1
|
Singh S, Pezeshkpoor B, Jamil MA, Dodt J, Sharma A, Ramar V, Ivaskevicius V, Hethershaw E, Philippou H, Pavlova A, Oldenburg J, Biswas A. Heterozygosity in factor XIII genes and the manifestation of mild inherited factor XIII deficiency. J Thromb Haemost 2024; 22:379-393. [PMID: 37832789 DOI: 10.1016/j.jtha.2023.09.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/15/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023]
Abstract
BACKGROUND The characterization of inherited mild factor XIII deficiency is more imprecise than its rare, inherited severe forms. It is known that heterozygosity at FXIII genetic loci results in mild FXIII deficiency, characterized by circulating FXIII activity levels ranging from 20% to 60%. There exists a gap in information on 1) how genetic heterozygosity renders clinical bleeding manifestations among these individuals and 2) the reversal of unexplained bleeding upon FXIII administration in mild FXIII-deficient individuals. OBJECTIVES To assess the prevalence and burden of mild FXIII deficiency among the apparently healthy German-Caucasian population and correlate it with genetic heterozygosity at FXIII and fibrinogen gene loci. METHODS Peripheral blood was collected from 752 donors selected from the general population with essentially no bleeding complications to ensure asymptomatic predisposition. These were assessed for FXIII and fibrinogen activity, and FXIII and fibrinogen genes were resequenced using next-generation sequencing. For comparison, a retrospective analysis was performed on a cohort of mild inherited FXIII deficiency patients referred to us. RESULTS The prevalence of mild FXIII deficiency was high (∼0.8%) among the screened German-Caucasian population compared with its rare-severe forms. Although no new heterozygous missense variants were found, certain combinations were relatively dominant/prevalent among the mild FXIII-deficient individuals. CONCLUSION This extensive, population-based quasi-experimental approach revealed that the burden of heterozygosity in FXIII and fibrinogen gene loci causes the clinical manifestation of inherited mild FXIII deficiency, resulting in ''unexplained bleeding'' upon provocation.
Collapse
Affiliation(s)
- Sneha Singh
- Institute for Experimental Hematology and Transfusion Medicine, University Hospital of Bonn, Bonn, North-Rheine Westfalen, Germany
| | - Behnaz Pezeshkpoor
- Institute for Experimental Hematology and Transfusion Medicine, University Hospital of Bonn, Bonn, North-Rheine Westfalen, Germany
| | - Muhammad Ahmer Jamil
- Institute for Experimental Hematology and Transfusion Medicine, University Hospital of Bonn, Bonn, North-Rheine Westfalen, Germany
| | | | - Amit Sharma
- Department of Hematology, All India Institute of Medical Sciences, New Delhi, India
| | - Vasanth Ramar
- Institute for Experimental Hematology and Transfusion Medicine, University Hospital of Bonn, Bonn, North-Rheine Westfalen, Germany
| | - Vytautas Ivaskevicius
- Institute for Experimental Hematology and Transfusion Medicine, University Hospital of Bonn, Bonn, North-Rheine Westfalen, Germany
| | - Emma Hethershaw
- Division of Cardiovascular and Diabetes Research, School of Medicine, University of Leeds, Leeds, United Kingdom
| | - Helen Philippou
- Division of Cardiovascular and Diabetes Research, School of Medicine, University of Leeds, Leeds, United Kingdom
| | - Anna Pavlova
- Institute for Experimental Hematology and Transfusion Medicine, University Hospital of Bonn, Bonn, North-Rheine Westfalen, Germany
| | - Johannes Oldenburg
- Institute for Experimental Hematology and Transfusion Medicine, University Hospital of Bonn, Bonn, North-Rheine Westfalen, Germany
| | - Arijit Biswas
- Institute for Experimental Hematology and Transfusion Medicine, University Hospital of Bonn, Bonn, North-Rheine Westfalen, Germany.
| |
Collapse
|
2
|
Javed H, Singh S, Urs SUR, Oldenburg J, Biswas A. Genetic landscape in coagulation factor XIII associated defects – Advances in coagulation and beyond. Blood Rev 2022; 59:101032. [PMID: 36372609 DOI: 10.1016/j.blre.2022.101032] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022]
Abstract
Coagulation factor XIII (FXIII) acts as a fine fulcrum in blood plasma that maintains the balance between bleeding and thrombosis by covalently crosslinking the pre-formed fibrin clot into an insoluble one that is resistant to premature fibrinolysis. In plasma, FXIII circulates as a pro-transglutaminase complex composed of the dimeric catalytic FXIII-A encoded by the F13A1 gene and dimeric carrier/regulatory FXIII-B subunits encoded by the F13B gene. Growing evidence accumulated over decades of exhaustive research shows that not only does FXIII play major roles in both pathological extremes of hemostasis i.e. bleeding and thrombosis, but that it is, in fact, a pleiotropic protein with physiological roles beyond coagulation. However, the current FXIII genetic-epidemiological literature is overwhelmingly derived from the bleeding pathology associated with its deficiency. In this article we review the current clinical, functional, and molecular understanding of this fascinating multifaceted protein, especially putting into the same perspective its genetic landscape.
