docking for novel missense mutations. Our findings suggest a profound impact of identified mutations not only on the ATM protein stability, but also on the ATM-ligand interactions. Our study characterizes the mutational landscape of AT Tunisian patients which will allow to set up genetic counseling and prenatal diagnosis for families at risk and expand the spectrum of ATM variants worldwide. Furthermore, understanding the mechanism that underpin variant pathogenicity could provide further insights into disease pathogenesis.
Collapse
Affiliation(s)
- Rim Jenni
- Laboratory of Biomedical Genomics and Oncogenetics (LR16IPT05), Institut Pasteur de Tunis, University Tunis El Manar, Tunis 1002, Tunisia.
| | - Hedia Klaa
- LR18SP04 and Department of Child and Adolescent Neurology, National Institute Mongi Ben Hmida of Neurology, 1007 Tunis, Tunisia.
| | - Oussema Khamessi
- Laboratory of Bioinformatics, Biomathematics and Biostatistics (BIMS), Institut Pasteur de Tunis (IPT), University of Tunis El Manar, Tunis, Tunisia; Institut de Biotechnologie de Sidi Thabet, Université de la Manouba, Ariana BP-66, Manouba 2010, Tunisia.
| | - Asma Chikhaoui
- Laboratory of Biomedical Genomics and Oncogenetics (LR16IPT05), Institut Pasteur de Tunis, University Tunis El Manar, Tunis 1002, Tunisia.
| | - Dorra Najjar
- Laboratory of Biomedical Genomics and Oncogenetics (LR16IPT05), Institut Pasteur de Tunis, University Tunis El Manar, Tunis 1002, Tunisia.
| | - Kais Ghedira
- Laboratory of Bioinformatics, Biomathematics and Biostatistics (BIMS), Institut Pasteur de Tunis (IPT), University of Tunis El Manar, Tunis, Tunisia.
| | - Ichraf Kraoua
- LR18SP04 and Department of Child and Adolescent Neurology, National Institute Mongi Ben Hmida of Neurology, 1007 Tunis, Tunisia.
| | - Ilhem Turki
- LR18SP04 and Department of Child and Adolescent Neurology, National Institute Mongi Ben Hmida of Neurology, 1007 Tunis, Tunisia.
| | - Houda Yacoub-Youssef
- Laboratory of Biomedical Genomics and Oncogenetics (LR16IPT05), Institut Pasteur de Tunis, University Tunis El Manar, Tunis 1002, Tunisia.
| |
Collapse
|
12
|
Elitzur S, Shiloh R, Loeffen JLC, Pastorczak A, Takagi M, Bomken S, Baruchel A, Lehrnbecher T, Tasian SK, Abla O, Arad-Cohen N, Astigarraga I, Ben-Harosh M, Bodmer N, Brozou T, Ceppi F, Chugaeva L, Dalla Pozza L, Ducassou S, Escherich G, Farah R, Gibson A, Hasle H, Hoveyan J, Jacoby E, Jazbec J, Junk S, Kolenova A, Lazic J, Lo Nigro L, Mahlaoui N, Miller L, Papadakis V, Pecheux L, Pillon M, Sarouk I, Stary J, Stiakaki E, Strullu M, Tran TH, Ussowicz M, Verdu-Amoros J, Wakulinska A, Zawitkowska J, Stoppa-Lyonnet D, Taylor AM, Shiloh Y, Izraeli S, Minard-Colin V, Schmiegelow K, Nirel R, Attarbaschi A, Borkhardt A. ATM germ line pathogenic variants affect outcomes in children with ataxia-telangiectasia and hematological malignancies. Blood 2024; 144:1193-1205. [PMID: 38917355 DOI: 10.1182/blood.2024024283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 06/27/2024] Open
Abstract
ABSTRACT Ataxia-telangiectasia (A-T) is an autosomal-recessive disorder caused by pathogenic variants (PVs) of the ATM gene, predisposing children to hematological malignancies. We investigated their characteristics and outcomes to generate data-based treatment recommendations. In this multinational, observational study we report 202 patients aged ≤25 years with A-T and hematological malignancies from 25 countries. Ninety-one patients (45%) presented with mature B-cell lymphomas, 82 (41%) with acute lymphoblastic leukemia/lymphoma, 21 (10%) with Hodgkin lymphoma and 8 (4%) with other hematological malignancies. Four-year overall survival and event-free survival (EFS) were 50.8% (95% confidence interval [CI], 43.6-59.1) and 47.9% (95% CI 40.8-56.2), respectively. Cure rates have not significantly improved over the last four decades (P = .76). The major cause of treatment failure was treatment-related mortality (TRM) with a four-year cumulative incidence of 25.9% (95% CI, 19.5-32.4). Germ line ATM PVs were categorized as null or hypomorphic and patients with available genetic data (n = 110) were classified as having absent (n = 81) or residual (n = 29) ATM kinase activity. Four-year EFS was 39.4% (95% CI, 29-53.3) vs 78.7% (95% CI, 63.7-97.2), (P < .001), and TRM rates were 37.6% (95% CI, 26.4-48.7) vs 4.0% (95% CI, 0-11.8), (P = .017), for those with absent and residual ATM kinase activity, respectively. Absence of ATM kinase activity was independently associated with decreased EFS (HR = 0.362, 95% CI, 0.16-0.82; P = .009) and increased TRM (hazard ratio [HR] = 14.11, 95% CI, 1.36-146.31; P = .029). Patients with A-T and leukemia/lymphoma may benefit from deescalated therapy for patients with absent ATM kinase activity and near-standard therapy regimens for those with residual kinase activity.
Collapse
Affiliation(s)
- Sarah Elitzur
- Department of Pediatric Hematology and Oncology, Schneider Children's Medical Center and Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ruth Shiloh
- Department of Pediatric Hematology and Oncology, Schneider Children's Medical Center and Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Felsenstein Medical Research Center, Faculty of Medicine, Tel Aviv University, Petah Tikva, Israel
| | - Jan L C Loeffen
- Department of Hemato-Oncology, Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Agata Pastorczak
- Department of Pediatrics, Oncology and Hematology, and Department of Genetic Predisposition to Cancer, Medical University of Lodz, Lodz, Poland
| | - Masatoshi Takagi
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Simon Bomken
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Andre Baruchel
- Department of Pediatric Hemato-Immunology, Hôpital Robert Debré, Paris, France
| | - Thomas Lehrnbecher
- Division of Hematology, Oncology and Hemostaseology, Department of Pediatrics, Goethe University Frankfurt, Frankfurt/Main, Germany
| | - Sarah K Tasian
- Division of Oncology and Center for Childhood Cancer Research, Department of Pediatrics and Abramson Cancer Center, University of Pennsylvania School of Medicine and Children's Hospital of Philadelphia, Philadelphia, PA
| | - Oussama Abla
- Division of Hematology/Oncology, Hospital For Sick Children, Toronto, ON, Canada
| | - Nira Arad-Cohen
- Department of Pediatric Hemato-Oncology, Rambam Health Care Campus, Haifa, Israel
| | - Itziar Astigarraga
- Pediatrics Department, Hospital Universitario Cruces, Osakidetza, Pediatric Oncology Group, Bizkaia Health Research Institute, Pediatric Department, Universidad del País Vasco UPV/EHU, Barakaldo, Spain
| | - Miriam Ben-Harosh
- Department of Pediatric Hematology-Oncology, Soroka Medical Center, Beer Sheva, Israel
| | - Nicole Bodmer
- Department of Oncology, University Children's Hospital Zurich, Zurich, Switzerland
| | - Triantafyllia Brozou
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Francesco Ceppi
- Division of Pediatrics, Pediatric Hematology-Oncology Unit, University Hospital of Lausanne and University of Lausanne, Lausanne, Switzerland
| | - Liliia Chugaeva
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
| | - Luciano Dalla Pozza
- Cancer Centre for Children, The Children's Hospital at Westmead, Westmead, NSW, Australia
| | - Stephane Ducassou
- Department of Pediatric Hemato-Oncology, CHU Bordeaux, Bordeaux, France
| | - Gabriele Escherich
- Clinic of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Roula Farah
- Department of Pediatrics and Pediatric Hematology/Oncology, Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon
| | - Amber Gibson
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Henrik Hasle
- Department of Pediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Julieta Hoveyan
- Pediatric Cancer and Blood Disorders Center of Armenia, Yeolyan Hematology and Oncology Center and Immune Oncology Research Institute, Yerevan, Armenia
| | - Elad Jacoby
- Department of Pediatric Hematology-Oncology, Safra Children's Hospital, Sheba Medical Center and Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Janez Jazbec
- Department of Pediatric Hematology and Oncology, University Children's Hospital, Faculty of Medicine, University of Ljubljan, Ljubljana, Slovenia
| | - Stefanie Junk
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Alexandra Kolenova
- Department of Pediatric Hematology and Oncology, National Institute of Children's Diseases, Comenius University Children's Hospital, Bratislava, Slovakia
| | - Jelena Lazic
- Department of Hematology and Oncology, University Children's Hospital, School of Medicine University of Belgrade, Belgrade, Serbia
| | - Luca Lo Nigro
- Azienda Policlinico, San Marco, Center of Pediatric Hematology Oncology, Catania, Italy
| | - Nizar Mahlaoui
- Immuno-Haematology and Rheumatology Unit, Necker Enfants Malades University Hospital, Assistance Publique-Hôpitaux de Paris, French National Reference Center for Primary Immune Deficiencies, Necker Enfants Malades University Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Lane Miller
- Cancers and Blood Disorders Program, Children's Minnesota, Minneapolis, MN
| | - Vassilios Papadakis
- Department of Pediatric Hematology-Oncology, Agia Sofia Children's Hospital, Athens, Greece
| | - Lucie Pecheux
- Department of Pediatric Hematology-Oncology, Stollery Children Hospital, University of Alberta, Edmonton, Canada
| | - Marta Pillon
- Pediatric Hematology, Oncology and Stem Cell Transplant Center, University of Padua, Padua, Italy
| | - Ifat Sarouk
- Pediatric Pulmonology Unit and Ataxia Telangiectasia Center, The Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel
| | - Jan Stary
- Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University, University Hospital Motol, Prague, Czech Republic
| | - Eftichia Stiakaki
- Department of Pediatric Hematology-Oncology, University Hospital of Heraklion, Heraklion Crete, Greece
| | - Marion Strullu
- Department of Pediatric Hemato-Immunology, Hôpital Robert Debré, Paris, France
| | - Thai Hoa Tran
- Division of Pediatric Hematology Oncology, CHU Sainte Justine, Montreal, QC, Canada
| | - Marek Ussowicz
- Clinical Department of Paediatric Bone Marrow Transplantation, Oncology and Haematology, Wroclaw Medical University, Wroclaw, Poland
| | - Jaime Verdu-Amoros
- Department of Pediatric Hematology and Oncology, University Hospital Valencia, INCLIVA Biomedical Research Institute, Valencia, Spain
| | - Anna Wakulinska
- Department of Oncology, The Children's Memorial Health Institute, Warsaw, Poland
| | - Joanna Zawitkowska
- Department of Pediatric Hematology, Oncology and Transplantation, Medical University of Lublin, Lublin, Poland
| | | | - A Malcolm Taylor
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Yosef Shiloh
- Department of Human Molecular Genetics and Biochemistry, Tel Aviv University School of Medicine, Tel Aviv, Israel
| | - Shai Izraeli
- Department of Pediatric Hematology and Oncology, Schneider Children's Medical Center and Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Veronique Minard-Colin
- Department of Pediatric and Adolescent Oncology, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
| | - Kjeld Schmiegelow
- Department of Pediatrics and Adolescent Medicine, Rigshospitalet University Hospital, Copenhagen, Denmark
| | - Ronit Nirel
- Department of Statistics and Data Science, Hebrew University, Jerusalem, Israel
| | - Andishe Attarbaschi
- Department of Pediatric Hematology and Oncology, St Anna Children's Hospital, Medical University of Vienna, Vienna, Austria
- St Anna Children's Cancer Research Institute, Vienna, Austria
| | - Arndt Borkhardt
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| |
Collapse
|
13
|
Graafen L, Heinze A, Albinger N, Salzmann-Manrique E, Ganß F, Hünecke S, Cappel C, Wölke S, Donath H, Trischler J, Theilen TM, Heller C, Königs C, Ehl S, Bader P, Klingebiel T, Klusmann JH, Zielen S, Schubert R, Ullrich E. Immune profiling and functional analysis of NK and T cells in ataxia telangiectasia. Front Immunol 2024; 15:1377955. [PMID: 39165363 PMCID: PMC11333214 DOI: 10.3389/fimmu.2024.1377955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 06/21/2024] [Indexed: 08/22/2024] Open
Abstract
Ataxia telangiectasia (AT) is a rare autosomal-recessive disorder characterized by profound neurodegeneration, combined immunodeficiency, and an increased risk for malignant diseases. Treatment options for AT are limited, and the long-term survival prognosis for patients remains grim, primarily due to the emergence of chronic respiratory pathologies, malignancies, and neurological complications. Understanding the dysregulation of the immune system in AT is fundamental for the development of novel treatment strategies. In this context, we performed a retrospective longitudinal immunemonitoring of lymphocyte subset distribution in a cohort of AT patients (n = 65). Furthermore, we performed FACS analyses of peripheral blood mononuclear cells from a subgroup of 12 AT patients to examine NK and T cells for the expression of activating and functional markers. We observed reduced levels of peripheral blood CD3+CD8+ cytotoxic T cells, CD3+CD4+ T helper cells, and CD19+ B cells, whereas the amount of CD3--CD56+ NK cells and CD3+CD56+ NKT-like cells was similar compared with age-matched controls. Notably, there was no association between the age-dependent kinetic of T-, B-, or NK-cell counts and the occurrence of malignancy in AT patients. Additionally, our results indicate an altered NK- and T-cell response to cytokine stimulation in AT with increased levels of TRAIL, FasL, and CD16 expression in NK cells, as well as an elevated activation level of T cells in AT with notably higher expression levels of IFN-γ, CD107a, TRAIL, and FasL. Together, these findings imply function alterations in AT lymphocytes, specifically in T and NK cells, shedding light on potential pathways for innovative therapies.
