1
|
Zolotareva K, Dotsenko PA, Podkolodnyy N, Ivanov R, Makarova AL, Chadaeva I, Bogomolov A, Demenkov PS, Ivanisenko V, Oshchepkov D, Ponomarenko M. Candidate SNP Markers Significantly Altering the Affinity of the TATA-Binding Protein for the Promoters of Human Genes Associated with Primary Open-Angle Glaucoma. Int J Mol Sci 2024; 25:12802. [PMID: 39684516 DOI: 10.3390/ijms252312802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/20/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Primary open-angle glaucoma (POAG) is the most common form of glaucoma. This condition leads to optic nerve degeneration and eventually to blindness. Tobacco smoking, alcohol consumption, fast-food diets, obesity, heavy weight lifting, high-intensity physical exercises, and many other bad habits are lifestyle-related risk factors for POAG. By contrast, moderate-intensity aerobic exercise and the Mediterranean diet can alleviate POAG. In this work, we for the first time estimated the phylostratigraphic age indices (PAIs) of all 153 POAG-related human genes in the NCBI Gene Database. This allowed us to separate them into two groups: POAG-related genes that appeared before and after the phylum Chordata, that is, ophthalmologically speaking, before and after the camera-type eye evolved. Next, in the POAG-related genes' promoters, we in silico predicted all 3835 candidate SNP markers that significantly change the TATA-binding protein (TBP) affinity for these promoters and, through this molecular mechanism, the expression levels of these genes. Finally, we verified our results against five independent web services-PANTHER, DAVID, STRING, MetaScape, and GeneMANIA-as well as the ClinVar database. It was concluded that POAG is likely to be a symptom of the human self-domestication syndrome, a downside of being civilized.
Collapse
Affiliation(s)
- Karina Zolotareva
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences (ICG SB RAS), Novosibirsk 630090, Russia
- Kurchatov Genome Center at the ICG SB RAS, Novosibirsk 630090, Russia
| | - Polina A Dotsenko
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences (ICG SB RAS), Novosibirsk 630090, Russia
- Kurchatov Genome Center at the ICG SB RAS, Novosibirsk 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Nikolay Podkolodnyy
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences (ICG SB RAS), Novosibirsk 630090, Russia
- Kurchatov Genome Center at the ICG SB RAS, Novosibirsk 630090, Russia
- Institute of Computational Mathematics and Mathematical Geophysics, SB RAS, Novosibirsk 630090, Russia
| | - Roman Ivanov
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences (ICG SB RAS), Novosibirsk 630090, Russia
| | - Aelita-Luiza Makarova
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences (ICG SB RAS), Novosibirsk 630090, Russia
| | - Irina Chadaeva
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences (ICG SB RAS), Novosibirsk 630090, Russia
- Kurchatov Genome Center at the ICG SB RAS, Novosibirsk 630090, Russia
| | - Anton Bogomolov
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences (ICG SB RAS), Novosibirsk 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Pavel S Demenkov
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences (ICG SB RAS), Novosibirsk 630090, Russia
- Kurchatov Genome Center at the ICG SB RAS, Novosibirsk 630090, Russia
| | - Vladimir Ivanisenko
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences (ICG SB RAS), Novosibirsk 630090, Russia
- Kurchatov Genome Center at the ICG SB RAS, Novosibirsk 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Dmitry Oshchepkov
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences (ICG SB RAS), Novosibirsk 630090, Russia
- Kurchatov Genome Center at the ICG SB RAS, Novosibirsk 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Mikhail Ponomarenko
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences (ICG SB RAS), Novosibirsk 630090, Russia
- Kurchatov Genome Center at the ICG SB RAS, Novosibirsk 630090, Russia
| |
Collapse
|
2
|
Bogomolov A, Filonov S, Chadaeva I, Rasskazov D, Khandaev B, Zolotareva K, Kazachek A, Oshchepkov D, Ivanisenko VA, Demenkov P, Podkolodnyy N, Kondratyuk E, Ponomarenko P, Podkolodnaya O, Mustafin Z, Savinkova L, Kolchanov N, Tverdokhleb N, Ponomarenko M. Candidate SNP Markers Significantly Altering the Affinity of TATA-Binding Protein for the Promoters of Human Hub Genes for Atherogenesis, Atherosclerosis and Atheroprotection. Int J Mol Sci 2023; 24:ijms24109010. [PMID: 37240358 DOI: 10.3390/ijms24109010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/13/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Atherosclerosis is a systemic disease in which focal lesions in arteries promote the build-up of lipoproteins and cholesterol they are transporting. The development of atheroma (atherogenesis) narrows blood vessels, reduces the blood supply and leads to cardiovascular diseases. According to the World Health Organization (WHO), cardiovascular diseases are the leading cause of death, which has been especially boosted since the COVID-19 pandemic. There is a variety of contributors to atherosclerosis, including lifestyle factors and genetic predisposition. Antioxidant diets and recreational exercises act as atheroprotectors and can retard atherogenesis. The search for molecular markers of atherogenesis and atheroprotection for predictive, preventive and personalized medicine appears to be the most promising direction for the study of atherosclerosis. In this work, we have analyzed 1068 human genes associated with atherogenesis, atherosclerosis and atheroprotection. The hub genes regulating these processes have been found to be the most ancient. In silico analysis of all 5112 SNPs in their promoters has revealed 330 candidate SNP markers, which statistically significantly change the affinity of the TATA-binding protein (TBP) for these promoters. These molecular markers have made us confident that natural selection acts against underexpression of the hub genes for atherogenesis, atherosclerosis and atheroprotection. At the same time, upregulation of the one for atheroprotection promotes human health.
Collapse
Affiliation(s)
- Anton Bogomolov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
| | - Sergey Filonov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
- The Natural Sciences Department, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Irina Chadaeva
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
| | - Dmitry Rasskazov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
| | - Bato Khandaev
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
- The Natural Sciences Department, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Karina Zolotareva
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
- The Natural Sciences Department, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Anna Kazachek
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
- The Natural Sciences Department, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Dmitry Oshchepkov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
| | - Vladimir A Ivanisenko
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
| | - Pavel Demenkov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
| | - Nikolay Podkolodnyy
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
- Institute of Computational Mathematics and Mathematical Geophysics, Novosibirsk 630090, Russia
| | - Ekaterina Kondratyuk
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
| | - Petr Ponomarenko
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
| | - Olga Podkolodnaya
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
| | - Zakhar Mustafin
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
| | - Ludmila Savinkova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
| | - Nikolay Kolchanov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
| | - Natalya Tverdokhleb
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
| | - Mikhail Ponomarenko
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
| |
Collapse
|
3
|
Savina EA, Shumilina TG, Tumanyan VG, Anashkina AA, Il'icheva IA. Core Promoter Regions of Antisense and Long Intergenic Non-Coding RNAs. Int J Mol Sci 2023; 24:ijms24098199. [PMID: 37175907 PMCID: PMC10179571 DOI: 10.3390/ijms24098199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/25/2023] [Accepted: 05/01/2023] [Indexed: 05/15/2023] Open
Abstract
RNA polymerase II (POL II) is responsible for the transcription of messenger RNAs (mRNAs) and long non-coding RNAs (lncRNAs). Previously, we have shown the evolutionary invariance of the structural features of DNA in the POL II core promoters of the precursors of mRNAs. In this work, we have analyzed the POL II core promoters of the precursors of lncRNAs in Homo sapiens and Mus musculus genomes. Structural analysis of nucleotide sequences in positions -50, +30 bp in relation to the TSS have shown the extremely heterogeneous 3D structure that includes two singular regions - hexanucleotide "INR" around the TSS and octanucleotide "TATA-box" at around ~-28 bp upstream. Thus, the 3D structure of core promoters of lncRNA resembles the architecture of the core promoters of mRNAs; however, textual analysis revealed differences between promoters of lncRNAs and promoters of mRNAs, which lies in their textual characteristics; namely, the informational entropy at each position of the nucleotide text of lncRNA core promoters (by the exception of singular regions) is significantly higher than that of the mRNA core promoters. Another distinguishing feature of lncRNA is the extremely rare occurrence in the TATA box of octanucleotides with the consensus sequence. These textual differences can significantly affect the efficiency of the transcription of lncRNAs.