Collapse
|
3
|
Li B, Bechtler C, Jenny L, Ricklin D, Schroeder V. Exploring the function of factor XIII free B subunit: Interactions with complement factors and a novel approach to identify potential binding partners. Res Pract Thromb Haemost 2022; 6:e12766. [PMID: 35873217 PMCID: PMC9301527 DOI: 10.1002/rth2.12766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/30/2022] [Accepted: 06/16/2022] [Indexed: 11/24/2022] Open
Abstract
Background The factor XIII (FXIII)-B subunit has a critical function as a carrier protein to stabilize FXIII-A in plasma and supply it to its main substrate, fibrinogen. However, the function of the excess free FXIII-B circulating in plasma is still elusive. Objectives In the present study, we explored potential interactions of free FXIII-B with complement factors and searched for novel binding partners. Methods We tested for cofactor activity in the degradation of complement C3b and C4b and used ELISA- and surface plasmon resonance-based binding assays to investigate interactions between FXIII-B and complement components. We performed immunoprecipitation and mass spectrometry analysis to identify potential binding partners of free FXIII-B in freshly drawn plasma samples. Results FXIII-B did not exhibit cofactor activity in the degradation of C3b and C4b similar to factor H and C4b-binding protein, nor did it bind to complement factors to a relevant extent. Identification of proteins potentially binding to free FXIII-B revealed high interindividual variation. We confirmed α2-macroglobulin (α2MG) as a candidate, although direct interactions or functional effects remain to be validated. Conclusions Our study reveals that free FXIII-B has no direct role in regulating the complement system, despite a structural similarity to major complement regulators. Further studies are needed to validate α2MG as a binding partner and explore potential functional consequences of this binding.
Collapse
Affiliation(s)
- Bojun Li
- Experimental Haemostasis Group, Department for BioMedical Research DBMRUniversity of BernBernSwitzerland
| | - Clément Bechtler
- Molecular Pharmacy Group, Department of Pharmaceutical SciencesUniversity of BaselBaselSwitzerland
| | - Lorenz Jenny
- Experimental Haemostasis Group, Department for BioMedical Research DBMRUniversity of BernBernSwitzerland
| | - Daniel Ricklin
- Molecular Pharmacy Group, Department of Pharmaceutical SciencesUniversity of BaselBaselSwitzerland
| | - Verena Schroeder
- Experimental Haemostasis Group, Department for BioMedical Research DBMRUniversity of BernBernSwitzerland
| |
Collapse
|
4
|
Singh S, Akhter MS, Dodt J, Volkers P, Reuter A, Reinhart C, Krettler C, Oldenburg J, Biswas A. Identification of Potential Novel Interacting Partners for Coagulation Factor XIII B (FXIII-B) Subunit, a Protein Associated with a Rare Bleeding Disorder. Int J Mol Sci 2019; 20:ijms20112682. [PMID: 31159152 PMCID: PMC6600159 DOI: 10.3390/ijms20112682] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 05/28/2019] [Accepted: 05/29/2019] [Indexed: 12/28/2022] Open
Abstract
Coagulation factor XIII (FXIII) is a plasma-circulating heterotetrameric pro-transglutaminase complex that is composed of two catalytic FXIII-A and two protective/regulatory FXIII-B subunits. FXIII acts by forming covalent cross-links within a preformed fibrin clots to prevent its premature fibrinolysis. The FXIII-A subunit is known to have pleiotropic roles outside coagulation, but the FXIII-B subunit is a relatively unexplored entity, both structurally as well as functionally. Its discovered roles so far are limited to that of the carrier/regulatory protein of its partner FXIII-A subunit. In the present study, we have explored the co-presence of protein excipients in commercial FXIII plasma concentrate FibrogamminP by combination of protein purification and mass spectrometry-based verification. Complement factor H was one of the co-excipients observed in this analysis. This was followed by performing pull down assays from plasma in order to detect the putative novel interacting partners for the FXIII-B subunit. Complement system proteins, like complement C3 and complement C1q, were amongst the proteins that were pulled down. The only protein that was observed in both experimental set ups was alpha-2-macroglobulin, which might therefore be a putative interacting partner of the FXIII/FXIII-B subunit. Future functional investigations will be needed to understand the physiological significance of this association.