Collapse
Affiliation(s)
- Lea Graafen
- Department of Pediatrics, Goethe University Frankfurt, Frankfurt am Main, Germany
- Department of Pediatrics, Experimental Immnology and Cell Therapy, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Annekathrin Heinze
- Department of Pediatrics, Goethe University Frankfurt, Frankfurt am Main, Germany
- Department of Pediatrics, Experimental Immnology and Cell Therapy, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Nawid Albinger
- Department of Pediatrics, Goethe University Frankfurt, Frankfurt am Main, Germany
- Department of Pediatrics, Experimental Immnology and Cell Therapy, Goethe University Frankfurt, Frankfurt am Main, Germany
| | | | - Franziska Ganß
- Department of Pediatrics, Goethe University Frankfurt, Frankfurt am Main, Germany
- Department of Pediatrics, Experimental Immnology and Cell Therapy, Goethe University Frankfurt, Frankfurt am Main, Germany
- Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, Germany
| | - Sabine Hünecke
- Department of Pediatrics, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Claudia Cappel
- Department of Pediatrics, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Sandra Wölke
- Department of Pediatrics, Goethe University Frankfurt, Frankfurt am Main, Germany
- Department of Pediatrics, Division of Pneumology, Allergology, Infectious Diseases and Gastroenterology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Helena Donath
- Department of Pediatrics, Goethe University Frankfurt, Frankfurt am Main, Germany
- Department of Pediatrics, Division of Pneumology, Allergology, Infectious Diseases and Gastroenterology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Jordis Trischler
- Department of Pediatrics, Goethe University Frankfurt, Frankfurt am Main, Germany
- Department of Pediatrics, Division of Pneumology, Allergology, Infectious Diseases and Gastroenterology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Till-Martin Theilen
- Department of Pediatric Surgery and Urology, Goethe University Frankfurt, Frankfurt, Germany
| | - Christine Heller
- Department of Pediatrics, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Christoph Königs
- Department of Pediatrics, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Stephan Ehl
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Peter Bader
- Department of Pediatrics, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Thomas Klingebiel
- Department of Pediatrics, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Jan-Henning Klusmann
- Department of Pediatrics, Goethe University Frankfurt, Frankfurt am Main, Germany
- Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, Germany
| | - Stefan Zielen
- Department of Pediatrics, Goethe University Frankfurt, Frankfurt am Main, Germany
- Department of Pediatrics, Division of Pneumology, Allergology, Infectious Diseases and Gastroenterology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Ralf Schubert
- Department of Pediatrics, Goethe University Frankfurt, Frankfurt am Main, Germany
- Department of Pediatrics, Division of Pneumology, Allergology, Infectious Diseases and Gastroenterology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Evelyn Ullrich
- Department of Pediatrics, Goethe University Frankfurt, Frankfurt am Main, Germany
- Department of Pediatrics, Experimental Immnology and Cell Therapy, Goethe University Frankfurt, Frankfurt am Main, Germany
- Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK) Partner Site Frankfurt/Mainz, Frankfurt am Main, Germany
| |
Collapse
|
14
|
Uyar E, Akturk H, Usanmaz S, Kiykim A, Tufan AE, Alibas H, Aydiner O, Somer A, Ozen A, Baris S, Karakoc-Aydiner E. Neurocognitive Impairment in Patients With Ataxia Telangiectasia and Their Unaffected Parents: Is It Similar? Pediatr Neurol 2024; 156:85-90. [PMID: 38733859 DOI: 10.1016/j.pediatrneurol.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/13/2024] [Accepted: 04/12/2024] [Indexed: 05/13/2024]
Abstract
BACKGROUND Ataxia telangiectasia (AT) is a genetic multisystemic disorder affecting the nervous system. Data on neurocognitive functioning in AT are limited and focused on patients at various stages of disease. Because of the genetic nature of the disorder, parents of patients may also display subtle neurological problems. This study aimed to evaluate neurocognitive functioning in patients with AT and their unaffected parents. METHODS The study included 26 patients with AT and 41 parents among which 13 patients and 18 parents were evaluated with neurocognitive tests. Clinical and radiological data were reviewed retrospectively. Data were analyzed with descriptive statistics. RESULTS The median ages of patients and parents were 12.5 years (interquartile range [IQR] = 9.5) and 38.0 years (IQR = 12.0), respectively. Median intelligence quotients were 62.0 (IQR = 21.3) and 82.5 (IQR = 16.8), respectively, for patients and parents. Rates of intellectual disability for patients and parents were 100.0% and 83.3%, respectively. Areas of impairment in patients in decreasing order of frequency were motor skills, visual perception/memory, visual-manual coordination, spontaneous/focused and sustained attention (100.0% for each), social judgment, as well as vocabulary and arithmetic skills (75.0% for each). Areas of impairment in unaffected parents in decreasing order of frequency were visual-manual coordination (77.8%), working memory (76.5%), and visual perception and motor skills (66.7% for each). CONCLUSION Intellectual disabilities, visual-spatial disabilities, and reduced visual-motor coordination seem to be similar in patients with AT and their parents. These results should be replicated with larger samples from multiple centers and may form putative cognitive endophenotypes for the disorder.
Collapse
Affiliation(s)
- Emel Uyar
- Faculty of Medicine, Division of Pediatric Allergy and Immunology Istanbul, Marmara University, Istanbul, Turkiye.
| | - Hacer Akturk
- Istanbul Faculty of Medicine, Division of Pediatric Infectious Diseases and Clinical Immunology, Istanbul University, Istanbul, Turkiye; Division of Pediatric Infectious Diseases, Koc University, Istanbul, Turkiye
| | - Sevil Usanmaz
- Division of Clinical Psychology, Neuron Consultancy, Istanbul, Turkiye
| | - Ayca Kiykim
- Faculty of Medicine, Division of Pediatric Allergy and Immunology Istanbul, Marmara University, Istanbul, Turkiye
| | - Ali Evren Tufan
- Department of Child and Adolescent Psychiatry, Bolu Abant İzzet Baysal University, Bolu, Turkiye
| | - Hande Alibas
- Department of Neurology, Erenkoy Mental and Nervous Diseases Research and Training Hospital, Istanbul, Turkiye
| | - Omer Aydiner
- Interventional Radiology Department, Kartal Lutfi Kirdar City Hospital, Istanbul, Turkiye
| | - Ayper Somer
- Istanbul Faculty of Medicine, Division of Pediatric Infectious Diseases and Clinical Immunology, Istanbul University, Istanbul, Turkiye
| | - Ahmet Ozen
- Faculty of Medicine, Division of Pediatric Allergy and Immunology Istanbul, Marmara University, Istanbul, Turkiye
| | - Safa Baris
- Faculty of Medicine, Division of Pediatric Allergy and Immunology Istanbul, Marmara University, Istanbul, Turkiye
| | - Elif Karakoc-Aydiner
- Faculty of Medicine, Division of Pediatric Allergy and Immunology Istanbul, Marmara University, Istanbul, Turkiye
| |
Collapse
|
15
|
Ammous-Boukhris N, Abdelmaksoud-Dammak R, Ben Ayed-Guerfali D, Guidara S, Jallouli O, Kamoun H, Charfi Triki C, Mokdad-Gargouri R. Case report: Compound heterozygous variants detected by next-generation sequencing in a Tunisian child with ataxia-telangiectasia. Front Neurol 2024; 15:1344018. [PMID: 38882696 PMCID: PMC11178103 DOI: 10.3389/fneur.2024.1344018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 05/08/2024] [Indexed: 06/18/2024] Open
Abstract
Ataxia-telangiectasia (A-T) is an autosomal recessive primary immunodeficiency disorder (PID) caused by biallelic mutations occurring in the serine/threonine protein kinase (ATM) gene. The major role of nuclear ATM is the coordination of cell signaling pathways in response to DNA double-strand breaks, oxidative stress, and cell cycle checkpoints. Defects in ATM functions lead to A-T syndrome with phenotypic heterogeneity. Our study reports the case of a Tunisian girl with A-T syndrome carrying a compound heterozygous mutation c.[3894dupT]; p.(Ala1299Cysfs3;rs587781823), with a splice acceptor variant: c.[5763-2A>C;rs876659489] in the ATM gene that was identified by next-generation sequencing (NGS). Further genetic analysis of the family showed that the mother carried the c.[5763-2A>C] splice acceptor variant, while the father harbored the c.[3894dupT] variant in the heterozygous state. Molecular analysis provides the opportunity for accurate diagnosis and timely management in A-T patients with chronic progressive disease, especially infections and the risk of malignancies. This study characterizes for the first time the identification of compound heterozygous ATM pathogenic variants by NGS in a Tunisian A-T patient. Our study outlines the importance of molecular genetic testing for A-T patients, which is required for earlier detection and reducing the burden of disease in the future, using the patients' families.
Collapse
Affiliation(s)
- Nihel Ammous-Boukhris
- Laboratory of Eukaryotes' Molecular Biotechnology, Center of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - Rania Abdelmaksoud-Dammak
- Laboratory of Eukaryotes' Molecular Biotechnology, Center of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - Dorra Ben Ayed-Guerfali
- Laboratory of Eukaryotes' Molecular Biotechnology, Center of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - Souhir Guidara
- Department of Human Genetics, Hedi Chaker Hospital, Sfax, Tunisia
| | - Olfa Jallouli
- Department of NeuroPediatry, Hedi Chaker Hospital, Sfax, Tunisia
| | - Hassen Kamoun
- Department of Human Genetics, Hedi Chaker Hospital, Sfax, Tunisia
| | | | - Raja Mokdad-Gargouri
- Laboratory of Eukaryotes' Molecular Biotechnology, Center of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| |
Collapse
|
16
|
Richardson ME, Holdren M, Brannan T, de la Hoya M, Spurdle AB, Tavtigian SV, Young CC, Zec L, Hiraki S, Anderson MJ, Walker LC, McNulty S, Turnbull C, Tischkowitz M, Schon K, Slavin T, Foulkes WD, Cline M, Monteiro AN, Pesaran T, Couch FJ. Specifications of the ACMG/AMP variant curation guidelines for the analysis of germline ATM sequence variants. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.28.24307502. [PMID: 38854136 PMCID: PMC11160822 DOI: 10.1101/2024.05.28.24307502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
The ClinGen Hereditary Breast, Ovarian and Pancreatic Cancer (HBOP) Variant Curation Expert Panel (VCEP) is composed of internationally recognized experts in clinical genetics, molecular biology and variant interpretation. This VCEP made specifications for ACMG/AMP guidelines for the ataxia telangiectasia mutated (ATM) gene according to the Food and Drug Administration (FDA)-approved ClinGen protocol. These gene-specific rules for ATM were modified from the American College of Medical Genetics and Association for Molecular Pathology (ACMG/AMP) guidelines and were tested against 33 ATM variants of various types and classifications in a pilot curation phase. The pilot revealed a majority agreement between the HBOP VCEP classifications and the ClinVar-deposited classifications. Six pilot variants had conflicting interpretations in ClinVar and reevaluation with the VCEP's ATM-specific rules resulted in four that were classified as benign, one as likely pathogenic and one as a variant of uncertain significance (VUS) by the VCEP, improving the certainty of interpretations in the public domain. Overall, 28 the 33 pilot variants were not VUS leading to an 85% classification rate. The ClinGen-approved, modified rules demonstrated value for improved interpretation of variants in ATM.
Collapse
Affiliation(s)
| | - Megan Holdren
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | | | - Miguel de la Hoya
- Molecular Oncology Laboratory, Hospital Clínico San Carlos, IdISSC, 28040 Madrid, Spain
| | - Amanda B Spurdle
- Population Health, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Sean V Tavtigian
- Department of Oncological Sciences and Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | | | | | | | | | - Logan C Walker
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Shannon McNulty
- Department of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Clare Turnbull
- Division of Genetics and Epidemiology, Institute of Cancer Research, London, UK
| | - Marc Tischkowitz
- Division of Genetics and Epidemiology, Institute of Cancer Research, London, UK
| | - Katherine Schon
- Division of Genetics and Epidemiology, Institute of Cancer Research, London, UK
| | - Thomas Slavin
- City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - William D Foulkes
- Departments of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Melissa Cline
- UC Santa Cruz Genomics Institute, Mail Stop: Genomics, University of California, Santa Cruz, CA, USA
| | - Alvaro N Monteiro
- Department of Cancer Epidemiology, H Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | | | - Fergus J Couch
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
17
|
Takada S, Weitering TJ, van Os NJH, Du L, Pico-Knijnenburg I, Kuipers TB, Mei H, Salzer E, Willemsen MAAP, Weemaes CMR, Pan-Hammarstrom Q, van der Burg M. Causative mechanisms and clinical impact of immunoglobulin deficiencies in ataxia telangiectasia. J Allergy Clin Immunol 2024; 153:1392-1405. [PMID: 38280573 DOI: 10.1016/j.jaci.2023.12.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 12/07/2023] [Accepted: 12/19/2023] [Indexed: 01/29/2024]
Abstract
BACKGROUND Ataxia telangiectasia (AT) is characterized by cerebellar ataxia, telangiectasia, immunodeficiency, and increased cancer susceptibility and is caused by mutations in the ataxia telangiectasia mutated (ATM) gene. The immunodeficiency comprises predominantly immunoglobulin deficiency, mainly IgA and IgG2, with a variable severity. So far, the exact mechanisms underlying the immunoglobulin deficiency, especially the variable severity, remain unelucidated. OBJECTIVE We characterized the clinical impact of immunoglobulin deficiencies in AT and elucidated their mechanisms in AT. METHODS We analyzed long-term immunoglobulin levels, immunophenotyping, and survival time in our cohort (n = 87, median age 16 years; maximum 64 years). Somatic hypermutation and class-switch junctions in B cells were analyzed by next-generation sequencing. Furthermore, an in vitro class-switching induction assay was performed, followed by RNA sequencing, to assess the effect of ATM inhibition. RESULTS Only the hyper-IgM AT phenotype significantly worsened survival time, while IgA or IgG2 deficiencies did not. The immunoglobulin levels showed predominantly decreased IgG2 and IgA. Moreover, flow cytometric analysis demonstrated reduced naive B and T lymphocytes and a deficiency of class-switched IgG2 and IgA memory B cells. Somatic hypermutation frequencies were lowered in IgA- and IgG2-deficient patients, indicating hampered germinal center reaction. In addition, the microhomology of switch junctions was elongated, suggesting alternative end joining during class-switch DNA repair. The in vitro class switching and proliferation were negatively affected by ATM inhibition. RNA sequencing analysis showed that ATM inhibitor influenced expression of germinal center reaction genes. CONCLUSION Immunoglobulin deficiency in AT is caused by disturbed development of class-switched memory B cells. ATM deficiency affects both germinal center reaction and choice of DNA-repair pathway in class switching.
Collapse
Affiliation(s)
- Sanami Takada
- Department of Pediatrics, Laboratory for Pediatric Immunology, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, The Netherlands
| | - Thomas J Weitering
- Department of Pediatrics, Laboratory for Pediatric Immunology, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, The Netherlands
| | - Nienke J H van Os
- Department of Pediatric Neurology, Amalia Children's Hospital, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Likun Du
- Department of Biosciences and Nutrition, Karolinska Institute, Stockholm, Sweden
| | - Ingrid Pico-Knijnenburg
- Department of Pediatrics, Laboratory for Pediatric Immunology, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, The Netherlands
| | - Thomas B Kuipers
- Sequencing Analysis Support Core Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
| | - Hailiang Mei
- Sequencing Analysis Support Core Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
| | - Elisabeth Salzer
- Department of Pediatrics, Laboratory for Pediatric Immunology, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, The Netherlands
| | - Michèl A A P Willemsen
- Department of Pediatric Neurology, Amalia Children's Hospital, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Corry M R Weemaes
- Department of Pediatrics, Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Qiang Pan-Hammarstrom
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Mirjam van der Burg
- Department of Pediatrics, Laboratory for Pediatric Immunology, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
18
|
Major T, Tiet MY, Horvath R, Hensiek AE. Correlation Between the SARA and A-T NEST Clinical Severity Scores in Adults with Ataxia-Telangiectasia. CEREBELLUM (LONDON, ENGLAND) 2024; 23:455-458. [PMID: 37036622 PMCID: PMC10951025 DOI: 10.1007/s12311-023-01528-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/04/2023] [Indexed: 04/11/2023]
Abstract
Ataxia-Telangiectasia (A-T) is an autosomal recessive neurodegenerative disease associated with cerebellar ataxia and extrapyramidal features. A-T has a complex and diverse phenotype with varying rates of disease progression. The development of robust natural history studies and therapeutic trials relies on the accurate recording of phenotype using relevant and validated severity of illness indexes. We compared the commonly used Scale for the Assessment and Rating of Ataxia (SARA) and the disease-specific A-T Neurological Examination Scale Toolkit (A-T NEST), in our adult A-T cohort. We found a strong correlation between A-T NEST and the established SARA score, validating the use of A-T NEST and SARA in capturing the natural history of A-T patients.
Collapse
Affiliation(s)
- Toby Major
- School of Clinical Medicine, University of Cambridge, Hills Road, Cambridge, CB2 0SP, UK
| | - May Yung Tiet
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 2QQ, UK
| | - Rita Horvath
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 2QQ, UK
| | - Anke E Hensiek
- Department of Neurology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, CB2 0QQ, UK.
| |
Collapse
|
19
|
Jin B, Yoon JG, Kim A, Moon J, Kim HJ. Late-Onset Ataxia-Telangiectasia Presenting With Dystonia and Tremor: The Use of Nanopore Long-Read Sequencing Solving the Variant Phase. Neurol Genet 2024; 10:e200141. [PMID: 38854973 PMCID: PMC11157422 DOI: 10.1212/nxg.0000000000200141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 01/24/2024] [Indexed: 06/11/2024]
Abstract
Objectives This study investigates atypical late-onset ataxia-telangiectasia (AT) cases in a Korean family, diagnosed via Nanopore long-read sequencing, diverging from the typical early childhood onset caused by biallelic pathogenic ATM variants. Methods A 52-year-old Korean woman exhibiting dystonia and tremor, with a family history of similar symptoms in her older sister, underwent comprehensive tests including routine laboratory tests, neuropsychological assessments, and neuroimaging. Genetic analysis was conducted through targeted sequencing of 29 dystonia-associated genes and Nanopore long-read sequencing to assess the configuration of 2 ATM gene variants. Results Routine blood tests and brain imaging studies returned normal results, except for elevated α-fetoprotein levels. Neurologic examination revealed dystonia in the face, hand, and trunk, along with cervical dystonia in the proband. Her sister exhibited similar symptoms without evident telangiectasia. Genetic testing revealed 2 heterozygous pathogenic ATM gene variants (p.Glu2014Ter and p.Glu2052Lys). Nanopore long-read sequencing confirmed these variants were in trans configuration, establishing a definite molecular diagnosis in the proband. Discussion This report expands the known clinical spectrum of AT, highlighting a familial case of atypical AT. Moreover, it underscores the clinical utility of Nanopore long-read sequencing in phasing variant haplotypes, essential for diagnosing autosomal recessive disorders, especially beneficial for cases without parental samples.