Collapse
Affiliation(s)
- Ekaterina A Savina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova, 32, Moscow 119991, Russia
- Department of Information and Internet Technologies of the Institute of Digital Medicine, Sechenov University, 8-2 Trubetskaya str., Moscow 119991, Russia
| | - Tatiana G Shumilina
- Department of Information and Internet Technologies of the Institute of Digital Medicine, Sechenov University, 8-2 Trubetskaya str., Moscow 119991, Russia
| | - Vladimir G Tumanyan
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova, 32, Moscow 119991, Russia
| | - Anastasia A Anashkina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova, 32, Moscow 119991, Russia
- Department of Information and Internet Technologies of the Institute of Digital Medicine, Sechenov University, 8-2 Trubetskaya str., Moscow 119991, Russia
| | - Irina A Il'icheva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova, 32, Moscow 119991, Russia
| |
Collapse
|
4
|
Vishnevsky O, Chadaeva I, Sharypova E, Khandaev B, Zolotareva K, Kazachek A, Ponomarenko P, Podkolodny N, Rasskazov D, Bogomolov A, Podkolodnaya O, Savinkova L, Zemlyanskaya E, Ponomarenko M. Promoters of genes encoding β-amylase, albumin and globulin in food plants have weaker affinity for TATA-binding protein as compared to non-food plants: in silico analysis. Vavilovskii Zhurnal Genet Selektsii 2022; 26:798-805. [PMID: 36694715 PMCID: PMC9837162 DOI: 10.18699/vjgb-22-96] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 01/06/2023] Open
Abstract
It is generally accepted that during the domestication of food plants, selection was focused on their productivity, the ease of their technological processing into food, and resistance to pathogens and environmental stressors. Besides, the palatability of plant foods and their health benefits could also be subjected to selection by humans in the past. Nonetheless, it is unclear whether in antiquity, aside from positive selection for beneficial properties of plants, humans simultaneously selected against such detrimental properties as allergenicity. This topic is becoming increasingly relevant as the allergization of the population grows, being a major challenge for modern medicine. That is why intensive research by breeders is already underway for creating hypoallergenic forms of food plants. Accordingly, in this paper, albumin, globulin, and β-amylase of common wheat Triticum aestivum L. (1753) are analyzed, which have been identified earlier as targets for attacks by human class E immunoglobulins. At the genomic level, we wanted to find signs of past negative selection against the allergenicity of these three proteins (albumin, globulin, and β-amylase) during the domestication of ancestral forms of modern food plants. We focused the search on the TATA-binding protein (TBP)-binding site because it is located within a narrow region (between positions -70 and -20 relative to the corresponding transcription start sites), is the most conserved, necessary for primary transcription initiation, and is the best-studied regulatory genomic signal in eukaryotes. Our previous studies presented our publicly available Web service Plant_SNP_TATA_Z-tester, which makes it possible to estimate the equilibrium dissociation constant (KD) of TBP complexes with plant proximal promoters (as output data) using 90 bp of their DNA sequences (as input data). In this work, by means of this bioinformatics tool, 363 gene promoter DNA sequences representing 43 plant species were analyzed. It was found that compared with non-food plants, food plants are characterized by significantly weaker affinity of TBP for proximal promoters of their genes homologous to the genes of common-wheat globulin, albumin, and β-amylase (food allergens) (p < 0.01, Fisher's Z-test). This evidence suggests that in the past humans carried out selective breeding to reduce the expression of food plant genes encoding these allergenic proteins.
Collapse
Affiliation(s)
- O.V. Vishnevsky
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russi
| | - I.V. Chadaeva
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - E.B. Sharypova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - B.M. Khandaev
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - K.A. Zolotareva
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - A.V. Kazachek
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - P.M. Ponomarenko
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - N.L. Podkolodny
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, RussiaInstitute of Computational Mathematics and Mathematical Geophysics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - D.A. Rasskazov
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - A.G. Bogomolov
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - O.A. Podkolodnaya
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - L.K. Savinkova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - E.V. Zemlyanskaya
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - M.P. Ponomarenko
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
5
|
Transcription Factors as Important Regulators of Changes in Behavior through Domestication of Gray Rats: Quantitative Data from RNA Sequencing. Int J Mol Sci 2022; 23:ijms232012269. [PMID: 36293128 PMCID: PMC9603081 DOI: 10.3390/ijms232012269] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/28/2022] [Accepted: 10/12/2022] [Indexed: 11/16/2022] Open
Abstract
Studies on hereditary fixation of the tame-behavior phenotype during animal domestication remain relevant and important because they are of both basic research and applied significance. In model animals, gray rats Rattus norvegicus bred for either an enhancement or reduction in defensive response to humans, for the first time, we used high-throughput RNA sequencing to investigate differential expression of genes in tissue samples from the tegmental region of the midbrain in 2-month-old rats showing either tame or aggressive behavior. A total of 42 differentially expressed genes (DEGs; adjusted p-value < 0.01 and fold-change > 2) were identified, with 20 upregulated and 22 downregulated genes in the tissue samples from tame rats compared with aggressive rats. Among them, three genes encoding transcription factors (TFs) were detected: Ascl3 was upregulated, whereas Fos and Fosb were downregulated in tissue samples from the brains of tame rats brain. Other DEGs were annotated as associated with extracellular matrix components, transporter proteins, the neurotransmitter system, signaling molecules, and immune system proteins. We believe that these DEGs encode proteins that constitute a multifactorial system determining the behavior for which the rats have been artificially selected. We demonstrated that several structural subtypes of E-box motifs—known as binding sites for many developmental TFs of the bHLH class, including the ASCL subfamily of TFs—are enriched in the set of promoters of the DEGs downregulated in the tissue samples of tame rats’. Because ASCL3 may act as a repressor on target genes of other developmental TFs of the bHLH class, we hypothesize that the expression of TF gene Ascl3 in tame rats indicates longer neurogenesis (as compared to aggressive rats), which is a sign of neoteny and domestication. Thus, our domestication model shows a new function of TF ASCL3: it may play the most important role in behavioral changes in animals.