Collapse
Affiliation(s)
- Sneha Singh
- Institute of Experimental Hematology and Transfusion Medicine, University Clinic Bonn, 53127 Bonn, Germany.
| | - Mohammad Suhail Akhter
- Institute of Experimental Hematology and Transfusion Medicine, University Clinic Bonn, 53127 Bonn, Germany.
- College of Applied Medical Sciences, Jazan University, 82911 Jazan, Saudi Arabia.
| | | | | | | | - Christoph Reinhart
- Department of Molecular Membrane Biology, Max-Planck Institute for Biophysics, Max-Von Laue Str 3, 60438 Frankfurt am Main, Germany.
| | - Christoph Krettler
- Department of Molecular Membrane Biology, Max-Planck Institute for Biophysics, Max-Von Laue Str 3, 60438 Frankfurt am Main, Germany.
| | - Johannes Oldenburg
- Institute of Experimental Hematology and Transfusion Medicine, University Clinic Bonn, 53127 Bonn, Germany.
| | - Arijit Biswas
- Institute of Experimental Hematology and Transfusion Medicine, University Clinic Bonn, 53127 Bonn, Germany.
| |
Collapse
|
5
|
Disruption of Structural Disulfides of Coagulation FXIII-B Subunit; Functional Implications for a Rare Bleeding Disorder. Int J Mol Sci 2019; 20:ijms20081956. [PMID: 31013569 PMCID: PMC6514982 DOI: 10.3390/ijms20081956] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 04/18/2019] [Accepted: 04/18/2019] [Indexed: 12/13/2022] Open
Abstract
Congenital FXIII deficiency is a rare bleeding disorder in which mutations are detected in F13A1 and F13B genes that express the two subunits of coagulation FXIII, the catalytic FXIII-A, and protective FXIII-B. Mutations in FXIII-B subunit are considerably rarer compared to FXIII-A. Three mutations in the F13B gene have been reported on its structural disulfide bonds. In the present study, we investigate the structural and functional importance of all 20 structural disulfide bonds in FXIII-B subunit. All disulfide bonds were ablated by individually mutating one of its contributory cysteine’s, and these variants were transiently expressed in HEK293t cell lines. The expression products were studied for stability, secretion, the effect on oligomeric state, and on FXIII-A activation. The structural flexibility of these disulfide bonds was studied using classical MD simulation performed on a FXIII-B subunit monomer model. All 20 FXIII-B were found to be important for the secretion and stability of the protein since ablation of any of these led to a secretion deficit. However, the degree of effect that the disruption of disulfide bond had on the protein differed between individual disulfide bonds reflecting a functional hierarchy/diversity within these disulfide bonds.
Collapse
|
6
|
Akhter MS, Singh S, Yadegari H, Ivaskevicius V, Oldenburg J, Biswas A. Exploring the structural similarity yet functional distinction between coagulation factor XIII-B and complement factor H sushi domains. J Thromb Thrombolysis 2019; 48:95-102. [PMID: 30915671 DOI: 10.1007/s11239-019-01841-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Coagulation factor XIII (FXIII) covalently crosslinks pre-formed fibrin clots preventing their premature fibrinolysis. In plasma, FXIII circulates as a zymogenic heterotetramer composed of catalytic FXIII-A subunits, and carrier/regulatory FXIII-B subunits. FXIII-A is a well characterized component of this complex, and has been associated with several pleiotropic roles outside coagulation as well. In comparison only protective/regulatory roles towards the FXIII-A subunit have been identified for FXIII-B. Strong homology between FXIII-B and complement regulator Complement factor H suggests a putative role of FXIII-B in complement activation. In the current study we have analyzed the similarities and yet functional divergence of these two proteins using in silico sequence alignment and structural analysis. We have evaluated complement activation post reconstitution of FXIII components into FXIII deficient and CFH deficient plasma. We have also transiently expressed FXIII-B in SH-SY5Y cell lines and evaluated its effect on the endogenous complement activation. Our investigations show no effect of FXIII-B subunit on the rate of complement activation. Therefore we conclude that at a physiological level, FXIII-B subunit plays no role in the complement system, although a vestigial function in altered pathological states might still exist.