Collapse
Affiliation(s)
- Bora Jin
- From the Department of Neurology (B.J., J.M., H.-J.K.), Seoul National University Hospital and Seoul National University College of Medicine; Department of Genomic Medicine (J.G.Y., J.M.), Seoul National University Hospital; Department of Laboratory Medicine (J.G.Y), Gangnam Severance Hospital and Yonsei University College of Medicine; and Department of Neurology (A.K.), Chungbuk National University Hospital and Chungbuk National University College of Medicine, Cheongju-si, Republic of Korea
| | - Jihoon G Yoon
- From the Department of Neurology (B.J., J.M., H.-J.K.), Seoul National University Hospital and Seoul National University College of Medicine; Department of Genomic Medicine (J.G.Y., J.M.), Seoul National University Hospital; Department of Laboratory Medicine (J.G.Y), Gangnam Severance Hospital and Yonsei University College of Medicine; and Department of Neurology (A.K.), Chungbuk National University Hospital and Chungbuk National University College of Medicine, Cheongju-si, Republic of Korea
| | - Aryun Kim
- From the Department of Neurology (B.J., J.M., H.-J.K.), Seoul National University Hospital and Seoul National University College of Medicine; Department of Genomic Medicine (J.G.Y., J.M.), Seoul National University Hospital; Department of Laboratory Medicine (J.G.Y), Gangnam Severance Hospital and Yonsei University College of Medicine; and Department of Neurology (A.K.), Chungbuk National University Hospital and Chungbuk National University College of Medicine, Cheongju-si, Republic of Korea
| | - Jangsup Moon
- From the Department of Neurology (B.J., J.M., H.-J.K.), Seoul National University Hospital and Seoul National University College of Medicine; Department of Genomic Medicine (J.G.Y., J.M.), Seoul National University Hospital; Department of Laboratory Medicine (J.G.Y), Gangnam Severance Hospital and Yonsei University College of Medicine; and Department of Neurology (A.K.), Chungbuk National University Hospital and Chungbuk National University College of Medicine, Cheongju-si, Republic of Korea
| | - Han-Joon Kim
- From the Department of Neurology (B.J., J.M., H.-J.K.), Seoul National University Hospital and Seoul National University College of Medicine; Department of Genomic Medicine (J.G.Y., J.M.), Seoul National University Hospital; Department of Laboratory Medicine (J.G.Y), Gangnam Severance Hospital and Yonsei University College of Medicine; and Department of Neurology (A.K.), Chungbuk National University Hospital and Chungbuk National University College of Medicine, Cheongju-si, Republic of Korea
| |
Collapse
|
20
|
Presterud R, Deng WH, Wennerström AB, Burgers T, Gajera B, Mattsson K, Solberg A, Fang EF, Nieminen AI, Stray-Pedersen A, Nilsen H. Long-Term Nicotinamide Riboside Use Improves Coordination and Eye Movements in Ataxia Telangiectasia. Mov Disord 2024; 39:360-369. [PMID: 37899683 DOI: 10.1002/mds.29645] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/25/2023] [Accepted: 10/10/2023] [Indexed: 10/31/2023] Open
Abstract
BACKGROUND Supplementation of nicotinamide riboside (NR) ameliorates neuropathology in animal models of ataxia telangiectasia (A-T). In humans, short-term NR supplementation showed benefits in neurological outcome. OBJECTIVES The study aimed to investigate the safety and benefits of long-term NR supplementation in individuals with A-T. METHODS A single-arm, open-label clinical trial was performed in individuals with A-T, receiving NR over a period of 2 years. Biomarkers and clinical examinations were used to assess safety parameters. Standardized and validated neuromotor tests were used to monitor changes in neurological symptoms. Using generalized mixed models, test results were compared to expected disease progression based on historical data. RESULTS NAD+ concentrations increased rapidly in peripheral blood and stabilized at a higher level than baseline. NR supplementation was well tolerated for most participants. The total scores in the neuromotor test panels, as evaluated at the 18-month time point, improved for all but one participant, primarily driven by improvements in coordination subscores and eye movements. A comparison with historical data revealed that the progression of certain neuromotor symptoms was slower than anticipated. CONCLUSIONS Long-term use of NR appears to be safe and well tolerated, and it improves motor coordination and eye movements in patients with A-T of all ages. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
| | - Wei Hai Deng
- Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- Oslo Centre for Biostatistics and Epidemiology (OCBE), University of Oslo, Oslo, Norway
| | - Anna Berit Wennerström
- Department of Clinical Molecular Biology (EpiGen), Akershus University Hospital, Nordbyhagen, Norway
| | - Trudy Burgers
- Habilitation Unit, Sanderud, Innlandet Hospital Trust, Brumunddal, Norway
| | - Bharat Gajera
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Kirsten Mattsson
- Habilitation Unit, Sanderud, Innlandet Hospital Trust, Brumunddal, Norway
| | - Agnes Solberg
- Habilitation Unit, Sanderud, Innlandet Hospital Trust, Brumunddal, Norway
| | - Evandro F Fang
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Clinical Molecular Biology (EpiGen), Akershus University Hospital, Nordbyhagen, Norway
- The Norwegian Centre on Healthy Ageing (NO-Age), Oslo, Norway
| | - Anni I Nieminen
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Asbjørg Stray-Pedersen
- Habilitation Unit, Sanderud, Innlandet Hospital Trust, Brumunddal, Norway
- Norwegian National Unit for Newborn Screening, Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
| | - Hilde Nilsen
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Clinical Molecular Biology (EpiGen), Akershus University Hospital, Nordbyhagen, Norway
- The Norwegian Centre on Healthy Ageing (NO-Age), Oslo, Norway
- Department of Microbiology, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
21
|
Yeow D, Rudaks LI, Siow SF, Davis RL, Kumar KR. Genetic Testing of Movements Disorders: A Review of Clinical Utility. Tremor Other Hyperkinet Mov (N Y) 2024; 14:2. [PMID: 38222898 PMCID: PMC10785957 DOI: 10.5334/tohm.835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 12/04/2023] [Indexed: 01/16/2024] Open
Abstract
Currently, pathogenic variants in more than 500 different genes are known to cause various movement disorders. The increasing accessibility and reducing cost of genetic testing has resulted in increasing clinical use of genetic testing for the diagnosis of movement disorders. However, the optimal use case(s) for genetic testing at a patient level remain ill-defined. Here, we review the utility of genetic testing in patients with movement disorders and also highlight current challenges and limitations that need to be considered when making decisions about genetic testing in clinical practice. Highlights The utility of genetic testing extends across multiple clinical and non-clinical domains. Here we review different aspects of the utility of genetic testing for movement disorders and the numerous associated challenges and limitations. These factors should be weighed on a case-by-case basis when requesting genetic tests in clinical practice.
Collapse
Affiliation(s)
- Dennis Yeow
- Translational Neurogenomics Group, Neurology Department & Molecular Medicine Laboratory, Concord Repatriation General Hospital, Concord, NSW, Australia
- Concord Clinical School, Sydney Medical School, Faculty of Health & Medicine, University of Sydney, Concord, NSW, Australia
- Rare Disease Program, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- Department of Neurology, Prince of Wales Hospital, Randwick, NSW, Australia
- Neuroscience Research Australia, Randwick, NSW, Australia
| | - Laura I. Rudaks
- Translational Neurogenomics Group, Neurology Department & Molecular Medicine Laboratory, Concord Repatriation General Hospital, Concord, NSW, Australia
- Concord Clinical School, Sydney Medical School, Faculty of Health & Medicine, University of Sydney, Concord, NSW, Australia
- Rare Disease Program, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Sue-Faye Siow
- Department of Clinical Genetics, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - Ryan L. Davis
- Rare Disease Program, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- Neurogenetics Research Group, Kolling Institute, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney and Northern Sydney Local Health District, St Leonards, NSW, Australia
| | - Kishore R. Kumar
- Translational Neurogenomics Group, Neurology Department & Molecular Medicine Laboratory, Concord Repatriation General Hospital, Concord, NSW, Australia
- Concord Clinical School, Sydney Medical School, Faculty of Health & Medicine, University of Sydney, Concord, NSW, Australia
- Rare Disease Program, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- School of Clinical Medicine, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
22
|
Tam LT, Cole B, Stasi SM, Paulson VA, Wright JN, Hoeppner C, Holtzclaw S, Crotty EE, Ellenbogen RG, Lee A, Ermoian RP, Lockwood CM, Leary SES, Ronsley R. Somatic Versus Germline: A Case Series of Three Children With ATM-Mutated Medulloblastoma. JCO Precis Oncol 2024; 8:e2300333. [PMID: 38207225 DOI: 10.1200/po.23.00333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 09/03/2023] [Accepted: 11/07/2023] [Indexed: 01/13/2024] Open
Abstract
Somatic versus Germline-A Case Series of Three Children with ATM- mutated Medulloblastoma.
Collapse
Affiliation(s)
- Lydia T Tam
- Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, WA
| | - Bonnie Cole
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA
- Department of Laboratories, Seattle Children's Hospital, Seattle, WA
| | - Shannon M Stasi
- Department of Laboratories, Seattle Children's Hospital, Seattle, WA
- Division of Hematology, Oncology, Bone Marrow Transplant & Cellular Therapy, Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, WA
| | - Vera A Paulson
- Genetics Division, Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA
| | - Jason N Wright
- Department of Radiology, Seattle Children's Hospital, University of Washington, Seattle, WA
| | - Corrine Hoeppner
- Division of Hematology, Oncology, Bone Marrow Transplant & Cellular Therapy, Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, WA
| | - Susan Holtzclaw
- Division of Hematology, Oncology, Bone Marrow Transplant & Cellular Therapy, Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, WA
| | - Erin E Crotty
- Division of Hematology, Oncology, Bone Marrow Transplant & Cellular Therapy, Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, WA
- Department of Neurological Surgery, Seattle Children's Hospital, University of Washington, Seattle, WA
- Department of Radiation Oncology, University of Washington, Seattle, WA
| | - Richard G Ellenbogen
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA
| | - Amy Lee
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA
| | | | - Christina M Lockwood
- Genetics Division, Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA
| | - Sarah E S Leary
- Division of Hematology, Oncology, Bone Marrow Transplant & Cellular Therapy, Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, WA
- Department of Neurological Surgery, Seattle Children's Hospital, University of Washington, Seattle, WA
- Department of Radiation Oncology, University of Washington, Seattle, WA
| | - Rebecca Ronsley
- Division of Hematology, Oncology, Bone Marrow Transplant & Cellular Therapy, Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, WA
- Department of Neurological Surgery, Seattle Children's Hospital, University of Washington, Seattle, WA
- Department of Radiation Oncology, University of Washington, Seattle, WA
| |
Collapse
|
23
|
Lendinez-Sanchez G, Diaz-Redondo T, Campos MI, Porta Pelayo J, Porta Pelayo JM, Muriel-López C. ATM Variant as a Cause of Hereditary Cutaneous Melanoma in a Spanish Family: Case Report. Case Rep Oncol 2024; 17:386-391. [PMID: 38415270 PMCID: PMC10898853 DOI: 10.1159/000536105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 12/30/2023] [Indexed: 02/29/2024] Open
Abstract
Introduction Ataxia-Telangiectasia Mutated (ATM) is a cancer predisposition gene; carriers of germline pathogenic variants have an increased risk of developing malignancies, including breast, prostate, pancreatic, and ovarian cancer. Most ATM variants are of uncertain significance. Findings from genome-wide association studies (GWAS) suggest that ATM may be a low-risk melanoma susceptibility locus. Case Report We report the case of a Hispanic family whose members who have presented cutaneous melanoma have been found to be carriers for the ATM pathogenic variant c.3747-1G>C (rs730881364), one of whom was diagnosed at 24 years old. Discussion We describe for the first time the possible clinical association between ATM (c.3747-1G>C) and familial melanoma. In silico splice site analysis predicts that this alteration will weaken the native splice acceptor site and will result in the creation or strengthening of a novel splice acceptor site, assuming a variant that entails loss of functionality that is probably pathogenic and related to oncogenesis. However, we cannot exclude that cutaneous melanoma in both members and at an early age is the result of chance, environmental interaction, other uncontrolled external factors, or the interaction of other genetic alterations other than the ATM variant described in this study.
Collapse
Affiliation(s)
- Gonzalo Lendinez-Sanchez
- Department of Medical Oncology, Intercenter Unit, Regional and Virgen de la Victoria University Hospitals, IBIMA, Málaga, Spain
| | - Tamara Diaz-Redondo
- Department of Medical Oncology, Intercenter Unit, Regional and Virgen de la Victoria University Hospitals, IBIMA, Málaga, Spain
| | - Marcos Iglesias Campos
- Department of Medical Oncology, Intercenter Unit, Regional and Virgen de la Victoria University Hospitals, IBIMA, Málaga, Spain
| | | | | | - Carolina Muriel-López
- Department of Medical Oncology, Intercenter Unit, Regional and Virgen de la Victoria University Hospitals, IBIMA, Málaga, Spain
| |
Collapse
|
24
|
Weitering TJ, Willemsen MAAP, Taylor AMR, Weemaes CMR, van der Burg M, Berghuis D. Early Diagnosis of Ataxia Telangiectasia Through Newborn Screening for SCID: a Case Report Highlighting the Dilemma of Pre-emptive HSCT. J Clin Immunol 2023; 43:1770-1773. [PMID: 37624468 DOI: 10.1007/s10875-023-01571-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023]
Affiliation(s)
- T J Weitering
- Willem-Alexander Children's Hospital, Laboratory for Pediatric Immunology, Leiden University Medical Center, Leiden, the Netherlands
| | - M A A P Willemsen
- Department of Neurology - Pediatric Neurology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - A M R Taylor
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - C M R Weemaes
- Department of Pediatrics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - M van der Burg
- Willem-Alexander Children's Hospital, Laboratory for Pediatric Immunology, Leiden University Medical Center, Leiden, the Netherlands
| | - Dagmar Berghuis
- Willem-Alexander Children's Hospital, Department of Pediatrics, Division of Pediatric Immunology and Stem Cell Transplantation, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands.
| |
Collapse
|
25
|
Kim J, Woo S, de Gusmao CM, Zhao B, Chin DH, DiDonato RL, Nguyen MA, Nakayama T, Hu CA, Soucy A, Kuniholm A, Thornton JK, Riccardi O, Friedman DA, El Achkar CM, Dash Z, Cornelissen L, Donado C, Faour KNW, Bush LW, Suslovitch V, Lentucci C, Park PJ, Lee EA, Patterson A, Philippakis AA, Margus B, Berde CB, Yu TW. A framework for individualized splice-switching oligonucleotide therapy. Nature 2023; 619:828-836. [PMID: 37438524 PMCID: PMC10371869 DOI: 10.1038/s41586-023-06277-0] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/25/2023] [Indexed: 07/14/2023]
Abstract
Splice-switching antisense oligonucleotides (ASOs) could be used to treat a subset of individuals with genetic diseases1, but the systematic identification of such individuals remains a challenge. Here we performed whole-genome sequencing analyses to characterize genetic variation in 235 individuals (from 209 families) with ataxia-telangiectasia, a severely debilitating and life-threatening recessive genetic disorder2,3, yielding a complete molecular diagnosis in almost all individuals. We developed a predictive taxonomy to assess the amenability of each individual to splice-switching ASO intervention; 9% and 6% of the individuals had variants that were 'probably' or 'possibly' amenable to ASO splice modulation, respectively. Most amenable variants were in deep intronic regions that are inaccessible to exon-targeted sequencing. We developed ASOs that successfully rescued mis-splicing and ATM cellular signalling in patient fibroblasts for two recurrent variants. In a pilot clinical study, one of these ASOs was used to treat a child who had been diagnosed with ataxia-telangiectasia soon after birth, and showed good tolerability without serious adverse events for three years. Our study provides a framework for the prospective identification of individuals with genetic diseases who might benefit from a therapeutic approach involving splice-switching ASOs.
Collapse
Affiliation(s)
- Jinkuk Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.
- Biomedical Research Center, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.
- KI for Health Science and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.