Collapse
|
6
|
Rasskazov D, Chadaeva I, Sharypova E, Zolotareva K, Khandaev B, Ponomarenko P, Podkolodnyy N, Tverdokhleb N, Vishnevsky O, Bogomolov A, Podkolodnaya O, Savinkova L, Zemlyanskaya E, Golubyatnikov V, Kolchanov N, Ponomarenko M. Plant_SNP_TATA_Z-Tester: A Web Service That Unequivocally Estimates the Impact of Proximal Promoter Mutations on Plant Gene Expression. Int J Mol Sci 2022; 23:ijms23158684. [PMID: 35955817 PMCID: PMC9369029 DOI: 10.3390/ijms23158684] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 11/16/2022] Open
Abstract
Synthetic targeted optimization of plant promoters is becoming a part of progress in mainstream postgenomic agriculture along with hybridization of cultivated plants with wild congeners, as well as marker-assisted breeding. Therefore, here, for the first time, we compiled all the experimental data—on mutational effects in plant proximal promoters on gene expression—that we could find in PubMed. Some of these datasets cast doubt on both the existence and the uniqueness of the sought solution, which could unequivocally estimate effects of proximal promoter mutation on gene expression when plants are grown under various environmental conditions during their development. This means that the inverse problem under study is ill-posed. Furthermore, we found experimental data on in vitro interchangeability of plant and human TATA-binding proteins allowing the application of Tikhonov’s regularization, making this problem well-posed. Within these frameworks, we created our Web service Plant_SNP_TATA_Z-tester and then determined the limits of its applicability using those data that cast doubt on both the existence and the uniqueness of the sought solution. We confirmed that the effects (of proximal promoter mutations on gene expression) predicted by Plant_SNP_TATA_Z-tester correlate statistically significantly with all the experimental data under study. Lastly, we exemplified an application of Plant_SNP_TATA_Z-tester to agriculturally valuable mutations in plant promoters.
Collapse
Affiliation(s)
| | - Irina Chadaeva
- Institute of Cytology and Genetics, 630090 Novosibirsk, Russia
| | | | | | - Bato Khandaev
- Institute of Cytology and Genetics, 630090 Novosibirsk, Russia
| | | | - Nikolay Podkolodnyy
- Institute of Cytology and Genetics, 630090 Novosibirsk, Russia
- Institute of Computational Mathematics and Mathematical Geophysics, 630090 Novosibirsk, Russia
| | | | - Oleg Vishnevsky
- Institute of Cytology and Genetics, 630090 Novosibirsk, Russia
| | - Anton Bogomolov
- Institute of Cytology and Genetics, 630090 Novosibirsk, Russia
| | | | | | | | | | | | - Mikhail Ponomarenko
- Institute of Cytology and Genetics, 630090 Novosibirsk, Russia
- Correspondence: ; Tel.: +7-(383)-363-4963 (ext. 1311)
| |
Collapse
|
7
|
Sharypova EB, Drachkova IA, Chadaeva IV, Ponomarenko MP, Savinkova LK. An experimental study of the effects of SNPs in the TATA boxes of the <i>GRIN1, ASCL3</i> and <i>NOS1</i> genes on interactions with the TATA-binding protein. Vavilovskii Zhurnal Genet Selektsii 2022; 26:227-233. [PMID: 35774364 PMCID: PMC9167820 DOI: 10.18699/vjgb-22-29] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/27/2021] [Accepted: 12/30/2021] [Indexed: 12/12/2022] Open
Abstract
The GRIN1, ASCL3, and NOS1 genes are associated with various phenotypes of neuropsychiatric disorders. For instance, these genes contribute to the development of schizophrenia, Alzheimer’s and Parkinson’s diseases, and epilepsy. These genes are also associated with various cancers. For example, ASCL3 is overexpressed in breast cancer, and NOS1, in ovarian cancer cell lines. Based on our findings and literature data, we had previously obtained results suggesting that the single-nucleotide polymorphisms (SNPs) that disrupt erythropoiesis are highly likely to be associated with cognitive and neuropsychiatric disorders in humans. In the present work, using SNP_TATA_Z-tester, we investigated the influence of unannotated SNPs in the TATA boxes of the promoters of the GRIN1, ASCL3, and NOS1 genes (which are involved in neuropsychiatric disorders and cancers) on the interaction of the TATA boxes with the TATA-binding protein (TBP). Double-stranded oligodeoxyribonucleotides identical to the TATA-containing promoter regions of the GRIN1, ASCL3, and NOS1 genes (reference and minor alleles) and recombinant human TBP were employed to study in vitro (by an electrophoretic mobility shift assay) kinetic characteristics of the formation of TBP–TATA complexes and their affinity. It was found, for example, that allele A of rs1402667001 in the GRIN1 promoter increases TBP–TATA affinity 1.4-fold, whereas allele C in the TATA box of the ASCL3 promoter decreases the affinity 1.4-fold. The lifetime of the complexes in both cases decreased by ~20 % due to changes in the rates of association and dissociation of the complexes (ka and kd, respectively). Our experimental results are consistent with the literature showing GRIN1 underexpression in schizophrenic disorders as well as an increased risk of cervical, bladder, and kidney cancers and lymphoma during ASCL3 underexpression. The effect of allele A of the –27G>A SNP (rs1195040887) in the NOS1 promoter is suggestive of an increased risk of ischemic damage to the brain in carriers. A comparison of experimental TBP–TATA affinity values (KD) of wild-type and minor alleles with predicted ones showed that the data correlate well (linear correlation coefficient r = 0.94, p < 0.01).
Collapse
Affiliation(s)
- E. B. Sharypova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
| | - I. A. Drachkova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
| | - I. V. Chadaeva
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
| | - M. P. Ponomarenko
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
| | - L. K. Savinkova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
| |
Collapse
|
8
|
Cui Z, Tian R, Huang Z, Jin Z, Li L, Liu J, Huang Z, Xie H, Liu D, Mo H, Zhou R, Lang B, Meng B, Weng H, Hu Z. FrCas9 is a CRISPR/Cas9 system with high editing efficiency and fidelity. Nat Commun 2022; 13:1425. [PMID: 35301321 PMCID: PMC8931148 DOI: 10.1038/s41467-022-29089-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 02/28/2022] [Indexed: 12/26/2022] Open
Abstract
Genome editing technologies hold tremendous potential in biomedical research and drug development. Therefore, it is imperative to discover gene editing tools with superior cutting efficiency, good fidelity, and fewer genomic restrictions. Here, we report a CRISPR/Cas9 from Faecalibaculum rodentium, which is characterized by a simple PAM (5'-NNTA-3') and a guide RNA length of 21-22 bp. We find that FrCas9 could achieve comparable efficiency and specificity to SpCas9. Interestingly, the PAM of FrCas9 presents a palindromic sequence, which greatly expands its targeting scope. Due to the PAM sequence, FrCas9 possesses double editing-windows for base editor and could directly target the TATA-box in eukaryotic promoters for TATA-box related diseases. Together, our results broaden the understanding of CRISPR/Cas-mediated genome engineering and establish FrCas9 as a safe and efficient platform for wide applications in research, biotechnology and therapeutics.