Collapse
Affiliation(s)
- Mohammad Suhail Akhter
- Institute of Experimental Haematology and Transfusion Medicine, University Clinic Bonn, Sigmund Freud Str. 25, 53127, Bonn, Germany
- College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Sneha Singh
- Institute of Experimental Haematology and Transfusion Medicine, University Clinic Bonn, Sigmund Freud Str. 25, 53127, Bonn, Germany
| | - Hamideh Yadegari
- Institute of Experimental Haematology and Transfusion Medicine, University Clinic Bonn, Sigmund Freud Str. 25, 53127, Bonn, Germany
| | - Vytautas Ivaskevicius
- Institute of Experimental Haematology and Transfusion Medicine, University Clinic Bonn, Sigmund Freud Str. 25, 53127, Bonn, Germany
| | - Johannes Oldenburg
- Institute of Experimental Haematology and Transfusion Medicine, University Clinic Bonn, Sigmund Freud Str. 25, 53127, Bonn, Germany
| | - Arijit Biswas
- Institute of Experimental Haematology and Transfusion Medicine, University Clinic Bonn, Sigmund Freud Str. 25, 53127, Bonn, Germany.
| |
Collapse
|
7
|
Thomas A, Biswas A, Dodt J, Philippou H, Hethershaw E, Ensikat HJ, Ivaskevicius V, Oldenburg J. Coagulation Factor XIIIA Subunit Missense Mutations Affect Structure and Function at the Various Steps of Factor XIII Action. Hum Mutat 2016; 37:1030-41. [PMID: 27363989 DOI: 10.1002/humu.23041] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 06/06/2016] [Accepted: 06/17/2016] [Indexed: 11/06/2022]
Abstract
Inherited defects of coagulation Factor XIII (FXIII) can be categorized into severe and mild forms based on their genotype and phenotype. Heterozygous mutations occurring in F13A1 and F13B genes causing mild FXIII deficiency have been reported only in the last few years primarily because the mild FXIII deficiency patients are often asymptomatic unless exposed to some kind of a physical trauma. However, unlike mutations causing severe FXIII deficiency, many of these mutations have not been comprehensively characterized based on expression studies. In our current article, we have transiently expressed 16 previously reported missense mutations detected in the F13A1 gene of patients with mild FXIII deficiency and analyzed their respective expression phenotype. Complimentary to expression analysis, we have used in silico analysis to understand and explain some of the in vitro findings. The expression phenotype has been evaluated with a number of expression phenotype determining assays. We observe that the mutations influence different aspects of FXIII function and can be functionally categorized on the basis of their expression phenotype. We identified mutations which even in heterozygous form would have strong impact on the functional status of the protein (namely mutations p.Arg716Gly, p.Arg704Gln, p.Gln602Lys, p.Leu530Pro, p.His343Tyr, p.Pro290Arg, and p.Arg172Gln).
Collapse
Affiliation(s)
- Anne Thomas
- Institute of Experimental Haematology and Transfusion Medicine, University Clinic Bonn, Bonn, Germany
| | - Arijit Biswas
- Institute of Experimental Haematology and Transfusion Medicine, University Clinic Bonn, Bonn, Germany.
| | | | - Helen Philippou
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Emma Hethershaw
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | | | - Vytautas Ivaskevicius
- Institute of Experimental Haematology and Transfusion Medicine, University Clinic Bonn, Bonn, Germany
| | - Johannes Oldenburg
- Institute of Experimental Haematology and Transfusion Medicine, University Clinic Bonn, Bonn, Germany.
| |
Collapse
|
8
|
Gupta S, Biswas A, Akhter MS, Krettler C, Reinhart C, Dodt J, Reuter A, Philippou H, Ivaskevicius V, Oldenburg J. Revisiting the mechanism of coagulation factor XIII activation and regulation from a structure/functional perspective. Sci Rep 2016; 6:30105. [PMID: 27453290 PMCID: PMC4958977 DOI: 10.1038/srep30105] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 06/27/2016] [Indexed: 12/17/2022] Open
Abstract
The activation and regulation of coagulation Factor XIII (FXIII) protein has been the subject of active research for the past three decades. Although discrete evidence exists on various aspects of FXIII activation and regulation a combinatorial structure/functional view in this regard is lacking. In this study, we present results of a structure/function study of the functional chain of events for FXIII. Our study shows how subtle chronological submolecular changes within calcium binding sites can bring about the detailed transformation of the zymogenic FXIII to its activated form especially in the context of FXIIIA and FXIIIB subunit interactions. We demonstrate what aspects of FXIII are important for the stabilization (first calcium binding site) of its zymogenic form and the possible modes of deactivation (thrombin mediated secondary cleavage) of the activated form. Our study for the first time provides a structural outlook of the FXIIIA2B2 heterotetramer assembly, its association and dissociation. The FXIIIB subunits regulatory role in the overall process has also been elaborated upon. In summary, this study provides detailed structural insight into the mechanisms of FXIII activation and regulation that can be used as a template for the development of future highly specific therapeutic inhibitors targeting FXIII in pathological conditions like thrombosis.