- Center for Epidemic Preparedness, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.
| | - Sijae Woo
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Claudio M de Gusmao
- Department of Neurology, Boston Children's Hospital, Boston, MA, USA
- Postgraduate School of Medical Science, University of Campinas (UNICAMP), São Paulo, Brazil
| | - Boxun Zhao
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
- Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Diana H Chin
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
| | - Renata L DiDonato
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
| | - Minh A Nguyen
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
| | - Tojo Nakayama
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Chunguang April Hu
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
| | - Aubrie Soucy
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
| | - Ashley Kuniholm
- Institutional Center for Clinical and Translational Research, Boston Children's Hospital, Boston, MA, USA
| | | | - Olivia Riccardi
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
| | - Danielle A Friedman
- Department of Neurology, Boston Children's Hospital, Boston, MA, USA
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
| | | | - Zane Dash
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
| | - Laura Cornelissen
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Carolina Donado
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Kamli N W Faour
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
| | - Lynn W Bush
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
- Center for Bioethics, Harvard Medical School, Boston, MA, USA
| | - Victoria Suslovitch
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
| | - Claudia Lentucci
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
| | - Peter J Park
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Eunjung Alice Lee
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Al Patterson
- Harvard Medical School, Boston, MA, USA
- Department of Pharmacy, Boston Children's Hospital, Boston, MA, USA
| | - Anthony A Philippakis
- Eric and Wendy Schmidt Center, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Brad Margus
- Ataxia Telangiectasia Children's Project, Coconut Creek, FL, USA
| | - Charles B Berde
- Harvard Medical School, Boston, MA, USA
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Timothy W Yu
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA.
- Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, USA.
- Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA.
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
26
|
Hernandez-Martinez JM, Rosell R, Arrieta O. Somatic and germline ATM variants in non-small-cell lung cancer: Therapeutic implications. Crit Rev Oncol Hematol 2023:104058. [PMID: 37343657 DOI: 10.1016/j.critrevonc.2023.104058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 06/16/2023] [Indexed: 06/23/2023] Open
Abstract
ATM is an apical kinase of the DNA damage response involved in the repair of DNA double-strand breaks. Germline ATM variants (gATM) have been associated with an increased risk of developing lung adenocarcinoma (LUAD), and approximately 9% of LUAD tumors harbor somatic ATM mutations (sATM). Biallelic carriers of pathogenic gATM exhibit a plethora of immunological abnormalities, but few studies have evaluated the contribution of immune dysfunction to lung cancer susceptibility. Indeed, little is known about the clinicopathological characteristics of lung cancer patients with sATM or gATM alterations. The introduction of targeted therapies and immunotherapies, and the increasing number of clinical trials evaluating treatment combinations, warrants a careful reexamination of the benefits and harms that different therapeutic approaches have had in lung cancer patients with sATM or gATM. This review will discuss the role of ATM in the pathogenesis of lung cancer, highlighting potential therapeutic approaches to manage ATM-deficient lung cancers.
Collapse
Affiliation(s)
- Juan-Manuel Hernandez-Martinez
- Thoracic Oncology Unit and Experimental Oncology Laboratory, Instituto Nacional de Cancerología de México (INCan); CONACYT-Instituto Nacional de Cancerología, Mexico City, Mexico
| | - Rafael Rosell
- Institut d'Investigació en Ciències Germans Trias i Pujol, Badalona, Spain; (4)Institut Català d'Oncologia, Hospital Germans Trias i Pujol, Badalona, Spain
| | - Oscar Arrieta
- Thoracic Oncology Unit and Experimental Oncology Laboratory, Instituto Nacional de Cancerología de México (INCan).
| |
Collapse
|
27
|
Serey-Gaut M, Cortes M, Makrythanasis P, Suri M, Taylor AMR, Sullivan JA, Asleh AN, Mitra J, Dar MA, McNamara A, Shashi V, Dugan S, Song X, Rosenfeld JA, Cabrol C, Iwaszkiewicz J, Zoete V, Pehlivan D, Akdemir ZC, Roeder ER, Littlejohn RO, Dibra HK, Byrd PJ, Stewart GS, Geckinli BB, Posey J, Westman R, Jungbluth C, Eason J, Sachdev R, Evans CA, Lemire G, VanNoy GE, O'Donnell-Luria A, Mau-Them FT, Juven A, Piard J, Nixon CY, Zhu Y, Ha T, Buckley MF, Thauvin C, Essien Umanah GK, Van Maldergem L, Lupski JR, Roscioli T, Dawson VL, Dawson TM, Antonarakis SE. Bi-allelic TTI1 variants cause an autosomal-recessive neurodevelopmental disorder with microcephaly. Am J Hum Genet 2023; 110:499-515. [PMID: 36724785 PMCID: PMC10027477 DOI: 10.1016/j.ajhg.2023.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 01/09/2023] [Indexed: 02/03/2023] Open
Abstract
Telomere maintenance 2 (TELO2), Tel2 interacting protein 2 (TTI2), and Tel2 interacting protein 1 (TTI1) are the three components of the conserved Triple T (TTT) complex that modulates activity of phosphatidylinositol 3-kinase-related protein kinases (PIKKs), including mTOR, ATM, and ATR, by regulating the assembly of mTOR complex 1 (mTORC1). The TTT complex is essential for the expression, maturation, and stability of ATM and ATR in response to DNA damage. TELO2- and TTI2-related bi-allelic autosomal-recessive (AR) encephalopathies have been described in individuals with moderate to severe intellectual disability (ID), short stature, postnatal microcephaly, and a movement disorder (in the case of variants within TELO2). We present clinical, genomic, and functional data from 11 individuals in 9 unrelated families with bi-allelic variants in TTI1. All present with ID, and most with microcephaly, short stature, and a movement disorder. Functional studies performed in HEK293T cell lines and fibroblasts and lymphoblastoid cells derived from 4 unrelated individuals showed impairment of the TTT complex and of mTOR pathway activity which is improved by treatment with Rapamycin. Our data delineate a TTI1-related neurodevelopmental disorder and expand the group of disorders related to the TTT complex.
Collapse
Affiliation(s)
- Margaux Serey-Gaut
- Centre de génétique humaine, Université de Franche-Comté, Besançon, France.
| | - Marisol Cortes
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Periklis Makrythanasis
- Service of Genetic Medicine, University Hospitals of Geneva, Geneva, Switzerland; Department of Genetic Medicine and Development, University of Geneva Medical Faculty, Geneva 1211, Switzerland; Laboratory of Medical Genetics, Medical School, National and Kapodistrian University of Athens, Athens, Greece; Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Mohnish Suri
- Clinical Genetics Service, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Alexander M R Taylor
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | | | - Ayat N Asleh
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jaba Mitra
- Department of Biophysics and Biophysical Chemistry, Biophysics and Biomedical Engineering, JHU Howard Hughes Medical Institute, Baltimore, MD 21205, USA
| | - Mohamad A Dar
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Amy McNamara
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Vandana Shashi
- Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Sarah Dugan
- Providence Medical Group Genetic Clinics, Spokane, WA, USA
| | - Xiaofei Song
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Christelle Cabrol
- Centre de génétique humaine, Université de Franche-Comté, Besançon, France
| | - Justyna Iwaszkiewicz
- Molecular Modeling Group, Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Vincent Zoete
- Molecular Modeling Group, Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland; Computer-Aided Molecular Engineering, Department of Oncology, Ludwig Institute for Cancer Research Lausanne Branch, University of Lausanne, Lausanne, Switzerland
| | - Davut Pehlivan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; EA481 Integrative and Cognitive Neuroscience Research Unit, University of Franche-Comte, Besancon, France
| | - Zeynep Coban Akdemir
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA; University Texas Health Science Center, Houston, TX 77030, USA
| | - Elizabeth R Roeder
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Rebecca Okashah Littlejohn
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Harpreet K Dibra
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Philip J Byrd
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Grant S Stewart
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Bilgen B Geckinli
- Department of Medical Genetics, Marmara University School of Medicine, Istanbul 34722, Turkey
| | - Jennifer Posey
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Rachel Westman
- Providence Medical Group Genetic Clinics, Spokane, WA, USA
| | | | - Jacqueline Eason
- Clinical Genetics Service, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Rani Sachdev
- Centre for Clinical Genetics, Sydney Children's Hospital, Sydney, NSW, Australia
| | - Carey-Anne Evans
- Neuroscience Research Australia (NeuRA) Institute, Sydney, NSW, Australia
| | - Gabrielle Lemire
- Center for Mendelian Genomics and Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA
| | - Grace E VanNoy
- Center for Mendelian Genomics and Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Anne O'Donnell-Luria
- Center for Mendelian Genomics and Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA
| | - Frédéric Tran Mau-Them
- UF6254 Innovation en diagnostic génomique des maladies rares, CHU Dijon Bourgogne, Dijon, France
| | - Aurélien Juven
- UF6254 Innovation en diagnostic génomique des maladies rares, CHU Dijon Bourgogne, Dijon, France
| | - Juliette Piard
- Centre de génétique humaine, Université de Franche-Comté, Besançon, France
| | - Cheng Yee Nixon
- Neuroscience Research Australia (NeuRA) Institute, Sydney, NSW, Australia
| | - Ying Zhu
- New South Wales Health Pathology Randwick Genomics, Prince of Wales Hospital, Sydney, NSW, Australia
| | - Taekjip Ha
- Department of Biophysics and Biophysical Chemistry, Biophysics and Biomedical Engineering, JHU Howard Hughes Medical Institute, Baltimore, MD 21205, USA
| | - Michael F Buckley
- New South Wales Health Pathology Randwick Genomics, Prince of Wales Hospital, Sydney, NSW, Australia
| | - Christel Thauvin
- INSERM UMR1231 GAD, Bourgogne Franche-Comté University, Dijon, France; Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement (TRANSLAD), Dijon-Burgundy University Hospital, Dijon, France
| | - George K Essien Umanah
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Lionel Van Maldergem
- Centre de génétique humaine, Université de Franche-Comté, Besançon, France; Clinical Investigation Center 1431, National Institute of Health and Medical Research (INSERM), CHU, Besancon, France; EA481 Integrative and Cognitive Neuroscience Research Unit, University of Franche-Comte, Besancon, France
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Texas Children's Hospital, Houston, TX 77030, USA
| | - Tony Roscioli
- Centre for Clinical Genetics, Sydney Children's Hospital, Sydney, NSW, Australia; Neuroscience Research Australia (NeuRA) Institute, Sydney, NSW, Australia; New South Wales Health Pathology Randwick Genomics, Prince of Wales Hospital, Sydney, NSW, Australia
| | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Solomon H. Snyder, Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Solomon H. Snyder, Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Stylianos E Antonarakis
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Service of Genetic Medicine, University Hospitals of Geneva, Geneva, Switzerland; Department of Genetic Medicine and Development, University of Geneva Medical Faculty, Geneva 1211, Switzerland; Medigenome, Swiss Institute of Genomic Medicine, 1207 Geneva, Switzerland.
| |
Collapse
|
28
|
Pastorino L, Dalmasso B, Allavena E, Vanni I, Ugolini F, Baroni G, Croce M, Guadagno A, Cabiddu F, Andreotti V, Bruno W, Zoppoli G, Ferrando L, Tanda ET, Spagnolo F, Menin C, Gangemi R, Massi D, Ghiorzo P. Ataxia-Telangiectasia Mutated Loss of Heterozygosity in Melanoma. Int J Mol Sci 2022; 23:16027. [PMID: 36555667 PMCID: PMC9786167 DOI: 10.3390/ijms232416027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/06/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
ATM germline pathogenic variants were recently found enriched in high-risk melanoma patients. However, ATM loss of heterozygosity (LOH) has never been investigated in melanoma and, therefore, a causal association with melanoma development has not been established yet. The purpose of this study was to functionally characterize 13 germline ATM variants found in high-risk melanoma patients-and classified by in silico tools as pathogenic, uncertain significance, or benign-using multiple assays evaluating ATM/pATM expression and/or LOH in melanoma tissues and cell lines. We assessed ATM status by Immunohistochemistry (IHC), Western Blot, Whole-Exome Sequencing/Copy Number Variation analysis, and RNA sequencing, supported by Sanger sequencing and microsatellite analyses. For most variants, IHC results matched those obtained with in silico classification and LOH analysis. Two pathogenic variants (p.Ser1135_Lys1192del and p.Ser1993ArgfsTer23) showed LOH and complete loss of ATM activation in melanoma. Two variants of unknown significance (p.Asn358Ile and p.Asn796His) showed reduced expression and LOH, suggestive of a deleterious effect. This study, showing a classic two-hit scenario in a well-known tumor suppressor gene, supports the inclusion of melanoma in the ATM-related cancer spectrum.
Collapse
Affiliation(s)
- Lorenza Pastorino
- Department of Internal Medicine and Medical Specialties, University of Genoa, 16132 Genoa, Italy
- Genetica dei Tumori Rari, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Bruna Dalmasso
- Genetica dei Tumori Rari, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Eleonora Allavena
- Department of Internal Medicine and Medical Specialties, University of Genoa, 16132 Genoa, Italy
| | - Irene Vanni
- Genetica dei Tumori Rari, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Filippo Ugolini
- Section of Anatomic Pathology, Department of Health Sciences, University of Florence, 50134 Florence, Italy
| | - Gianna Baroni
- Section of Anatomic Pathology, Department of Health Sciences, University of Florence, 50134 Florence, Italy
| | - Michela Croce
- Bioterapie, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Antonio Guadagno
- Anatomia Patologica, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Francesco Cabiddu
- Anatomia Patologica, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Virginia Andreotti
- Genetica dei Tumori Rari, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - William Bruno
- Department of Internal Medicine and Medical Specialties, University of Genoa, 16132 Genoa, Italy
- Genetica dei Tumori Rari, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Gabriele Zoppoli
- Department of Internal Medicine and Medical Specialties, University of Genoa, 16132 Genoa, Italy
- Clinica di Medicina Interna a Indirizzo Oncologico, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Lorenzo Ferrando
- Department of Internal Medicine and Medical Specialties, University of Genoa, 16132 Genoa, Italy
- Clinica di Medicina Interna a Indirizzo Oncologico, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Enrica Teresa Tanda
- Department of Internal Medicine and Medical Specialties, University of Genoa, 16132 Genoa, Italy
- Oncologia Medica 2, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Francesco Spagnolo
- Oncologia Medica 2, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Chiara Menin
- Immunology and Diagnostic Molecular Oncology Unit, Veneto Institute of Oncology, IOV-IRCCS, 35128 Padua, Italy
| | - Rosaria Gangemi
- Bioterapie, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Daniela Massi
- Section of Anatomic Pathology, Department of Health Sciences, University of Florence, 50134 Florence, Italy
| | - Paola Ghiorzo
- Department of Internal Medicine and Medical Specialties, University of Genoa, 16132 Genoa, Italy
- Genetica dei Tumori Rari, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| |
Collapse
|
29
|
Abstract
ATM, a member of the PIKK-like protein family, plays a central role in responding to DNA double-strand breaks and other lesions to protect the genome against DNA damage. Loss of ATM's kinase function has been shown to increase the sensitivity of most cells to ionizing radiation. Therefore, ATM is thought to be a promising target for chemotherapy as a radiotherapy sensitizer. The mechanism of ATM in cancer treatment and the development of its inhibitors have become research hotspots. Here we present an overview of research concerning ATM protein domains, functions and inhibitors, as well as perspectives and insights for future development of ATM-targeting agents.