Collapse
Affiliation(s)
- Zifeng Cui
- Department of Gynecological oncology, the First Affiliated Hospital, Sun Yat-sen University, Zhongshan 2nd Road, Yuexiu, Guangzhou, 510080, Guangdong, China
| | - Rui Tian
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
- Sun Yat-sen University Nanchang Research Institution, Nanchang, 330200, Jiangxi, China
| | - Zhaoyue Huang
- Department of Gynecological oncology, the First Affiliated Hospital, Sun Yat-sen University, Zhongshan 2nd Road, Yuexiu, Guangzhou, 510080, Guangdong, China
| | - Zhuang Jin
- Department of Gynecological oncology, the First Affiliated Hospital, Sun Yat-sen University, Zhongshan 2nd Road, Yuexiu, Guangzhou, 510080, Guangdong, China
| | - Lifang Li
- Department of Gynecological oncology, the First Affiliated Hospital, Sun Yat-sen University, Zhongshan 2nd Road, Yuexiu, Guangzhou, 510080, Guangdong, China
| | - Jiashuo Liu
- Department of Gynecological oncology, the First Affiliated Hospital, Sun Yat-sen University, Zhongshan 2nd Road, Yuexiu, Guangzhou, 510080, Guangdong, China
| | - Zheying Huang
- Department of Gynecological oncology, the First Affiliated Hospital, Sun Yat-sen University, Zhongshan 2nd Road, Yuexiu, Guangzhou, 510080, Guangdong, China
| | - Hongxian Xie
- Generulor Company Bio-X Lab, Zhuhai, 519000, Guangdong, China
| | - Dan Liu
- Generulor Company Bio-X Lab, Zhuhai, 519000, Guangdong, China
| | - Haiyan Mo
- Generulor Company Bio-X Lab, Zhuhai, 519000, Guangdong, China
| | - Rong Zhou
- Generulor Company Bio-X Lab, Zhuhai, 519000, Guangdong, China
| | - Bin Lang
- School of Health Sciences and Sports, Macao Polytechnic Institute, Macao, 999078, China
| | - Bo Meng
- Department of Pathology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Haiyan Weng
- Department of Pathology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China.
| | - Zheng Hu
- Department of Gynecological oncology, the First Affiliated Hospital, Sun Yat-sen University, Zhongshan 2nd Road, Yuexiu, Guangzhou, 510080, Guangdong, China.
- Sun Yat-sen University Nanchang Research Institution, Nanchang, 330200, Jiangxi, China.
| |
Collapse
|
9
|
Stress Reactivity, Susceptibility to Hypertension, and Differential Expression of Genes in Hypertensive Compared to Normotensive Patients. Int J Mol Sci 2022; 23:ijms23052835. [PMID: 35269977 PMCID: PMC8911431 DOI: 10.3390/ijms23052835] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/14/2022] [Accepted: 02/28/2022] [Indexed: 12/14/2022] Open
Abstract
Although half of hypertensive patients have hypertensive parents, known hypertension-related human loci identified by genome-wide analysis explain only 3% of hypertension heredity. Therefore, mainstream transcriptome profiling of hypertensive subjects addresses differentially expressed genes (DEGs) specific to gender, age, and comorbidities in accordance with predictive preventive personalized participatory medicine treating patients according to their symptoms, individual lifestyle, and genetic background. Within this mainstream paradigm, here, we determined whether, among the known hypertension-related DEGs that we could find, there is any genome-wide hypertension theranostic molecular marker applicable to everyone, everywhere, anytime. Therefore, we sequenced the hippocampal transcriptome of tame and aggressive rats, corresponding to low and high stress reactivity, an increase of which raises hypertensive risk; we identified stress-reactivity-related rat DEGs and compared them with their known homologous hypertension-related animal DEGs. This yielded significant correlations between stress reactivity-related and hypertension-related fold changes (log2 values) of these DEG homologs. We found principal components, PC1 and PC2, corresponding to a half-difference and half-sum of these log2 values. Using the DEGs of hypertensive versus normotensive patients (as the control), we verified the correlations and principal components. This analysis highlighted downregulation of β-protocadherins and hemoglobin as whole-genome hypertension theranostic molecular markers associated with a wide vascular inner diameter and low blood viscosity, respectively.
Collapse
|
10
|
Afek A, Shi H, Rangadurai A, Sahay H, Senitzki A, Xhani S, Fang M, Salinas R, Mielko Z, Pufall MA, Poon GMK, Haran TE, Schumacher MA, Al-Hashimi HM, Gordân R. DNA mismatches reveal conformational penalties in protein-DNA recognition. Nature 2020; 587:291-296. [PMID: 33087930 PMCID: PMC7666076 DOI: 10.1038/s41586-020-2843-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 09/17/2020] [Indexed: 12/17/2022]
Abstract
Transcription factors recognize specific genomic sequences to regulate complex gene-expression programs. Although it is well-established that transcription factors bind to specific DNA sequences using a combination of base readout and shape recognition, some fundamental aspects of protein-DNA binding remain poorly understood1,2. Many DNA-binding proteins induce changes in the structure of the DNA outside the intrinsic B-DNA envelope. However, how the energetic cost that is associated with distorting the DNA contributes to recognition has proven difficult to study, because the distorted DNA exists in low abundance in the unbound ensemble3-9. Here we use a high-throughput assay that we term SaMBA (saturation mismatch-binding assay) to investigate the role of DNA conformational penalties in transcription factor-DNA recognition. In SaMBA, mismatched base pairs are introduced to pre-induce structural distortions in the DNA that are much larger than those induced by changes in the Watson-Crick sequence. Notably, approximately 10% of mismatches increased transcription factor binding, and for each of the 22 transcription factors that were examined, at least one mismatch was found that increased the binding affinity. Mismatches also converted non-specific sites into high-affinity sites, and high-affinity sites into 'super sites' that exhibit stronger affinity than any known canonical binding site. Determination of high-resolution X-ray structures, combined with nuclear magnetic resonance measurements and structural analyses, showed that many of the DNA mismatches that increase binding induce distortions that are similar to those induced by protein binding-thus prepaying some of the energetic cost incurred from deforming the DNA. Our work indicates that conformational penalties are a major determinant of protein-DNA recognition, and reveals mechanisms by which mismatches can recruit transcription factors and thus modulate replication and repair activities in the cell10,11.
Collapse
Affiliation(s)
- Ariel Afek
- Center for Genomic and Computational Biology, Duke University School of Medicine, Durham, NC, USA
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, USA
| | - Honglue Shi
- Department of Chemistry, Duke University, Durham, NC, USA
| | - Atul Rangadurai
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA
| | - Harshit Sahay
- Center for Genomic and Computational Biology, Duke University School of Medicine, Durham, NC, USA
- Program in Computational Biology and Bioinformatics, Duke University School of Medicine, Durham, NC, USA
| | - Alon Senitzki
- Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Suela Xhani
- Department of Chemistry, Georgia State University, Atlanta, GA, USA
| | - Mimi Fang
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA
| | - Raul Salinas
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA
| | - Zachery Mielko
- Center for Genomic and Computational Biology, Duke University School of Medicine, Durham, NC, USA
- Program in Genetics and Genomics, Duke University School of Medicine, Durham, NC, USA
| | - Miles A Pufall
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA
| | - Gregory M K Poon
- Department of Chemistry, Georgia State University, Atlanta, GA, USA
- Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA
| | - Tali E Haran
- Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Maria A Schumacher
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA
| | - Hashim M Al-Hashimi
- Department of Chemistry, Duke University, Durham, NC, USA.