Collapse
Affiliation(s)
- Sneha Gupta
- Institute of Experimental Haematology and Transfusion Medicine, University Clinic Bonn, 53127 Bonn, Germany
| | - Arijit Biswas
- Institute of Experimental Haematology and Transfusion Medicine, University Clinic Bonn, 53127 Bonn, Germany
| | - Mohammad Suhail Akhter
- Institute of Experimental Haematology and Transfusion Medicine, University Clinic Bonn, 53127 Bonn, Germany
| | - Christoph Krettler
- Department of Molecular Membrane Biology, Max Planck institute of Biophysics, 60439 Frankfurt, Germany
| | - Christoph Reinhart
- Department of Molecular Membrane Biology, Max Planck institute of Biophysics, 60439 Frankfurt, Germany
| | | | | | - Helen Philippou
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Vytautas Ivaskevicius
- Institute of Experimental Haematology and Transfusion Medicine, University Clinic Bonn, 53127 Bonn, Germany
| | - Johannes Oldenburg
- Institute of Experimental Haematology and Transfusion Medicine, University Clinic Bonn, 53127 Bonn, Germany
| |
Collapse
|
9
|
Thomas A, Biswas A, Ivaskevicius V, Oldenburg J. Structural and functional influences of coagulation factor XIII subunit B heterozygous missense mutants. Mol Genet Genomic Med 2015; 3:258-71. [PMID: 26247044 PMCID: PMC4521963 DOI: 10.1002/mgg3.138] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 02/06/2015] [Accepted: 02/06/2015] [Indexed: 12/17/2022] Open
Abstract
The coagulation factor XIII(FXIII) is a plasma circulating heterotetrameric protransglutaminase that acts at the end of the coagulation cascade by covalently cross-linking preformed fibrin clots (to themselves and to fibrinolytic inhibitors) in order to stabilize them against fibrinolysis. It circulates in the plasma as a heterotetramer composed of two homomeric catalytic Factor XIIIA2 (FXIIIA2) and two homomeric protective/carrier Factor XIIIB2 subunit (FXIIIB2). Congenital deficiency of FXIII is of two types: severe homozygous/compound heterozygous FXIII deficiency which results in severe bleeding symptoms and mild heterozygous FXIII deficiency which is associated with mild bleeding (only upon trauma) or an asymptomatic phenotype. Defects in the F13B gene (Factor XIIIB subunit) occur more frequently in mild FXIII deficiency patients than in severe FXIII deficiency. We had recently reported secretion-related defects for seven previously reported F13B missense mutations. In the present study we further analyze the underlying molecular pathological mechanisms as well as the heterozygous expression phenotype for these mutations using a combination of in vitro heterologous expression (in HEK293T cells) and confocal microscopy. In combination with the in vitro work we have also performed an in silico solvated molecular dynamic simulation study on previously reported FXIIIB subunit sushi domain homology models in order to predict the putative structure-functional impact of these mutations. We were able to categorize the mutations into the following functional groups that: (1) affect antigenic stability as well as binding to FXIIIA subunit, that is, Cys5Arg, Cys316Phe, and Pro428Ser (2) affect binding to FXIIIA subunit with little or no influence on antigenic stability, that is, Ile81Asn and Val401Gln c) influence neither aspects and are most likely causality linked polymorphisms or functional polymorphisms, that is, Leu116Phe and Val217Ile. The Cys5Arg mutation was the only mutation to show a direct secretion-based defect since the mutated protein was observed to accumulate in the endoplasmic reticulum.
Collapse
Affiliation(s)
- Anne Thomas
- Institute of Experimental Haematology and Transfusion Medicine, University Clinic Bonn 53127, Bonn, Germany
| | - Arijit Biswas
- Institute of Experimental Haematology and Transfusion Medicine, University Clinic Bonn 53127, Bonn, Germany
| | - Vytautas Ivaskevicius
- Institute of Experimental Haematology and Transfusion Medicine, University Clinic Bonn 53127, Bonn, Germany
| | - Johannes Oldenburg
- Institute of Experimental Haematology and Transfusion Medicine, University Clinic Bonn 53127, Bonn, Germany
| |
Collapse
|