Collapse
|
30
|
Bueno‐Martínez E, Sanoguera‐Miralles L, Valenzuela‐Palomo A, Esteban‐Sánchez A, Lorca V, Llinares‐Burguet I, Allen J, García‐Álvarez A, Pérez‐Segura P, Durán M, Easton DF, Devilee P, Vreeswijk MPG, de la Hoya M, Velasco‐Sampedro EA. Minigene-based splicing analysis and ACMG/AMP-based tentative classification of 56 ATM variants. J Pathol 2022; 258:83-101. [PMID: 35716007 PMCID: PMC9541484 DOI: 10.1002/path.5979] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/11/2022] [Accepted: 06/08/2022] [Indexed: 12/29/2022]
Abstract
The ataxia telangiectasia-mutated (ATM) protein is a major coordinator of the DNA damage response pathway. ATM loss-of-function variants are associated with 2-fold increased breast cancer risk. We aimed at identifying and classifying spliceogenic ATM variants detected in subjects of the large-scale sequencing project BRIDGES. A total of 381 variants at the intron-exon boundaries were identified, 128 of which were predicted to be spliceogenic. After further filtering, we ended up selecting 56 variants for splicing analysis. Four functional minigenes (mgATM) spanning exons 4-9, 11-17, 25-29, and 49-52 were constructed in the splicing plasmid pSAD. Selected variants were genetically engineered into the four constructs and assayed in MCF-7/HeLa cells. Forty-eight variants (85.7%) impaired splicing, 32 of which did not show any trace of the full-length (FL) transcript. A total of 43 transcripts were identified where the most prevalent event was exon/multi-exon skipping. Twenty-seven transcripts were predicted to truncate the ATM protein. A tentative ACMG/AMP (American College of Medical Genetics and Genomics/Association for Molecular Pathology)-based classification scheme that integrates mgATM data allowed us to classify 29 ATM variants as pathogenic/likely pathogenic and seven variants as likely benign. Interestingly, the likely pathogenic variant c.1898+2T>G generated 13% of the minigene FL-transcript due to the use of a noncanonical GG-5'-splice-site (0.014% of human donor sites). Circumstantial evidence in three ATM variants (leakiness uncovered by our mgATM analysis together with clinical data) provides some support for a dosage-sensitive expression model in which variants producing ≥30% of FL-transcripts would be predicted benign, while variants producing ≤13% of FL-transcripts might be pathogenic. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Elena Bueno‐Martínez
- Splicing and Genetic Susceptibility to Cancer, Unidad de Excelencia Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC‐UVa)ValladolidSpain
| | - Lara Sanoguera‐Miralles
- Splicing and Genetic Susceptibility to Cancer, Unidad de Excelencia Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC‐UVa)ValladolidSpain
| | - Alberto Valenzuela‐Palomo
- Splicing and Genetic Susceptibility to Cancer, Unidad de Excelencia Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC‐UVa)ValladolidSpain
| | - Ada Esteban‐Sánchez
- Molecular Oncology Laboratory CIBERONC, Hospital Clínico San Carlos, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos)MadridSpain
| | - Víctor Lorca
- Molecular Oncology Laboratory CIBERONC, Hospital Clínico San Carlos, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos)MadridSpain
| | - Inés Llinares‐Burguet
- Splicing and Genetic Susceptibility to Cancer, Unidad de Excelencia Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC‐UVa)ValladolidSpain
| | - Jamie Allen
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary CareUniversity of CambridgeCambridgeUK
| | - Alicia García‐Álvarez
- Splicing and Genetic Susceptibility to Cancer, Unidad de Excelencia Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC‐UVa)ValladolidSpain
| | - Pedro Pérez‐Segura
- Molecular Oncology Laboratory CIBERONC, Hospital Clínico San Carlos, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos)MadridSpain
| | - Mercedes Durán
- Cancer Genetics, Instituto de Biología y Genética MolecularValladolidSpain
| | - Douglas F Easton
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary CareUniversity of CambridgeCambridgeUK
| | - Peter Devilee
- Department of Human GeneticsLeiden University Medical CenterLeidenThe Netherlands
| | - Maaike PG Vreeswijk
- Department of Human GeneticsLeiden University Medical CenterLeidenThe Netherlands
| | - Miguel de la Hoya
- Molecular Oncology Laboratory CIBERONC, Hospital Clínico San Carlos, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos)MadridSpain
| | - Eladio A Velasco‐Sampedro
- Splicing and Genetic Susceptibility to Cancer, Unidad de Excelencia Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC‐UVa)ValladolidSpain
| |
Collapse
|
31
|
Huisman EJ, Brooimans AR, Mayer S, Joosten M, de Bont L, Dekker M, Rammeloo ELM, Smiers FJ, van Hagen PM, Zwaan CM, de Haas M, Cnossen MH, Dalm VASH. Patients with Chromosome 11q Deletions Are Characterized by Inborn Errors of Immunity Involving both B and T Lymphocytes. J Clin Immunol 2022; 42:1521-1534. [PMID: 35763218 DOI: 10.1007/s10875-022-01303-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 06/04/2022] [Indexed: 11/30/2022]
Abstract
Disorders of the long arm of chromosome 11 (11q) are rare and involve various chromosomal regions. Patients with 11q disorders, including Jacobsen syndrome, often present with a susceptibility for bacterial and prolonged viral and fungal infections partially explained by hypogammaglobulinemia. Additional T lymphocyte or granular neutrophil dysfunction may also be present. In order to evaluate infectious burden and immunological function in patients with 11q disorders, we studied a cohort of 14 patients with 11q deletions and duplications. Clinically, 12 patients exhibited prolonged and repetitive respiratory tract infections, frequently requiring (prophylactic) antibiotic treatment (n = 7), ear-tube placement (n = 9), or use of inhalers (n = 5). Complicated varicella infections (n = 5), chronic eczema (n = 6), warts (n = 2), and chronic fungal infections (n = 4) were reported. Six patients were on immunoglobulin replacement therapy. We observed a high prevalence of low B lymphocyte counts (n = 8), decreased T lymphocyte counts (n = 5) and abnormal T lymphocyte function (n = 12). Granulocyte function was abnormal in 29% without a clinical phenotype. Immunodeficiency was found in patients with terminal and interstitial 11q deletions and in one patient with terminal 11q duplication. Genetically, FLI1 and ETS1 are seen as causative for the immunodeficiency, but these genes were deleted nor duplicated in 4 of our 14 patients. Alternative candidate genes on 11q may have a role in immune dysregulation. In conclusion, we present evidence that inborn errors of immunity are present in patients with 11q disorders leading to clinically relevant infections. Therefore, broad immunological screening and necessary treatment is of importance in this patient group.
Collapse
Affiliation(s)
- Elise J Huisman
- Department of Pediatric Hematology, Erasmus Medical Center Sophia Children's Hospital, University Medical Centre Rotterdam, Rotterdam, the Netherlands.,Unit of Transfusion Medicine, Sanquin Blood Supply, Amsterdam, the Netherlands
| | - A Rick Brooimans
- Laboratory Medical Immunological, Department of Immunology, Erasmus Medical Center, University Medical Centre Rotterdam, Rotterdam, the Netherlands
| | - Samone Mayer
- Department of Pediatric Hematology, Erasmus Medical Center Sophia Children's Hospital, University Medical Centre Rotterdam, Rotterdam, the Netherlands
| | - Marieke Joosten
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Louis de Bont
- Department of Pediatric Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Mariëlle Dekker
- Department of Pediatrics, Albert Schweitzer Hospital, Dordrecht, the Netherlands
| | | | - Frans J Smiers
- Department of Pediatric Hematology, Leiden University Medical Center, Leiden, the Netherlands
| | - P Martin van Hagen
- Laboratory Medical Immunological, Department of Immunology, Erasmus Medical Center, University Medical Centre Rotterdam, Rotterdam, the Netherlands.,Department of Internal Medicine, Division of Allergy & Clinical Immunology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - C Michel Zwaan
- Department of Pediatric Oncology, Erasmus Medical Center Sophia Children's Hospital, University Medical Centre Rotterdam, Rotterdam, the Netherlands.,Department of Pediatric Oncology, Princess Máxima Center, Utrecht, the Netherlands
| | - Masja de Haas
- Laboratory of Immunohematology Diagnostics, Sanquin Diagnostic Services, Amsterdam, the Netherlands.,Department of Hematology, Leiden University Medical Center, Leiden, the Netherlands.,Department of Clinical Transfusion Research, Sanquin Research, Amsterdam, the Netherlands
| | - Marjon H Cnossen
- Department of Pediatric Hematology, Erasmus Medical Center Sophia Children's Hospital, University Medical Centre Rotterdam, Rotterdam, the Netherlands
| | - Virgil A S H Dalm
- Laboratory Medical Immunological, Department of Immunology, Erasmus Medical Center, University Medical Centre Rotterdam, Rotterdam, the Netherlands. .,Department of Internal Medicine, Division of Allergy & Clinical Immunology, Erasmus University Medical Center, Rotterdam, the Netherlands.
| |
Collapse
|
32
|
Petley E, Yule A, Alexander S, Ojha S, Whitehouse WP. The natural history of ataxia-telangiectasia (A-T): A systematic review. PLoS One 2022; 17:e0264177. [PMID: 35290391 PMCID: PMC9049793 DOI: 10.1371/journal.pone.0264177] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 02/06/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Ataxia-telangiectasia is an autosomal recessive, multi-system, and life-shortening disease caused by mutations in the ataxia-telangiectasia mutated gene. Although widely reported, there are no studies that give a comprehensive picture of this intriguing condition. OBJECTIVES Understand the natural history of ataxia-telangiectasia (A-T), as reported in scientific literature. SEARCH METHODS 107 search terms were identified and divided into 17 searches. Each search was performed in PubMed, Ovid SP (MEDLINE) 1946-present, OVID EMBASE 1980 -present, Web of Science core collection, Elsevier Scopus, and Cochrane Library. SELECTION CRITERIA All human studies that report any aspect of A-T. DATA COLLECTION AND ANALYSIS Search results were de-duplicated, data extracted (including author, publication year, country of origin, study design, population, participant characteristics, and clinical features). Quality of case-control and cohort studies was assessed by the Newcastle-Ottawa tool. Findings are reported descriptively and where possible data collated to report median (interquartile range, range) of outcomes of interest. MAIN RESULTS 1314 cases reported 2134 presenting symptoms. The most common presenting symptom was abnormal gait (1160 cases; 188 studies) followed by recurrent infections in classical ataxia-telangiectasia and movement disorders in variant ataxia-telangiectasia. 687 cases reported 752 causes of death among which malignancy was the most frequently reported cause. Median (IQR, range) age of death (n = 294) was 14 years 0 months (10 years 0 months to 23 years 3 months, 1 year 3 months to 76 years 0 months). CONCLUSIONS This review demonstrates the multi-system involvement in A-T, confirms that neurological symptoms are the most frequent presenting features in classical A-T but variants have diverse manifestations. We found that most individuals with A-T have life limited to teenage or early adulthood. Predominance of case reports, and case series demonstrate the lack of robust evidence to determine the natural history of A-T. We recommend population-based studies to fill this evidence gap.
Collapse
Affiliation(s)
- Emily Petley
- School of Medicine, University of Nottingham, Nottingham, United
Kingdom
| | - Alexander Yule
- United Lincolnshire Hospitals NHS Trust, Lincoln, United
Kingdom
| | - Shaun Alexander
- School of Medicine, University of Nottingham, Nottingham, United
Kingdom
| | - Shalini Ojha
- School of Medicine, University of Nottingham, Nottingham, United
Kingdom
- Children’s Hospital, University Hospitals of Derby and Burton, NHS
Foundation Trust, Derby, United Kingdom
| | - William P. Whitehouse
- School of Medicine, University of Nottingham, Nottingham, United
Kingdom
- Nottingham Children’s Hospital, Nottingham University Hospital NHS Trust,
Nottingham, United Kingdom
| |
Collapse
|
33
|
Rawat A, Tyagi R, Chaudhary H, Pandiarajan V, Jindal AK, Suri D, Gupta A, Sharma M, Arora K, Bal A, Madaan P, Saini L, Sahu JK, Ogura Y, Kato T, Imai K, Nonoyama S, Singh S. Unusual clinical manifestations and predominant stopgain ATM gene variants in a single centre cohort of ataxia telangiectasia from North India. Sci Rep 2022; 12:4036. [PMID: 35260754 PMCID: PMC8904522 DOI: 10.1038/s41598-022-08019-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 03/01/2022] [Indexed: 11/09/2022] Open
Abstract
Germline ATM gene variations result in phenotypic heterogeneity characterized by a variable degree of disease severity. We retrospectively collected clinical, genetic, and immunological data of 26 cases with A-T. Clinical manifestations included oculocutaneous telangiectasia (100%), ataxia (100%), fever, loose stools or infection (67%), cerebellar atrophy (50%), nystagmus (8%), dysarthria (15.38%), and visual impairment (8%). Genetic analysis confirmed ATM gene variations in 16 unrelated cases. The most common type of variation was stopgain variants (56%). Immunoglobulin profile indicated reduced IgA, IgG, and IgM in 94%, 50%, and 20% cases, respectively. T cell lymphopenia was observed in 80% of cases among those investigated. Unusual presentations included an EBV-associated smooth muscle tumour located in the liver in one case and Hyper IgM syndrome-like presentation in two cases. Increased immunosenescence was observed in T-cell subsets (CD4+CD57+ and CD8+CD57+). T-cell receptor excision circles (TRECs) were reduced in 3/8 (37.50%) cases.
Collapse
Affiliation(s)
- Amit Rawat
- Allergy and Immunology Laboratory, Department of Pediatrics, Advanced Pediatric Centre, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India.
| | - Rahul Tyagi
- Allergy and Immunology Laboratory, Department of Pediatrics, Advanced Pediatric Centre, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Himanshi Chaudhary
- Allergy and Immunology Laboratory, Department of Pediatrics, Advanced Pediatric Centre, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Vignesh Pandiarajan
- Allergy and Immunology Laboratory, Department of Pediatrics, Advanced Pediatric Centre, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Ankur Kumar Jindal
- Allergy and Immunology Laboratory, Department of Pediatrics, Advanced Pediatric Centre, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Deepti Suri
- Allergy and Immunology Laboratory, Department of Pediatrics, Advanced Pediatric Centre, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Anju Gupta
- Allergy and Immunology Laboratory, Department of Pediatrics, Advanced Pediatric Centre, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Madhubala Sharma
- Allergy and Immunology Laboratory, Department of Pediatrics, Advanced Pediatric Centre, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Kanika Arora
- Allergy and Immunology Laboratory, Department of Pediatrics, Advanced Pediatric Centre, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Amanjit Bal
- Department of Histopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Priyanka Madaan
- Pediatric Neurology Unit, Department of Pediatrics, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Lokesh Saini
- Pediatric Neurology Unit, Department of Pediatrics, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Jitendra Kumar Sahu
- Pediatric Neurology Unit, Department of Pediatrics, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Yumi Ogura
- National Defense Medical College (Japan), Saitama, Japan
| | - Tamaki Kato
- National Defense Medical College (Japan), Saitama, Japan
| | - Kohsuke Imai
- National Defense Medical College (Japan), Saitama, Japan.,Tokyo Medical and Dental University, Tokyo, Japan
| | | | - Surjit Singh
- Allergy and Immunology Laboratory, Department of Pediatrics, Advanced Pediatric Centre, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| |
Collapse
|
34
|
Moeini Shad T, Yazdani R, Amirifar P, Delavari S, Heidarzadeh Arani M, Mahdaviani SA, Sadeghi-Shabestari M, Aghamohammadi A, Rezaei N, Abolhassani H. Atypical Ataxia Presentation in Variant Ataxia Telangiectasia: Iranian Case-Series and Review of the Literature. Front Immunol 2022; 12:779502. [PMID: 35095854 PMCID: PMC8795590 DOI: 10.3389/fimmu.2021.779502] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 12/23/2021] [Indexed: 11/13/2022] Open
Abstract
Ataxia-telangiectasia (AT) is a rare autosomal recessive neurodegenerative multisystem disorder. A minority of AT patients can present late-onset atypical presentations due to unknown mechanisms. The demographic, clinical, immunological and genetic data were collected by direct interview and examining the Iranian AT patients with late-onset manifestations. We also conducted a systematic literature review for reported atypical AT patients. We identified three Iranian AT patients (3/249, 1.2% of total registry) with later age at ataxia onset and slower neurologic progression despite elevated alpha-fetoprotein levels, history of respiratory infections, and immunological features of the syndrome. Of note, all patients developed autoimmunity in which a decrease of naïve T cells and regulatory T cells were observed. The literature searches also summarized data from 73 variant AT patients with atypical presentation indicating biallelic mild mutations mainly lead to an atypical phenotype with an increased risk of cancer. Variant AT patients present with milder phenotype or atypical form of classical symptoms causing under- or mis- diagnosis. Although missense mutations are more frequent, an atypical presentation can be associated with deleterious mutations due to unknown modifying factors.