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA.
| | - Raluca Gordân
- Center for Genomic and Computational Biology, Duke University School of Medicine, Durham, NC, USA.
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, USA.
- Department of Computer Science, Duke University, Durham, NC, USA.
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
11
|
Ponomarenko M, Sharypova E, Drachkova I, Chadaeva I, Arkova O, Podkolodnaya O, Ponomarenko P, Kolchanov N, Savinkova L. Unannotated single nucleotide polymorphisms in the TATA box of erythropoiesis genes show in vitro positive involvements in cognitive and mental disorders. BMC MEDICAL GENETICS 2020; 21:165. [PMID: 33092544 PMCID: PMC7579878 DOI: 10.1186/s12881-020-01106-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 08/11/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND Hemoglobin is a tetramer consisting of two α-chains and two β-chains of globin. Hereditary aberrations in the synthesis of one of the globin chains are at the root of thalassemia, one of the most prevalent monogenic diseases worldwide. In humans, in addition to α- and β-globins, embryonic zeta-globin and fetal γ-globin are expressed. Immediately after birth, the expression of fetal Aγ- and Gγ-globin ceases, and then adult β-globin is mostly expressed. It has been shown that in addition to erythroid cells, hemoglobin is widely expressed in nonerythroid cells including neurons of the cortex, hippocampus, and cerebellum in rodents; embryonic and adult brain neurons in mice; and mesencephalic dopaminergic brain cells in humans, mice, and rats. Lately, there is growing evidence that different forms of anemia (changes in the number and quality of blood cells) may be involved in (or may accompany) the pathogenesis of various cognitive and mental disorders, such as Alzheimer's and Parkinson's diseases, depression of various severity levels, bipolar disorders, and schizophrenia. Higher hemoglobin concentrations in the blood may lead to hyperviscosity, hypovolemia, and lung diseases, which may cause brain hypoxia and anomalies of brain function, which may also result in cognitive deficits. METHODS In this study, a search for unannotated single-nucleotide polymorphisms (SNPs) of erythroid genes was initially performed using our previously created and published SNP-TATA_Z-tester, which is a Web service for computational analysis of a given SNP for in silico estimation of its influence on the affinity of TATA-binding protein (TBP) for TATA and TATA-like sequences. The obtained predictions were finally verified in vitro by an electrophoretic mobility shift assay (EMSA). RESULTS On the basis of these experimental in vitro results and literature data, we studied TATA box SNPs influencing both human erythropoiesis and cognitive abilities. For instance, TBP-TATA affinity in the HbZ promoter decreases 6.6-fold as a result of a substitution in the TATA box (rs113180943), thereby possibly disrupting stage-dependent events of "switching" of hemoglobin genes and thus causing erythroblastosis. Therefore, rs113180943 may be a candidate marker of severe hemoglobinopathies with comorbid cognitive and mental disorders associated with cerebral blood flow disturbances. CONCLUSIONS The literature data and experimental and computations results suggest that the uncovered candidate SNP markers of erythropoiesis anomalies may also be studied in cohorts of patients with cognitive and/or mental disorders with comorbid erythropoiesis diseases in comparison to conventionally healthy volunteers. Research into the regulatory mechanisms by which the identified SNP markers contribute to the development of hemoglobinopathies and of the associated cognitive deficits will allow physicians not only to take timely and adequate measures against hemoglobinopathies but also to implement strategies preventing cognitive and mental disorders.
Collapse
Affiliation(s)
- Mikhail Ponomarenko
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Ave, Novosibirsk, 630090, Russia. .,Novosibirsk State University, 1 Pirogova Street, Novosibirsk, 630090, Russia.
| | - Ekaterina Sharypova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Ave, Novosibirsk, 630090, Russia
| | - Irina Drachkova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Ave, Novosibirsk, 630090, Russia
| | - Irina Chadaeva
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Ave, Novosibirsk, 630090, Russia
| | - Olga Arkova
- Institute of Gene Biology Russian Academy of Sciences, 34/5 Vavilova Street, Moscow, 119334, Russia
| | - Olga Podkolodnaya
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Ave, Novosibirsk, 630090, Russia
| | - Petr Ponomarenko
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Ave, Novosibirsk, 630090, Russia
| | - Nikolay Kolchanov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Ave, Novosibirsk, 630090, Russia
| | - Ludmila Savinkova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Ave, Novosibirsk, 630090, Russia
| |
Collapse
|
12
|
Ponomarenko M, Kleshchev M, Ponomarenko P, Chadaeva I, Sharypova E, Rasskazov D, Kolmykov S, Drachkova I, Vasiliev G, Gutorova N, Ignatieva E, Savinkova L, Bogomolov A, Osadchuk L, Osadchuk A, Oshchepkov D. Disruptive natural selection by male reproductive potential prevents underexpression of protein-coding genes on the human Y chromosome as a self-domestication syndrome. BMC Genet 2020; 21:89. [PMID: 33092533 PMCID: PMC7583315 DOI: 10.1186/s12863-020-00896-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 08/04/2020] [Indexed: 12/30/2022] Open
Abstract
Background In population ecology, the concept of reproductive potential denotes the most vital indicator of chances to produce and sustain a healthy descendant until his/her reproductive maturity under the best conditions. This concept links quality of life and longevity of an individual with disease susceptibilities encoded by his/her genome. Female reproductive potential has been investigated deeply, widely, and comprehensively in the past, but the male one has not received an equal amount of attention. Therefore, here we focused on the human Y chromosome and found candidate single-nucleotide polymorphism (SNP) markers of male reproductive potential. Results Examining in silico (i.e., using our earlier created Web-service SNP_TATA_Z-tester) all 1206 unannotated SNPs within 70 bp proximal promoters of all 63 Y-linked genes, we found 261 possible male-reproductive-potential SNP markers that can significantly alter the binding affinity of TATA-binding protein (TBP) for these promoters. Among them, there are candidate SNP markers of spermatogenesis disorders (e.g., rs1402972626), pediatric cancer (e.g., rs1483581212) as well as male anxiety damaging family relationships and mother’s and children’s health (e.g., rs187456378). First of all, we selectively verified in vitro both absolute and relative values of the analyzed TBP–promoter affinity, whose Pearson’s coefficients of correlation between predicted and measured values were r = 0.84 (significance p < 0.025) and r = 0.98 (p < 0.025), respectively. Next, we found that there are twofold fewer candidate SNP markers decreasing TBP–promoter affinity relative to those increasing it, whereas in the genome-wide norm, SNP-induced damage to TBP–promoter complexes is fourfold more frequent than SNP-induced improvement (p < 0.05, binomial distribution). This means natural selection against underexpression of these genes. Meanwhile, the numbers of candidate SNP markers of an increase and decrease in male reproductive potential were indistinguishably equal to each other (p < 0.05) as if male self-domestication could have happened, with its experimentally known disruptive natural selection. Because there is still not enough scientific evidence that this could have happened, we discuss the human diseases associated with candidate SNP markers of male reproductive potential that may correspond to domestication-related disorders in pets. Conclusions Overall, our findings seem to support a self-domestication syndrome with disruptive natural selection by male reproductive potential preventing Y-linked underexpression of a protein.