Collapse
Affiliation(s)
- Tannaz Moeini Shad
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Reza Yazdani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Department of Neurology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Parisa Amirifar
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Samaneh Delavari
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | | | - Seyed Alireza Mahdaviani
- Pediatric Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Asghar Aghamohammadi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Hassan Abolhassani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Division of Clinical Immunology, Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden.,Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| |
Collapse
|
35
|
Blanchard-Rohner G, Peirolo A, Coulon L, Korff C, Horvath J, Burkhard PR, Gumy-Pause F, Ranza E, Jandus P, Dibra H, Taylor AMR, Fluss J. Childhood-Onset Movement Disorders Can Mask a Primary Immunodeficiency: 6 Cases of Classical Ataxia-Telangiectasia and Variant Forms. Front Immunol 2022; 13:791522. [PMID: 35154108 PMCID: PMC8831727 DOI: 10.3389/fimmu.2022.791522] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 01/07/2022] [Indexed: 02/02/2023] Open
Abstract
Ataxia-telangiectasia (A-T) is a neurodegenerative and primary immunodeficiency disorder (PID) characterized by cerebellar ataxia, oculocutaneous telangiectasia, immunodeficiency, progressive respiratory failure, and an increased risk of malignancies. It demands specialized care tailored to the individual patient’s needs. Besides the classical ataxia-telangiectasia (classical A-T) phenotype, a variant phenotype (variant A-T) exists with partly overlapping but some distinctive disease characteristics. Here we present a case series of 6 patients with classical A-T and variant A-T, which illustrates the phenotypic variability of A-T that can present in childhood with prominent extrapyramidal features, with or without cerebellar ataxia. We report the clinical data, together with a detailed genotype description, immunological analyses, and related expression of the ATM protein. We show that the presence of some residual ATM kinase activity leads to the clinical phenotype variant A-T that differs from the classical A-T. Our data illustrate that the diagnosis of the variant form of A-T can be delayed and difficult, while early recognition of the variant form as well as the classical A-T is a prerequisite for providing a correct prognosis and appropriate rehabilitation and support, including the avoidance of diagnostic X-ray procedures, given the increased risk of malignancies and the higher risk for side effects of subsequent cancer treatment.
Collapse
Affiliation(s)
- Geraldine Blanchard-Rohner
- Paediatric Immunology and Vaccinology Unit, Division of General Pediatrics, Department of Pediatrics, Gynecology and Obstetrics, Geneva University Hospitals, University of Geneva, Geneva, Switzerland
- *Correspondence: Geraldine Blanchard-Rohner,
| | - Anna Peirolo
- Department of Clinical and Experimental Sciences, University of Brescia, ASST Spedali Civili, Brescia, Italy
| | - Ludivine Coulon
- Division of General Pediatrics, Department of Pediatrics, Gynecology and Obstetrics, Geneva University Hospitals, University of Geneva, Geneva, Switzerland
| | - Christian Korff
- Pediatric Neurology Unit, Department of Pediatrics, Gynecology and Obstetrics, Geneva University Hospitals, University of Geneva, Geneva, Switzerland
| | - Judit Horvath
- Department of Neurology, University Hospitals of Geneva, Geneva, Switzerland
| | - Pierre R. Burkhard
- Department of Neurology, University Hospitals of Geneva, Geneva, Switzerland
| | - Fabienne Gumy-Pause
- Division of Pediatric Oncology and Hematology, Department of Women, Child and Adolescent Medicine, Geneva University Hospitals, Geneva, Switzerland
- CANSEARCH Research Platform for Pediatric Oncology and Hematology, Department of Pediatrics, Gynaecology and Obstetrics, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Emmanuelle Ranza
- Medigenome, Swiss Institute of Genomic Medicine, Geneva, Switzerland
| | - Peter Jandus
- Division of Immunology and Allergology, University Hospitals and Medical Faculty of Geneva, Geneva, Switzerland
| | - Harpreet Dibra
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | | | - Joel Fluss
- Pediatric Neurology Unit, Department of Pediatrics, Gynecology and Obstetrics, Geneva University Hospitals, University of Geneva, Geneva, Switzerland
| |
Collapse
|
36
|
Ricci A, Biancucci F, Morganti G, Magnani M, Menotta M. New human ATM variants are able to regain ATM functions in ataxia telangiectasia disease. Cell Mol Life Sci 2022; 79:601. [PMID: 36422718 PMCID: PMC9691487 DOI: 10.1007/s00018-022-04625-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/28/2022] [Accepted: 11/08/2022] [Indexed: 11/25/2022]
Abstract
Ataxia telangiectasia is a rare neurodegenerative disease caused by biallelic mutations in the ataxia telangiectasia mutated gene. No cure is currently available for these patients but positive effects on neurologic features in AT patients have been achieved by dexamethasone administration through autologous erythrocytes (EryDex) in phase II and phase III clinical trials, leading us to explore the molecular mechanisms behind the drug action. During these investigations, new ATM variants, which originated from alternative splicing of ATM messenger, were discovered, and detected in vivo in the blood of AT patients treated with EryDex. Some of the new ATM variants, alongside an in silico designed one, were characterized and examined in AT fibroblast cell lines. ATM variants were capable of rescuing ATM activity in AT cells, particularly in the nuclear role of DNA DSBs recognition and repair, and in the cytoplasmic role of modulating autophagy, antioxidant capacity and mitochondria functionality, all of the features that are compromised in AT but essential for neuron survival. These outcomes are triggered by the kinase and further functional domains of the tested ATM variants, that are useful for restoring cellular functionality. The in silico designed ATM variant eliciting most of the functionality recover may be exploited in gene therapy or gene delivery for the treatment of AT patients.
Collapse
Affiliation(s)
- Anastasia Ricci
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Via Saffi 2, 61029, Urbino, Italy.
| | - Federica Biancucci
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Via Saffi 2, 61029, Urbino, Italy
| | - Gianluca Morganti
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Via Saffi 2, 61029, Urbino, Italy
| | - Mauro Magnani
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Via Saffi 2, 61029, Urbino, Italy
| | - Michele Menotta
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Via Saffi 2, 61029, Urbino, Italy
| |
Collapse
|
37
|
Huang P, Zhang L, Tang L, Ren Y, Peng H, Xiong J, Liu L, Xu J, Xiao Y, Li J, Mao D, Liu L. Analysis of Clinical and Genetic Characterization of Three Ataxia-Telangiectasia Pedigrees With Novel ATM Gene Mutations. Front Pediatr 2022; 10:877826. [PMID: 35586824 PMCID: PMC9108171 DOI: 10.3389/fped.2022.877826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/04/2022] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVE The clinical manifestations of ataxia-telangiectasia (AT) are very complex and are easily misdiagnosed and missed. The purpose of this study was to explore the clinical characteristics and genetic features of five pediatric patients with AT from three pedigrees in china. METHODS Retrospectively collected and analyzed the clinical data and genetic testing results of five AT patients diagnosed by the Whole-exome sequencing followed by Sanger sequencing. The five patients with AT were from three pedigrees, including two female patients (case 1 and case 2) in pedigree I, one male patient (case 3) in pedigree II, and two male patients (case 4 and case 5) in pedigree III. According to the United Kingdom Association for Clinical Genomic Science Best Practice Guidelines for Variants Classification in Rare Disease 2020 to grade the genetic variants. RESULTS Five patients had mainly clinical presentations including unsteady gait, dysarthria, bulbar conjunctive telangiectasia, cerebellar atrophy, intellectual disability, stunted growth, increase of alpha-fetoprotein in serum, lymphopenia. Notably, one patient with classical AT presented dystonia as the first symptom. One patient had recurrent infections, five patients had serum Immunoglobulin (Ig) A deficiency, and two patients had IgG deficiency. In three pedigrees, we observed five pathogenic variants of the ATM gene, which were c.1339C>T (p.Arg447Ter), c.7141_7151delAATGGAAAAAT (p.Asn2381GlufsTer18), c.437_440delTCAA (p.Leu146GlnfsTer6), c.2482A>T (p.Lys828Ter), and c.5495_5496+2delAAGT (p.Glu1832GlyfsTer4). Moreover, the c.437_440delTCAA, c.2482A>T, and c.5495_5496+2delAAGT were previously unreported variants. CONCLUSIONS Pediatric patients with classical AT may present dystonia as the main manifestation, or even a first symptom, besides typical cerebellar ataxia, bulbar conjunctive telangiectasia, etc. Crucially, we also found three novel pathogenic ATM gene variants (c.437_440delTCAA, c.2482A>T, and c.5495_5496+2delAAGT), expanding the ATM pathogenic gene mutation spectrum.
Collapse
Affiliation(s)
- Peng Huang
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China.,Children's Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Lu Zhang
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China.,Children's Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Li Tang
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China.,Children's Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yi Ren
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China.,Children's Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Hong Peng
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China.,Children's Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jie Xiong
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China.,Children's Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Lingjuan Liu
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China.,Children's Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jie Xu
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China.,Children's Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yangyang Xiao
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China.,Children's Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jian Li
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China.,Children's Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Dingan Mao
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China.,Children's Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Liqun Liu
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China.,Children's Brain Development and Brain Injury Research Office, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
38
|
Ozgencil M, Barwell J, Tischkowitz M, Izatt L, Kesterton I, Simpson M, Sharpe P, de Sepulveda P, Voisset E, Solomon E. Assessing BRCA1 activity in DNA damage repair using human induced pluripotent stem cells as an approach to assist classification of BRCA1 variants of uncertain significance. PLoS One 2021; 16:e0260852. [PMID: 34855882 PMCID: PMC8638976 DOI: 10.1371/journal.pone.0260852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/18/2021] [Indexed: 12/24/2022] Open
Abstract
Establishing a universally applicable protocol to assess the impact of BRCA1 variants of uncertain significance (VUS) expression is a problem which has yet to be resolved despite major progresses have been made. The numerous difficulties which must be overcome include the choices of cellular models and functional assays. We hypothesised that the use of induced pluripotent stem (iPS) cells might facilitate the standardisation of protocols for classification, and could better model the disease process. We generated eight iPS cell lines from patient samples expressing either BRCA1 pathogenic variants, non-pathogenic variants, or BRCA1 VUSs. The impact of these variants on DNA damage repair was examined using a ɣH2AX foci formation assay, a Homologous Repair (HR) reporter assay, and a chromosome abnormality assay. Finally, all lines were tested for their ability to differentiate into mammary lineages in vitro. While the results obtained from the two BRCA1 pathogenic variants were consistent with published data, some other variants exhibited differences. The most striking of these was the BRCA1 variant Y856H (classified as benign), which was unexpectedly found to present a faulty HR repair pathway, a finding linked to the presence of an additional variant in the ATM gene. Finally, all lines were able to differentiate first into mammospheres, and then into more advanced mammary lineages expressing luminal- or basal-specific markers. This study stresses that BRCA1 genetic analysis alone is insufficient to establish a reliable and functional classification for assessment of clinical risk, and that it cannot be performed without considering the other genetic aberrations which may be present in patients. The study also provides promising opportunities for elucidating the physiopathology and clinical evolution of breast cancer, by using iPS cells.
Collapse
Affiliation(s)
- Meryem Ozgencil
- Department of Medical & Molecular Genetics, King’s College London, Faculty of Life Sciences & Medicine, London, United Kingdom
| | - Julian Barwell
- Department of Genetics and Genome Biology at the University of Leicester, Leicester, United Kingdom
| | - Marc Tischkowitz
- Department of Medical Genetics, National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Louise Izatt
- Clinical Genetics, Guy’s and St Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Ian Kesterton
- Cytogenetics Laboratory, Viapath Analytics, Guy’s and St. Thomas’ NHS Foundation Trust, Guy’s Hospital, London, United Kingdom
| | - Michael Simpson
- Department of Medical & Molecular Genetics, King’s College London, Faculty of Life Sciences & Medicine, London, United Kingdom
| | - Paul Sharpe
- Department of Craniofacial Development & Stem Cell Biology, King’s College London, London, United Kingdom
| | - Paulo de Sepulveda
- Signaling Hematopoiesis and Mechanism of Oncogenesis Lab, INSERM, CNRS, Institut Paoli-Calmettes, CRCM, Aix Marseille University, Marseille, France
| | - Edwige Voisset
- Department of Medical & Molecular Genetics, King’s College London, Faculty of Life Sciences & Medicine, London, United Kingdom
- * E-mail: (EV); (ES)
| | - Ellen Solomon
- Department of Medical & Molecular Genetics, King’s College London, Faculty of Life Sciences & Medicine, London, United Kingdom
- * E-mail: (EV); (ES)
| |
Collapse
|
39
|
Levi H, Bar E, Cohen-Adiv S, Sweitat S, Kanner S, Galron R, Mitiagin Y, Barzilai A. Dysfunction of cerebellar microglia in Ataxia-telangiectasia. Glia 2021; 70:536-557. [PMID: 34854502 DOI: 10.1002/glia.24122] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 11/09/2021] [Accepted: 11/12/2021] [Indexed: 12/13/2022]
Abstract
Ataxia-telangiectasia (A-T) is a multisystem autosomal recessive disease caused by mutations in the ATM gene and characterized by cerebellar atrophy, progressive ataxia, immunodeficiency, male and female sterility, radiosensitivity, cancer predisposition, growth retardation, insulin-resistant diabetes, and premature aging. ATM phosphorylates more than 1500 target proteins, which are involved in cell cycle control, DNA repair, apoptosis, modulation of chromatin structure, and other cytoplasmic as well as mitochondrial processes. In our quest to better understand the mechanisms by which ATM deficiency causes cerebellar degeneration, we hypothesized that specific vulnerabilities of cerebellar microglia underlie the etiology of A-T. Our hypothesis is based on the recent finding that dysfunction of glial cells affect a variety of process leading to impaired neuronal functionality (Song et al., 2019). Whereas astrocytes and neurons descend from the neural tube, microglia originate from the hematopoietic system, invade the brain at early embryonic stage, and become the innate immune cells of the central nervous system and important participants in development of synaptic plasticity. Here we demonstrate that microglia derived from Atm-/- mouse cerebellum display accelerated cell migration and are severely impaired in phagocytosis, secretion of neurotrophic factors, and mitochondrial activity, suggestive of apoptotic processes. Interestingly, no microglial impairment was detected in Atm-deficient cerebral cortex, and Atm deficiency had less impact on astroglia than microglia. Collectively, our findings validate the roles of glial cells in cerebellar attrition in A-T.
Collapse
Affiliation(s)
- Hadar Levi
- Department of Neurobiology, George S. Wise, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ela Bar
- Department of Neurobiology, George S. Wise, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Stav Cohen-Adiv
- Department of Neurobiology, George S. Wise, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Suzan Sweitat
- Department of Neurobiology, George S. Wise, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Sivan Kanner
- Department of Neurobiology, George S. Wise, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ronit Galron
- Department of Neurobiology, George S. Wise, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Yulia Mitiagin
- Department of Neurobiology, George S. Wise, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ari Barzilai
- Department of Neurobiology, George S. Wise, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
40
|
Putti S, Giovinazzo A, Merolle M, Falchetti ML, Pellegrini M. ATM Kinase Dead: From Ataxia Telangiectasia Syndrome to Cancer. Cancers (Basel) 2021; 13:5498. [PMID: 34771661 PMCID: PMC8583659 DOI: 10.3390/cancers13215498] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 11/16/2022] Open
Abstract
ATM is one of the principal players of the DNA damage response. This protein exerts its role in DNA repair during cell cycle replication, oxidative stress, and DNA damage from endogenous events or exogenous agents. When is activated, ATM phosphorylates multiple substrates that participate in DNA repair, through its phosphoinositide 3-kinase like domain at the 3'end of the protein. The absence of ATM is the cause of a rare autosomal recessive disorder called Ataxia Telangiectasia characterized by cerebellar degeneration, telangiectasia, immunodeficiency, cancer susceptibility, and radiation sensitivity. There is a correlation between the severity of the phenotype and the mutations, depending on the residual activity of the protein. The analysis of patient mutations and mouse models revealed that the presence of inactive ATM, named ATM kinase-dead, is more cancer prone and lethal than its absence. ATM mutations fall into the whole gene sequence, and it is very difficult to predict the resulting effects, except for some frequent mutations. In this regard, is necessary to characterize the mutated protein to assess if it is stable and maintains some residual kinase activity. Moreover, the whole-genome sequencing of cancer patients with somatic or germline mutations has highlighted a high percentage of ATM mutations in the phosphoinositide 3-kinase domain, mostly in cancer cells resistant to classical therapy. The relevant differences between the complete absence of ATM and the presence of the inactive form in in vitro and in vivo models need to be explored in more detail to predict cancer predisposition of A-T patients and to discover new therapies for ATM-associated cancer cells. In this review, we summarize the multiple discoveries from humans and mouse models on ATM mutations, focusing into the inactive versus null ATM.