Collapse
Affiliation(s)
- Mikhail Ponomarenko
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Ave, Novosibirsk, 630090, Russia. .,Novosibirsk State University, 1, Pirogova str., Novosibirsk, 630090, Russia.
| | - Maxim Kleshchev
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Ave, Novosibirsk, 630090, Russia
| | - Petr Ponomarenko
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Ave, Novosibirsk, 630090, Russia
| | - Irina Chadaeva
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Ave, Novosibirsk, 630090, Russia
| | - Ekaterina Sharypova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Ave, Novosibirsk, 630090, Russia
| | - Dmitry Rasskazov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Ave, Novosibirsk, 630090, Russia
| | - Semyon Kolmykov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Ave, Novosibirsk, 630090, Russia
| | - Irina Drachkova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Ave, Novosibirsk, 630090, Russia
| | - Gennady Vasiliev
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Ave, Novosibirsk, 630090, Russia
| | - Natalia Gutorova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Ave, Novosibirsk, 630090, Russia
| | - Elena Ignatieva
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Ave, Novosibirsk, 630090, Russia
| | - Ludmila Savinkova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Ave, Novosibirsk, 630090, Russia
| | - Anton Bogomolov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Ave, Novosibirsk, 630090, Russia
| | - Ludmila Osadchuk
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Ave, Novosibirsk, 630090, Russia
| | - Alexandr Osadchuk
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Ave, Novosibirsk, 630090, Russia
| | - Dmitry Oshchepkov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Ave, Novosibirsk, 630090, Russia
| |
Collapse
|
13
|
Candidate SNP Markers of Atherogenesis Significantly Shifting the Affinity of TATA-Binding Protein for Human Gene Promoters show stabilizing Natural Selection as a Sum of Neutral Drift Accelerating Atherogenesis and Directional Natural Selection Slowing It. Int J Mol Sci 2020; 21:ijms21031045. [PMID: 32033288 PMCID: PMC7037642 DOI: 10.3390/ijms21031045] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/03/2020] [Accepted: 02/04/2020] [Indexed: 12/15/2022] Open
Abstract
(1) Background: The World Health Organization (WHO) regards atherosclerosis-related myocardial infarction and stroke as the main causes of death in humans. Susceptibility to atherogenesis-associated diseases is caused by single-nucleotide polymorphisms (SNPs). (2) Methods: Using our previously developed public web-service SNP_TATA_Comparator, we estimated statistical significance of the SNP-caused alterations in TATA-binding protein (TBP) binding affinity for 70 bp proximal promoter regions of the human genes clinically associated with diseases syntonic or dystonic with atherogenesis. Additionally, we did the same for several genes related to the maintenance of mitochondrial genome integrity, according to present-day active research aimed at retarding atherogenesis. (3) Results: In dbSNP, we found 1186 SNPs altering such affinity to the same extent as clinical SNP markers do (as estimated). Particularly, clinical SNP marker rs2276109 can prevent autoimmune diseases via reduced TBP affinity for the human MMP12 gene promoter and therefore macrophage elastase deficiency, which is a well-known physiological marker of accelerated atherogenesis that could be retarded nutritionally using dairy fermented by lactobacilli. (4) Conclusions: Our results uncovered SNPs near clinical SNP markers as the basis of neutral drift accelerating atherogenesis and SNPs of genes encoding proteins related to mitochondrial genome integrity and microRNA genes associated with instability of the atherosclerotic plaque as a basis of directional natural selection slowing atherogenesis. Their sum may be stabilizing the natural selection that sets the normal level of atherogenesis.
Collapse
|
14
|
Chadaeva IV, Rasskazov DA, Sharypova EB, Drachkova IA, Oshchepkova EA, Savinkova LK, Ponomarenko PM, Ponomarenko MP, Kolchanov NA, Kozlov VA. Сandidate SNP-markers of rheumatoid arthritis that can significantly alter the affinity of the TATA-binding protein for human gene promoters. Vavilovskii Zhurnal Genet Selektsii 2020. [DOI: 10.18699/vj19.586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Rheumatoid polyarthritis (RA) is an autoimmune disease with autoantibodies, including antibodies to citrullant antigens and proinflammatory cytokines, such as TNF-α and IL-6, which are involved in the induction of chronic synovitis, bone erosion, followed by deformity. Immunopathogenesis is based on the mechanisms of the breakdown of immune tolerance to its own antigens, which is characterized by an increase in the activity of T-effector cells, causing RA symptomatology. At the same time, against the background of such increased activity of effector lymphocytes, a decrease in the activity of a number of regulatory cells, including regulatory T-cells (Treg) and myeloid suppressor cells, is recorded. There is reason to say that it is the change in the activity of suppressor cells that is the leading element in RA pathogenesis. That is why only periods of weakening (remission) of RA are spoken of. According to the more powerful female immune system compared to the male one, the risk of developing RA in women is thrice as high, this risk decreases during breastfeeding and grows during pregnancy as well as after menopause in proportion to the level of sex hormones. It is believed that 50 % of the risk of developing RA depends on the conditions and lifestyle, while the remaining 50 % is dependent on genetic predisposition. That is why, RA fits the main idea of postgenomic predictive-preventive personalized medicine that is to give a chance to those who would like to reduce his/her risk of diseases by bringing his/her conditions and lifestyle in line with the data on his/her genome sequenced. This is very important, since doctors consider RA as one of the most frequent causes of disability. Using the Web service SNP_TATA_Z-tester (http://beehive.bionet.nsc.ru/cgi-bin/mgs/tatascan_fox/start.pl), 227 variants of single nucleotide polymorphism (SNP) of the human gene promoters were studied. As a result, 43 candidate SNP markers for RA that can alter the affinity of the TATA-binding protein (TBP) for the promoters of these genes were predicted.