Collapse
Affiliation(s)
- Sabrina Putti
- Institute of Biochemistry and Cell Biology, IBBC-CNR, Campus Adriano Buzzati Traverso, Via Ercole Ramarini, 32, Monterotondo Scalo, 00015 Rome, Italy; (A.G.); (M.M.); (M.L.F.)
| | | | | | | | - Manuela Pellegrini
- Institute of Biochemistry and Cell Biology, IBBC-CNR, Campus Adriano Buzzati Traverso, Via Ercole Ramarini, 32, Monterotondo Scalo, 00015 Rome, Italy; (A.G.); (M.M.); (M.L.F.)
| |
Collapse
|
41
|
Dragašević-Mišković N, Stanković I, Milovanović A, Kostić VS. Autosomal recessive adult onset ataxia. J Neurol 2021; 269:504-533. [PMID: 34499204 DOI: 10.1007/s00415-021-10763-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 11/24/2022]
Abstract
Autosomal recessive ataxias (ARCA) represent a complex group of diseases ranging from primary ataxias to rare and complex metabolic disorders in which ataxia is a part of the clinical picture. Small number of ARCA manifest exclusively in adulthood, while majority of typical childhood onset ARCA may also start later with atypical clinical presentation. We have systematically searched the literature for ARCA with adult onset, both in the group of primary ataxias including those that are less frequently described in isolated or in a small number of families, and also in the group of complex and metabolic diseases in which ataxia is only part of the clinical picture. We propose an algorithm that could be used when encountering a patient with adult onset sporadic or recessive ataxia in whom the acquired causes are excluded. ARCA are frequently neglected in the differential diagnosis of adult-onset ataxias. Rising awareness of their clinical significance is important, not only because some of these disorders may be potentially treatable, but also for prognostic implications and inclusion of patients to future clinical trials with disease modifying agents.
Collapse
Affiliation(s)
- Nataša Dragašević-Mišković
- Neurology Clinic, Clinical Center of Serbia, School of Medicine, University of Belgrade, Dr Subotića 6, 11000, Belgrade, Serbia.
| | - Iva Stanković
- Neurology Clinic, Clinical Center of Serbia, School of Medicine, University of Belgrade, Dr Subotića 6, 11000, Belgrade, Serbia
| | - Andona Milovanović
- Neurology Clinic, Clinical Center of Serbia, School of Medicine, University of Belgrade, Dr Subotića 6, 11000, Belgrade, Serbia
| | - Vladimir S Kostić
- Neurology Clinic, Clinical Center of Serbia, School of Medicine, University of Belgrade, Dr Subotića 6, 11000, Belgrade, Serbia
| |
Collapse
|
42
|
Zielen S, Duecker RP, Woelke S, Donath H, Bakhtiar S, Buecker A, Kreyenberg H, Huenecke S, Bader P, Mahlaoui N, Ehl S, El-Helou SM, Pietrucha B, Plebani A, van der Flier M, van Aerde K, Kilic SS, Reda SM, Kostyuchenko L, McDermott E, Galal N, Pignata C, Pérez JLS, Laws HJ, Niehues T, Kutukculer N, Seidel MG, Marques L, Ciznar P, Edgar JDM, Soler-Palacín P, von Bernuth H, Krueger R, Meyts I, Baumann U, Kanariou M, Grimbacher B, Hauck F, Graf D, Granado LIG, Prader S, Reisli I, Slatter M, Rodríguez-Gallego C, Arkwright PD, Bethune C, Deripapa E, Sharapova SO, Lehmberg K, Davies EG, Schuetz C, Kindle G, Schubert R. Simple Measurement of IgA Predicts Immunity and Mortality in Ataxia-Telangiectasia. J Clin Immunol 2021; 41:1878-1892. [PMID: 34477998 PMCID: PMC8604875 DOI: 10.1007/s10875-021-01090-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 06/25/2021] [Indexed: 11/29/2022]
Abstract
Patients with ataxia-telangiectasia (A-T) suffer from progressive cerebellar ataxia, immunodeficiency, respiratory failure, and cancer susceptibility. From a clinical point of view, A-T patients with IgA deficiency show more symptoms and may have a poorer prognosis. In this study, we analyzed mortality and immunity data of 659 A-T patients with regard to IgA deficiency collected from the European Society for Immunodeficiencies (ESID) registry and from 66 patients with classical A-T who attended at the Frankfurt Goethe-University between 2012 and 2018. We studied peripheral B- and T-cell subsets and T-cell repertoire of the Frankfurt cohort and survival rates of all A-T patients in the ESID registry. Patients with A-T have significant alterations in their lymphocyte phenotypes. All subsets (CD3, CD4, CD8, CD19, CD4/CD45RA, and CD8/CD45RA) were significantly diminished compared to standard values. Patients with IgA deficiency (n = 35) had significantly lower lymphocyte counts compared to A-T patients without IgA deficiency (n = 31) due to a further decrease of naïve CD4 T-cells, central memory CD4 cells, and regulatory T-cells. Although both patient groups showed affected TCR-ß repertoires compared to controls, no differences could be detected between patients with and without IgA deficiency. Overall survival of patients with IgA deficiency was significantly diminished. For the first time, our data show that patients with IgA deficiency have significantly lower lymphocyte counts and subsets, which are accompanied with reduced survival, compared to A-T patients without IgA deficiency. IgA, a simple surrogate marker, is indicating the poorest prognosis for classical A-T patients. Both non-interventional clinical trials were registered at clinicaltrials.gov 2012 (Susceptibility to infections in ataxia-telangiectasia; NCT02345135) and 2017 (Susceptibility to Infections, tumor risk and liver disease in patients with ataxia-telangiectasia; NCT03357978)
Collapse
Affiliation(s)
- Stefan Zielen
- Division of Allergology, Pulmonology and Cystic Fibrosis, Department for Children and Adolescents, Goethe University, Frankfurt, Germany
| | - Ruth Pia Duecker
- Division of Allergology, Pulmonology and Cystic Fibrosis, Department for Children and Adolescents, Goethe University, Frankfurt, Germany.
| | - Sandra Woelke
- Division of Allergology, Pulmonology and Cystic Fibrosis, Department for Children and Adolescents, Goethe University, Frankfurt, Germany
| | - Helena Donath
- Division of Allergology, Pulmonology and Cystic Fibrosis, Department for Children and Adolescents, Goethe University, Frankfurt, Germany
| | - Sharhzad Bakhtiar
- Division for Stem Cell Transplantation, Immunology and Intensive Care Unit, Department for Children and Adolescents, Goethe University, Frankfurt, Germany
| | - Aileen Buecker
- Division of Allergology, Pulmonology and Cystic Fibrosis, Department for Children and Adolescents, Goethe University, Frankfurt, Germany
| | - Hermann Kreyenberg
- Division for Stem Cell Transplantation, Immunology and Intensive Care Unit, Department for Children and Adolescents, Goethe University, Frankfurt, Germany
| | - Sabine Huenecke
- Division for Stem Cell Transplantation, Immunology and Intensive Care Unit, Department for Children and Adolescents, Goethe University, Frankfurt, Germany
| | - Peter Bader
- Division for Stem Cell Transplantation, Immunology and Intensive Care Unit, Department for Children and Adolescents, Goethe University, Frankfurt, Germany
| | - Nizar Mahlaoui
- Pediatric Immunology-Hematology and Rheumatology Unit, French National Reference Center for Primary Immune Deficiencies (CEREDIH), Necker Children's University Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Stephan Ehl
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sabine M El-Helou
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- RESIST - Cluster of Excellence 2155 To Hanover Medical School, Satellite Center Freiburg, Freiburg, Germany
- Department of Rheumatology and Immunology, Hannover Medical School, Hannover, Germany
| | - Barbara Pietrucha
- Department of Immunology, The Children's Memorial Health Institute, Av. Dzieci Polskich 20, 04-730, Warsaw, Poland
| | - Alessandro Plebani
- Pediatrics Clinic and Institute for Molecular Medicine A. Nocivelli, Department of Clinical and Experimental Sciences, University of Brescia and ASST-Spedali Civili di Brescia, Brescia, Italy
| | - Michiel van der Flier
- Section Pediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Koen van Aerde
- Department of Pediatrics, Amalia's Children Hospital, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Sara S Kilic
- Department of Pediatric Immunology and Rheumatology, the School of Medicine, Uludag University, Bursa, Turkey
| | - Shereen M Reda
- Department of Pediatrics, Children's Hospital, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Larysa Kostyuchenko
- Center of Pediatric Immunology, Western Ukrainian Specialized Children's Medical Centre, Lviv, Ukraine
| | - Elizabeth McDermott
- Clinical Immunology and Allergy Unit, Nottingham University Hospitals, Nottingham, UK
| | - Nermeen Galal
- Department of Pediatrics, Cairo University Specialized Pediatric Hospital, Cairo, Egypt
| | - Claudio Pignata
- Department of Translational Medical Sciences, Section of Pediatrics, Federico II University, Naples, Italy
| | - Juan Luis Santos Pérez
- Infectious Diseases and Immunodeficiencies Unit, Service of Pediatrics, Hospital Universitario Virgen de Las Nieves, Granada, Spain
| | - Hans-Juergen Laws
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Center of Child and Adolescent Health, Heinrich-Heine University, Duesseldorf, Germany
| | - Tim Niehues
- Centre for Child and Adolescent Health, Helios Klinikum Krefeld, Krefeld, Germany
| | - Necil Kutukculer
- Faculty of Medicine, Department of Pediatric Immunology, Ege University, Izmir, Turkey
| | - Markus G Seidel
- Research Unit for Pediatric Hematology and Immunology, Division of Pediatric Hemato-Oncology, Department of Pediatrics and Adolescent Medicine, Medical University Graz, Graz, Austria
| | - Laura Marques
- Pediatric Department, Infectious Diseases and Immunodeficiencies Unit, Porto Hospital Center, Porto, Portugal
| | - Peter Ciznar
- Pediatric Department, Faculty of Medicine, Children University Hospital in Bratislava, Comenius University in Bratislava, Bratislava, Slovakia
| | | | - Pere Soler-Palacín
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Vall D'Hebron Research Institute, Hospital Universitari Vall D'Hebron, Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain
| | - Horst von Bernuth
- Department of Pediatric Pneumology, Immunology and Intensive Care, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Department of Immunology, Labor Berlin Charité - Vivantes GmbH, Berlin, Germany
- Berlin Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Renate Krueger
- Department of Pediatric Pneumology, Immunology and Intensive Care, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Isabelle Meyts
- Department of Pediatrics, University Hospitals Leuven, and the Laboratory for Inborn Errors of Immunity, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Ulrich Baumann
- Department of Paediatric Pulmonology, Allergy and Neonatology, Hannover Medical School, Hannover, Germany
| | - Maria Kanariou
- Department of Immunology and Histocompatibility, Centre for Primary Immunodeficiencies, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - Bodo Grimbacher
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- RESIST - Cluster of Excellence 2155 To Hanover Medical School, Satellite Center Freiburg, Freiburg, Germany
- DZIF-German Center for Infection Research, Satellite Center Freiburg, Freiburg, Germany; Centre for Integrative Biological Signalling Studies, Albert-Ludwigs University, Freiburg, Germany
| | - Fabian Hauck
- Department of Pediatrics, Dr. Von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Dagmar Graf
- MVZ Dr. Reising-Ackermann Und Kollegen, Leipzig, Germany
| | - Luis Ignacio Gonzalez Granado
- Primary Immunodeficiencies Unit, Pediatrics, Hospital 12 Octubre, Complutense University School of Medicine, Madrid, Spain
| | - Seraina Prader
- Division of Immunology and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Ismail Reisli
- Department of Pediatrics, Division of Pediatric Immunology and Allergy, Meram Medical Faculty, Necmettin Erbakan University, Konya, Turkey
| | - Mary Slatter
- Primary Immunodeficiency Group, Paediatric Immunology and Haematopoietic Stem Cell Transplantation, Translational and Clinical Research Institute, Great North Childrens' Hospital, Newcastle University, Newcastle upon Tyne, UK
| | - Carlos Rodríguez-Gallego
- Department of Immunology, Dr. Negrin University Hospital of Gran Canaria, University Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain
| | - Peter D Arkwright
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester and Royal Manchester Children's Hospital, Manchester, UK
| | | | - Elena Deripapa
- National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Svetlana O Sharapova
- Research Department, Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk region, Minsk, Belarus
| | - Kai Lehmberg
- Division for Pediatric Stem Cell Transplantation and Immunology, Clinic for Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - E Graham Davies
- Great Ormond Street Hospital and UCL Great Ormond Street Institute of Child Health, London, UK
| | - Catharina Schuetz
- Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Gerhard Kindle
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- FREEZE Biobank, Center for Biobanking, Medical Center and Faculty of Medicine, University of Freiburg, Breisacher Str. 115, 79106, Freiburg, Germany
| | - Ralf Schubert
- Division of Allergology, Pulmonology and Cystic Fibrosis, Department for Children and Adolescents, Goethe University, Frankfurt, Germany
| |
Collapse
|
43
|
Lee HY, Jang DH, Kim JW, Lee DW, Jang JH, Joo J. Compound heterozygous variants including a novel copy number variation in a child with atypical ataxia-telangiectasia: a case report. BMC Med Genomics 2021; 14:204. [PMID: 34404412 PMCID: PMC8371864 DOI: 10.1186/s12920-021-01053-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 08/10/2021] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Ataxia-telangiectasia is a rare autosomal recessive, neurodegenerative disorder caused by alterations in the ATM gene. The majority of ATM pathogenic variants are frameshift or nonsense variants which are predicted to truncate the whole ATM protein. Herein, we report on an ataxia telangiectasia child with atypical phenotype who was identified as compound heterozygous for two ATM variants involving a previously described pathogenic single nucleotide variation (SNV) and a novel copy number variation (CNV). CASE PRESENTATION A 6-year-old boy presented with delayed development and oculomotor apraxia. Brain magnetic resonance imaging showed interval development of mild atrophy in the cerebellum. Serum alpha fetoprotein level was in normal range. Next-generation sequencing and single-nucleotide polymorphism array tests were performed. Next-generation sequencing revealed a heterozygous nonsense pathogenic variant in ATM, c.742C > T (p.Arg248Ter) inherited from the father. Single-nucleotide polymorphism array revealed a compound heterozygous CNV, arr[GRCh37] 11q22.3(10851766-108183226) × 1, 31460 bp (exons 24-40 deletion of ATM) inherited from the mother, which was validated by reverse transcription-polymerase chain reaction analysis (RT-PCR). We demonstrated that this variant (NM_000051.4:c.3403_6006del) generated a product of in-frame deletion of exon 24-40 of ATM (p.Ser1135_Gln2002del). CONCLUSIONS The compound heterozygosity for ATM variants involving a previously described pathogenic SNV and a novel CNV may be associated with the atypical clinical manifestations. This clinical report extends the genetic and phenotypic spectrum of ATM pathogenic variants in atypical ataxia-telangiectasia, thus making implementation of advanced analysis beyond the routine next-generation sequencing an important consideration in diagnosis and rehabilitation services for children with ataxia-telangiectasia.
Collapse
Affiliation(s)
- Hoo Young Lee
- TBI Rehabilitation Center, National Traffic Injury Rehabilitation Hospital, Gyeonggi-do, Republic of Korea
- Department of Rehabilitation Medicine, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
- National Traffic Injury Rehabilitation Research Institute, National Traffic Injury Rehabilitation Hospital, Yangpyeong, Korea
| | - Dae-Hyun Jang
- Department of Rehabilitation Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 56, Dongsu-ro, Bupyeong-gu, Incheon, 21431, Republic of Korea.
| | - Jae-Won Kim
- Department of Rehabilitation Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 56, Dongsu-ro, Bupyeong-gu, Incheon, 21431, Republic of Korea
| | - Dong-Woo Lee
- Department of Rehabilitation Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 56, Dongsu-ro, Bupyeong-gu, Incheon, 21431, Republic of Korea
| | - Ja-Hyun Jang
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Seoul, Korea
| | - Joungsu Joo
- EONE-DIAGNOMICS Genome Center, Incheon, Republic of Korea
| |
Collapse
|
44
|
Amirifar P, Ranjouri MR, Pashangzadeh S, Lavin M, Yazdani R, Moeini Shad T, Mehrmohamadi M, Salami F, Delavari S, Moamer S, Aghamohammadi A, Akrami SM, Abolhassani H. The spectrum of ATM gene mutations in Iranian patients with ataxia-telangiectasia. Pediatr Allergy Immunol 2021; 32:1316-1326. [PMID: 33547824 DOI: 10.1111/pai.13461] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/19/2021] [Accepted: 01/26/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND Ataxia-telangiectasia (A-T) is a rare genetic disorder characterized by a distinct range of clinical manifestations, including progressive ataxia, immunodeficiency, and radiosensitivity. METHODS Clinical data, laboratory results, and genetic data were collected from forty-three A-T patients. Whole-exome sequencing and Sanger sequencing were done for the patients clinically diagnosed as suffering from A-T. Based on the phenotype severity of the disease, patients were divided into severe and mild subgroups. RESULTS The median (IQR) age of diagnosis in this cohort was 5 (3-7) years, and various types of clinical manifestations, including fever (P =.005), lower respiratory tract infection (P = .033), diarrhea (P = .014), and hepatosplenomegaly (P = .032), were significantly higher among patients diagnosed with the severe phenotype. Our results showed a correlation between phenotype severity and mutation type. The chance of having severe phenotype in patients who have severe mutations, including frameshift and nonsense, was 7.3 times higher than in patients who were categorized in the mild genotype group (odds ratio = 7.3, P = .006). Thirty-four types of mutations including 9 novel mutations were observed in our study. CONCLUSION Molecular analysis provides the opportunity for accurate diagnosis and timely management in A-T patients with chronic progressive disease, especially infections and the risk of malignancies. This study characterizes for the first time the broad spectrum of mutations and phenotypes in Iranian A-T patients, which is required for carrier detection and reducing the burden of disease in the future using the patients' families and for the public healthcare system.
Collapse
Affiliation(s)
- Parisa Amirifar
- Department of Medical Genetics, School of Medicine, Tehran University of medical sciences, Tehran, Iran.,Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Mohammad Reza Ranjouri
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Salar Pashangzadeh
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Martin Lavin
- University of Queensland Centre for Clinical Research (UQCCR), University of Queensland, Brisbane, QLD, Australia
| | - Reza Yazdani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Tannaz Moeini Shad
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran.,Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran
| | - Mahya Mehrmohamadi
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Fereshte Salami
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Samaneh Delavari
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Soraya Moamer
- School of Public Health, Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Asghar Aghamohammadi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Seyed Mohammad Akrami
- Department of Medical Genetics, School of Medicine, Tehran University of medical sciences, Tehran, Iran
| | - Hassan Abolhassani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran.,Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| |
Collapse
|
45
|
Rodriguez RS, Cornejo-Olivas M, Bazalar-Montoya J, Sarapura-Castro E, Torres-Loarte M, Rivera-Valdivia A, Sullcahuaman-Allende Y. Novel Compound Heterozygous Mutation c.3955_3958dup and c.5825C>T in the ATM Gene: Clinical Evidence of Ataxia-Telangiectasia and Cancer in a Peruvian Family. Mol Syndromol 2021; 12:289-293. [PMID: 34602955 PMCID: PMC8436714 DOI: 10.1159/000515696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 03/05/2021] [Indexed: 11/19/2022] Open
Abstract
Pathogenic and likely pathogenic variants in the ATM gene are associated both with Ataxia-telangiectasia disease or ATM syndrome and an increased cancer risk for heterozygous carriers. We identified a novel compound heterozygous mutation c.3955_3958dup (p.Asp1320delinsValTer) and c.5825C>T (p.Ala1942Val) in the ATM gene in a Peruvian patient with progressive ataxia combined with other movement disorders, mild conjunctival telangiectasia and increased alpha-fetoprotein, without history of recurrent infection or immunodeficiency. We also determined the carrier status of the family members, and we were able to detect gastric and breast cancer at an early stage during the cancer risk assessment in the mother (c.3955_3958dup). Here, we describe clinical evidence for the novel compound heterozygous mutation and c.3955_3958dup not previously reported.
Collapse
Affiliation(s)
- Richard S. Rodriguez
- Neurogenetics Research Center, Instituto Nacional de Ciencias Neurológicas, Lima, Peru
- Equipo funcional de Genética y Biología Molecular, Instituto Nacional de Enfermedades Neoplásicas, Lima, Peru
- Facultad de Medicina, Universidad Peruana Cayetano Heredia, Lima, Peru
- *Richard S. Rodriguez,
| | - Mario Cornejo-Olivas
- Neurogenetics Research Center, Instituto Nacional de Ciencias Neurológicas, Lima, Peru
- Center for Global Health, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Jeny Bazalar-Montoya
- Neurogenetics Research Center, Instituto Nacional de Ciencias Neurológicas, Lima, Peru
| | | | - Mariela Torres-Loarte
- IGENOMICA, Instituto de Investigación Genómica, Lima, Peru
- School of Medicine, Universidad Peruana de Ciencias Aplicadas, Lima, Peru
| | - Andrea Rivera-Valdivia
- Neurogenetics Research Center, Instituto Nacional de Ciencias Neurológicas, Lima, Peru
- Fogarty Interdisciplinary Cerebrovascular Diseases Training Program in South America, Lima, Peru
- Fogarty Northern Pacific Global Health Fellows Program, Seattle, Washington, USA
| | - Yasser Sullcahuaman-Allende
- Equipo funcional de Genética y Biología Molecular, Instituto Nacional de Enfermedades Neoplásicas, Lima, Peru
- Facultad de Medicina, Universidad Peruana Cayetano Heredia, Lima, Peru
- IGENOMICA, Instituto de Investigación Genómica, Lima, Peru
| |
Collapse
|
46
|
Neurofilament light chain: A novel blood biomarker in patients with ataxia telangiectasia. Eur J Paediatr Neurol 2021; 32:93-97. [PMID: 33878608 DOI: 10.1016/j.ejpn.2021.04.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 04/01/2021] [Accepted: 04/02/2021] [Indexed: 12/13/2022]
Abstract
AIM Neurofilament light chain (NfL) is recognized as a blood biomarker in several neurodegenerative disorders, but its possible relevance in Ataxia Telangiectasia (A-T) has not been examined. The aim of this study was to investigate the biomarker potential of blood NfL concentrations in patients with A-T. METHOD Blood (serum/plasma) NfL concentrations were measured in a Dutch and an American cohort of patients with A-T and compared to control values. Additionally, correlations between NfL concentrations and disease phenotype (classic versus variant A-T) were studied. RESULTS In total 40 (23 Dutch and 17 American) patients with A-T (32 patients with classic A-T and 7 patients with variant A-T) and 17 age- and gender-matched (to the American cohort) healthy controls were included in this study. Blood (serum/plasma) NfL concentrations in patients with classic A-T and age ≤ 12 years were elevated compared to age matched controls. Patients with classic A-T > 12 years also had higher blood (serum/plasma) NfL concentrations (here: compared to age-dependent reference values found in the literature). Patients with classic A-T had higher blood (serum/plasma) NfL concentrations than patients with the variant phenotype. CONCLUSION Blood (serum/plasma) NfL concentrations are elevated in patients with classic A-T and appear to correlate with the disease phenotype (classic versus variant). Therefore, blood (serum/plasma) NfL may be a promising biomarker in A-T.
Collapse
|
47
|
Veenhuis SJG, van OS NJH, van Gerven MHJC, van Haaften L, Mulder EH, Weemaes CMR, Willemsen MAAP. Dysarthria in children and adults with ataxia telangiectasia. Dev Med Child Neurol 2021; 63:450-456. [PMID: 33521952 PMCID: PMC7986845 DOI: 10.1111/dmcn.14811] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/08/2020] [Indexed: 12/25/2022]
Abstract
AIM To investigate the characteristics and severity of dysarthria in children and adults with ataxia telangiectasia. METHOD All children and adults with ataxia telangiectasia who visited our multidisciplinary outpatient clinic for ataxia telangiectasia were asked to participate in this study, which took place in March 2019. To evaluate dysarthria, we used the Radboud Dysarthria Assessment in adults (older than 18y) and the paediatric Radboud Dysarthria Assessment in children (5-18y), including the observational tasks 'conversation' and 'reading', and the speech-related maximum performance tasks 'repetition rate', 'phonation time', 'fundamental frequency range', and 'phonation volume'. Speech intelligibility was measured using the Intelligibility in Context Scale. RESULTS Twenty-two individuals (15 children [5-17y], seven adults [19-47y]; 14 males and eight females; mean age 19y, SD 15y 2mo) participated. Dysarthria was present in all participants and characterized by ataxic components in adults and similar uncontrolled movements in children. In most participants, speech was mildly to mildly/severely affected. Almost all participants had an abnormal score for at least one maximum performance task. INTERPRETATION Dysarthria in ataxia telangiectasia is characterized by uncontrolled, ataxic, and involuntary movements, resulting in monotonous, unstable, slow, hypernasal, and chanted speech. WHAT THIS PAPER ADDS Dysarthria in ataxia telangiectasia is characterized by uncontrolled, ataxic, and involuntary movements. Dysarthria in ataxia telangiectasia results in monotonous, unstable, slow, hypernasal, and chanted speech. Dysarthria in ataxia telangiectasia can be assessed using the Radboud Dysarthria Assessment and the paediatric Radboud Dysarthria Assessment.
Collapse
Affiliation(s)
- Stefanie J G Veenhuis
- Department of PediatricsAmalia Children’s HospitalRadboud University Medical CenterNijmegenthe Netherlands
| | - Nienke J H van OS
- Department of Pediatric NeurologyRadboud University Medical CenterNijmegenthe Netherlands
| | - Marjo H J C van Gerven
- Donders Institute for BrainCognition and BehaviourDepartment of RehabilitationRadboud UniversityNijmegenthe Netherlands
| | - Leenke van Haaften
- Donders Institute for BrainCognition and BehaviourDepartment of RehabilitationRadboud UniversityNijmegenthe Netherlands
| | - Elisabeth H Mulder
- Donders Institute for BrainCognition and BehaviourDepartment of RehabilitationRadboud UniversityNijmegenthe Netherlands
- Faculty of Arts at Radboud UniversityNijmegenthe Netherlands
| | - Corry M R Weemaes
- Department of Pediatric Infectious Diseases and ImmunologyRadboud University Medical CenterNijmegenthe Netherlands
| | - Michèl A A P Willemsen
- Department of PediatricsAmalia Children’s HospitalRadboud University Medical CenterNijmegenthe Netherlands
- Department of Pediatric NeurologyRadboud University Medical CenterNijmegenthe Netherlands
| |
Collapse
|
48
|
Zimmermann MT, Mathison AJ, Stodola T, Evans DB, Abrudan JL, Demos W, Tschannen M, Aldakkak M, Geurts J, Lomberk G, Tsai S, Urrutia R. Interpreting Sequence Variation in PDAC-Predisposing Genes Using a Multi-Tier Annotation Approach Performed at the Gene, Patient, and Cohort Level. Front Oncol 2021; 11:606820. [PMID: 33747920 PMCID: PMC7973372 DOI: 10.3389/fonc.2021.606820] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 01/21/2021] [Indexed: 12/12/2022] Open
Abstract
We investigated germline variation in pancreatic ductal adenocarcinoma (PDAC) predisposition genes in 535 patients, using a custom-built panel and a new complementary bioinformatic approach. Our panel assessed genes belonging to DNA repair, cell cycle checkpoints, migration, and preneoplastic pancreatic conditions. Our bioinformatics approach integrated annotations of variants by using data derived from both germline and somatic references. This integrated approach with expanded evidence enabled us to consider patterns even among private mutations, supporting a functional role for certain alleles, which we believe enhances individualized medicine beyond classic gene-centric approaches. Concurrent evaluation of three levels of evidence, at the gene, sample, and cohort level, has not been previously done. Overall, we identified in PDAC patient germline samples, 12% with mutations previously observed in pancreatic cancers, 23% with mutations previously discovered by sequencing other human tumors, and 46% with mutations with germline associations to cancer. Non-polymorphic protein-coding pathogenic variants were found in 18.4% of patient samples. Moreover, among patients with metastatic PDAC, 16% carried at least one pathogenic variant, and this subgroup was found to have an improved overall survival (22.0 months versus 9.8; p=0.008) despite a higher pre-treatment CA19-9 level (p=0.02). Genetic alterations in DNA damage repair genes were associated with longer overall survival among patients who underwent resection surgery (92 months vs. 46; p=0.06). ATM alterations were associated with more frequent metastatic stage (p = 0.04) while patients with BRCA1 or BRCA2 alterations had improved overall survival (79 months vs. 39; p=0.05). We found that mutations in genes associated with chronic pancreatitis were more common in non-white patients (p<0.001) and associated with longer overall survival (52 months vs. 26; p=0.004), indicating the need for greater study of the relationship among these factors. More than 90% of patients were found to have variants of uncertain significance, which is higher than previously reported. Furthermore, we generated 3D models for selected mutant proteins, which suggested distinct mechanisms underlying their dysfunction, likely caused by genetic alterations. Notably, this type of information is not predictable from sequence alone, underscoring the value of structural bioinformatics to improve genomic interpretation. In conclusion, the variation in PDAC predisposition genes appears to be more extensive than anticipated. This information adds to the growing body of literature on the genomic landscape of PDAC and brings us closer to a more widespread use of precision medicine for this challenging disease.
Collapse
Affiliation(s)
- Michael T Zimmermann
- Bioinformatics Research and Development Laboratory, Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI, United States.,Clinical and Translational Sciences Institute, Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Angela J Mathison
- Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, United States.,Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Tim Stodola
- Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Douglas B Evans
- Division of Surgical Oncology, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, United States.,LaBahn Pancreatic Cancer Program, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Jenica L Abrudan
- Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Wendy Demos
- Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Michael Tschannen
- Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Mohammed Aldakkak
- Division of Surgical Oncology, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Jennifer Geurts
- Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI, United States.,Genetic Counseling Program, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Gwen Lomberk
- Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, United States.,Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI, United States.,LaBahn Pancreatic Cancer Program, Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Susan Tsai
- Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, United States.,Division of Surgical Oncology, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, United States.,LaBahn Pancreatic Cancer Program, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Raul Urrutia
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, United States.,Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, United States.,Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI, United States.,LaBahn Pancreatic Cancer Program, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
49
|
ATM: Translating the DNA Damage Response to Adaptive Immunity. Trends Immunol 2021; 42:350-365. [PMID: 33663955 DOI: 10.1016/j.it.2021.02.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/22/2021] [Accepted: 02/01/2021] [Indexed: 12/20/2022]
Abstract
ATM is often dubbed the master regulator of the DNA double stranded break (DSB) response. Since proper induction and repair of DNA DSBs forms the core of immunological diversity, it is surprising that patients with ataxia telangiectasia generally have a mild immunodeficiency in contrast to other DSB repair syndromes. In this review, we address this discrepancy by delving into the functions of ATM in DSB repair and cell cycle control and translate these to adaptive immunity. We conclude that ATM, despite its myriad functions, is not an absolute requirement for acquiring sufficient levels of immunological diversity to prevent severe viral and opportunistic infections. There is, however, a more clinically pronounced antibody deficiency in ataxia telangiectasia due to disturbed class switch recombination.
Collapse
|
50
|
Cao J, Tan RYC, Li S, Courtney E, Goh RCH, Fan BE, Sommat K, Nadarajah R, Ngeow J. Identifying ataxia-telangiectasia in cancer patients: Novel insights from an interesting case and review of literature. Clin Case Rep 2021; 9:995-1009. [PMID: 33598286 PMCID: PMC7869391 DOI: 10.1002/ccr3.3543] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/05/2020] [Accepted: 10/19/2020] [Indexed: 11/19/2022] Open
Abstract
Timely genetic testing leading to early diagnosis of A-T is crucial due to its plethora of implications on clinical management, particularly in those who develop malignancies. Thus, clinicians have to be astute in identifying diagnostic clues of A-T.
Collapse
Affiliation(s)
- Jinyi Cao
- Division of Medical OncologyNational Cancer Centre SingaporeSingaporeSingapore
| | - Ryan Ying Cong Tan
- Division of Medical OncologyNational Cancer Centre SingaporeSingaporeSingapore
- Department of Obstetrics & GynaecologySingapore General HospitalSingaporeSingapore
- Oncology Academic Clinical ProgramDuke‐NUS Graduate Medical SchoolSingaporeSingapore
| | - Shao‐Tzu Li
- Cancer Genetics ServiceDivision of Medical OncologyNational Cancer Centre SingaporeSingaporeSingapore
| | - Eliza Courtney
- Cancer Genetics ServiceDivision of Medical OncologyNational Cancer Centre SingaporeSingaporeSingapore
| | | | - Bingwen Eugene Fan
- Department of HaematologyTan Tock Seng HospitalSingaporeSingapore
- Department of Laboratory MedicineKhoo Teck Puat HospitalSingaporeSingapore
- Yong Loo Lin School of MedicineSingaporeSingapore
- Lee Kong Chian School of MedicineSingaporeSingapore
| | - Kiattisa Sommat
- Division of Radiation OncologyNational Cancer Centre SingaporeSingaporeSingapore
| | | | - Joanne Ngeow
- Division of Medical OncologyNational Cancer Centre SingaporeSingaporeSingapore
- Oncology Academic Clinical ProgramDuke‐NUS Graduate Medical SchoolSingaporeSingapore
- Cancer Genetics ServiceDivision of Medical OncologyNational Cancer Centre SingaporeSingaporeSingapore
- Yong Loo Lin School of MedicineSingaporeSingapore
- Lee Kong Chian School of MedicineSingaporeSingapore
| |
Collapse
|