Collapse
Affiliation(s)
- I. V. Chadaeva
- Institute of Cytology and Genetics, SB RAS; Novosibirsk State University
| | | | | | | | | | | | | | - M. P. Ponomarenko
- Institute of Cytology and Genetics, SB RAS; Novosibirsk State University
| | - N. A. Kolchanov
- Institute of Cytology and Genetics, SB RAS; Novosibirsk State University
| | - V. A. Kozlov
- Research Institute of Fundamental and Clinical Immunology
| |
Collapse
|
15
|
Ponomarenko MP, Rasskazov DA, Chadaeva IV, Sharypova EB, Drachkova IA, Ponomarenko PM, Oshchepkova EA, Savinkova LK, Kolchanov NA. Candidate SNP Markers of Atherosclerosis That May Significantly Change the Affinity of the TATA-Binding Protein for the Human Gene Promoters. RUSS J GENET+ 2019. [DOI: 10.1134/s1022795419090114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
16
|
Chadaeva I, Ponomarenko P, Rasskazov D, Sharypova E, Kashina E, Kleshchev M, Ponomarenko M, Naumenko V, Savinkova L, Kolchanov N, Osadchuk L, Osadchuk A. Natural Selection Equally Supports the Human Tendencies in Subordination and Domination: A Genome-Wide Study With in silico Confirmation and in vivo Validation in Mice. Front Genet 2019; 10:73. [PMID: 30873204 PMCID: PMC6404730 DOI: 10.3389/fgene.2019.00073] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 01/28/2019] [Indexed: 12/29/2022] Open
Abstract
We proposed the following heuristic decision-making rule: "IF {an excess of a protein relating to the nervous system is an experimentally known physiological marker of low pain sensitivity, fast postinjury recovery, or aggressive, risk/novelty-seeking, anesthetic-like, or similar agonistic-intolerant behavior} AND IF {a single nucleotide polymorphism (SNP) causes overexpression of the gene encoding this protein} THEN {this SNP can be a SNP marker of the tendency in dominance} WHILE {underexpression corresponds to subordination} AND vice versa." Using this decision-making rule, we analyzed 231 human genes of neuropeptidergic, non-neuropeptidergic, and neurotrophinergic systems that encode neurotrophic and growth factors, interleukins, neurotransmitters, receptors, transporters, and enzymes. These proteins are known as key factors of human social behavior. We analyzed all the 5,052 SNPs within the 70 bp promoter region upstream of the position where the protein-coding transcript starts, which were retrieved from databases Ensembl and dbSNP using our previously created public Web service SNP_TATA_Comparator (http://beehive.bionet.nsc.ru/cgi-bin/mgs/tatascan/start.pl). This definition of the promoter region includes all TATA-binding protein (TBP)-binding sites. A total of 556 and 552 candidate SNP markers contributing to the dominance and the subordination, respectively, were uncovered. On this basis, we determined that 231 human genes under study are subject to natural selection against underexpression (significance p < 0.0005), which equally supports the human tendencies in domination and subordination such as the norm of a reaction (plasticity) of the human social hierarchy. These findings explain vertical transmission of domination and subordination traits previously observed in rodent models. Thus, the results of this study equally support both sides of the century-old unsettled scientific debate on whether both aggressiveness and the social hierarchy among humans are inherited (as suggested by Freud and Lorenz) or are due to non-genetic social education, when the children are influenced by older individuals across generations (as proposed by Berkowitz and Fromm).
Collapse
Affiliation(s)
- Irina Chadaeva
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | | | | | | | | | - Maxim Kleshchev
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Mikhail Ponomarenko
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Vladimir Naumenko
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | | | - Nikolay Kolchanov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Ludmila Osadchuk
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Alexandr Osadchuk
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
17
|
Chadaeva IV, Ponomarenko PM, Rasskazov DA, Sharypova EB, Kashina EV, Zhechev DA, Drachkova IA, Arkova OV, Savinkova LK, Ponomarenko MP, Kolchanov NA, Osadchuk LV, Osadchuk AV. Candidate SNP markers of reproductive potential are predicted by a significant change in the affinity of TATA-binding protein for human gene promoters. BMC Genomics 2018; 19:0. [PMID: 29504899 PMCID: PMC5836831 DOI: 10.1186/s12864-018-4478-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The progress of medicine, science, technology, education, and culture improves, year by year, quality of life and life expectancy of the populace. The modern human has a chance to further improve the quality and duration of his/her life and the lives of his/her loved ones by bringing their lifestyle in line with their sequenced individual genomes. With this in mind, one of genome-based developments at the junction of personalized medicine and bioinformatics will be considered in this work, where we used two Web services: (i) SNP_TATA_Comparator to search for alleles with a single nucleotide polymorphism (SNP) that alters the affinity of TATA-binding protein (TBP) for the TATA boxes of human gene promoters and (ii) PubMed to look for retrospective clinical reviews on changes in physiological indicators of reproductive potential in carriers of these alleles. RESULTS A total of 126 SNP markers of female reproductive potential, capable of altering the affinity of TBP for gene promoters, were found using the two above-mentioned Web services. For example, 10 candidate SNP markers of thrombosis (e.g., rs563763767) can cause overproduction of coagulation inducers. In pregnant women, Hughes syndrome provokes thrombosis with a fatal outcome although this syndrome can be diagnosed and eliminated even at the earliest stages of its development. Thus, in women carrying any of the above SNPs, preventive treatment of this syndrome before a planned pregnancy can reduce the risk of death. Similarly, seven SNP markers predicted here (e.g., rs774688955) can elevate the risk of myocardial infarction. In line with Bowles' lifespan theory, women carrying any of these SNPs may modify their lifestyle to improve their longevity if they can take under advisement that risks of myocardial infarction increase with age of the mother, total number of pregnancies, in multiple pregnancies, pregnancies under the age of 20, hypertension, preeclampsia, menstrual cycle irregularity, and in women smokers. CONCLUSIONS According to Bowles' lifespan theory-which links reproductive potential, quality of life, and life expectancy-the above information was compiled for those who would like to reduce risks of diseases corresponding to alleles in own sequenced genomes. Candidate SNP markers can focus the clinical analysis of unannotated SNPs, after which they may become useful for people who would like to bring their lifestyle in line with their sequenced individual genomes.
Collapse
Affiliation(s)
- Irina V Chadaeva
- Brain Neurobiology and Neurogenetics Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Ave, Novosibirsk, 630090, Russia
- Novosibirsk State University, Novosibirsk, 630090, Russia
| | | | - Dmitry A Rasskazov
- Brain Neurobiology and Neurogenetics Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Ave, Novosibirsk, 630090, Russia
| | - Ekaterina B Sharypova
- Brain Neurobiology and Neurogenetics Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Ave, Novosibirsk, 630090, Russia
| | - Elena V Kashina
- Brain Neurobiology and Neurogenetics Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Ave, Novosibirsk, 630090, Russia
| | - Dmitry A Zhechev
- Brain Neurobiology and Neurogenetics Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Ave, Novosibirsk, 630090, Russia
| | - Irina A Drachkova
- Brain Neurobiology and Neurogenetics Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Ave, Novosibirsk, 630090, Russia
| | - Olga V Arkova
- Brain Neurobiology and Neurogenetics Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Ave, Novosibirsk, 630090, Russia
- Vector-Best Inc., Koltsovo, Novosibirsk Region, 630559, Russia
| | - Ludmila K Savinkova
- Brain Neurobiology and Neurogenetics Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Ave, Novosibirsk, 630090, Russia
| | - Mikhail P Ponomarenko
- Brain Neurobiology and Neurogenetics Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Ave, Novosibirsk, 630090, Russia.
- Novosibirsk State University, Novosibirsk, 630090, Russia.
| | - Nikolay A Kolchanov
- Brain Neurobiology and Neurogenetics Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Ave, Novosibirsk, 630090, Russia
- Novosibirsk State University, Novosibirsk, 630090, Russia
| | - Ludmila V Osadchuk
- Brain Neurobiology and Neurogenetics Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Ave, Novosibirsk, 630090, Russia
- Novosibirsk State Agricultural University, Novosibirsk, 630039, Russia
| | - Alexandr V Osadchuk
- Brain Neurobiology and Neurogenetics Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Ave, Novosibirsk, 630090, Russia
| |
Collapse
|
18
|
Ponomarenko P, Chadaeva I, Rasskazov DA, Sharypova E, Kashina EV, Drachkova I, Zhechev D, Ponomarenko MP, Savinkova LK, Kolchanov N. Candidate SNP Markers of Familial and Sporadic Alzheimer's Diseases Are Predicted by a Significant Change in the Affinity of TATA-Binding Protein for Human Gene Promoters. Front Aging Neurosci 2017; 9:231. [PMID: 28775688 PMCID: PMC5517495 DOI: 10.3389/fnagi.2017.00231] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 07/04/2017] [Indexed: 12/14/2022] Open
Abstract
While year after year, conditions, quality, and duration of human lives have been improving due to the progress in science, technology, education, and medicine, only eight diseases have been increasing in prevalence and shortening human lives because of premature deaths according to the retrospective official review on the state of US health, 1990-2010. These diseases are kidney cancer, chronic kidney diseases, liver cancer, diabetes, drug addiction, poisoning cases, consequences of falls, and Alzheimer's disease (AD) as one of the leading pathologies. There are familial AD of hereditary nature (~4% of cases) and sporadic AD of unclear etiology (remaining ~96% of cases; i.e., non-familial AD). Therefore, sporadic AD is no longer a purely medical problem, but rather a social challenge when someone asks oneself: “What can I do in my own adulthood to reduce the risk of sporadic AD at my old age to save the years of my lifespan from the destruction caused by it?” Here, we combine two computational approaches for regulatory SNPs: Web service SNP_TATA_Comparator for sequence analysis and a PubMed-based keyword search for articles on the biochemical markers of diseases. Our purpose was to try to find answers to the question: “What can be done in adulthood to reduce the risk of sporadic AD in old age to prevent the lifespan reduction caused by it?” As a result, we found 89 candidate SNP markers of familial and sporadic AD (e.g., rs562962093 is associated with sporadic AD in the elderly as a complication of stroke in adulthood, where natural marine diets can reduce risks of both diseases in case of the minor allele of this SNP). In addition, rs768454929, and rs761695685 correlate with sporadic AD as a comorbidity of short stature, where maximizing stature in childhood and adolescence as an integral indicator of health can minimize (or even eliminate) the risk of sporadic AD in the elderly. After validation by clinical protocols, these candidate SNP markers may become interesting to the general population [may help to choose a lifestyle (in childhood, adolescence, and adulthood) that can reduce the risks of sporadic AD, its comorbidities, and complications in the elderly].
Collapse
Affiliation(s)
- Petr Ponomarenko
- Children's Hospital Los Angeles, University of Southern CaliforniaLos Angeles, CA, United States
| | - Irina Chadaeva
- Division for System Biology, Institute of Cytology and Genetics of Siberian Branch of Russian Academy of SciencesNovosibirsk, Russia.,Faculty of Natural Sciences, Novosibirsk State UniversityNovosibirsk, Russia
| | - Dmitry A Rasskazov
- Division for System Biology, Institute of Cytology and Genetics of Siberian Branch of Russian Academy of SciencesNovosibirsk, Russia
| | - Ekaterina Sharypova
- Division for System Biology, Institute of Cytology and Genetics of Siberian Branch of Russian Academy of SciencesNovosibirsk, Russia
| | - Elena V Kashina
- Division for System Biology, Institute of Cytology and Genetics of Siberian Branch of Russian Academy of SciencesNovosibirsk, Russia
| | - Irina Drachkova
- Division for System Biology, Institute of Cytology and Genetics of Siberian Branch of Russian Academy of SciencesNovosibirsk, Russia
| | - Dmitry Zhechev
- Division for System Biology, Institute of Cytology and Genetics of Siberian Branch of Russian Academy of SciencesNovosibirsk, Russia
| | - Mikhail P Ponomarenko
- Division for System Biology, Institute of Cytology and Genetics of Siberian Branch of Russian Academy of SciencesNovosibirsk, Russia.,Faculty of Natural Sciences, Novosibirsk State UniversityNovosibirsk, Russia
| | - Ludmila K Savinkova
- Division for System Biology, Institute of Cytology and Genetics of Siberian Branch of Russian Academy of SciencesNovosibirsk, Russia
| | - Nikolay Kolchanov
- Division for System Biology, Institute of Cytology and Genetics of Siberian Branch of Russian Academy of SciencesNovosibirsk, Russia.,Faculty of Natural Sciences, Novosibirsk State UniversityNovosibirsk, Russia
| |
Collapse
|
19
|
Evolution of Brain Active Gene Promoters in Human Lineage Towards the Increased Plasticity of Gene Regulation. Mol Neurobiol 2017; 55:1871-1904. [PMID: 28233272 DOI: 10.1007/s12035-017-0427-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 01/26/2017] [Indexed: 01/31/2023]
Abstract
Adaptability to a variety of environmental conditions is a prominent feature of Homo sapiens. We hypothesize that this feature can be explained by evolutionary changes in gene promoters active in the brain prefrontal cortex leading to a more flexible gene regulation network. The genotype-dependent range of gene expression can be broader in humans than in other higher primates. Thus, we searched for specific signatures of evolutionary changes in promoter architectures of multiple hominid genes, including the genes active in human cortical neurons that may indicate an increase of variability of gene expression rather than just changes in the level of expression, such as downregulation or upregulation of the genes. We performed a whole-genome search for genetic-based alterations that may impact gene regulation "flexibility" in a process of hominids evolution, such as (i) CpG dinucleotide content, (ii) predicted nucleosome-DNA dissociation constant, and (iii) predicted affinities for TATA-binding protein (TBP) in gene promoters. We tested all putative promoter regions across the human genome and especially gene promoters in active chromatin state in neurons of prefrontal cortex, the brain region critical for abstract thinking and social and behavioral adaptation. Our data imply that the origin of modern man has been associated with an increase of flexibility of promoter-driven gene regulation in brain. In contrast, after splitting from the ancestral lineages of H. sapiens, the evolution of ape species is characterized by reduced flexibility of gene promoter functioning, underlying reduced variability of the gene expression.
Collapse
|
20
|
Chadaeva IV, Ponomarenko MP, Rasskazov DA, Sharypova EB, Kashina EV, Matveeva MY, Arshinova TV, Ponomarenko PM, Arkova OV, Bondar NP, Savinkova LK, Kolchanov NA. Candidate SNP markers of aggressiveness-related complications and comorbidities of genetic diseases are predicted by a significant change in the affinity of TATA-binding protein for human gene promoters. BMC Genomics 2016; 17:995. [PMID: 28105927 PMCID: PMC5249025 DOI: 10.1186/s12864-016-3353-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Aggressiveness in humans is a hereditary behavioral trait that mobilizes all systems of the body-first of all, the nervous and endocrine systems, and then the respiratory, vascular, muscular, and others-e.g., for the defense of oneself, children, family, shelter, territory, and other possessions as well as personal interests. The level of aggressiveness of a person determines many other characteristics of quality of life and lifespan, acting as a stress factor. Aggressive behavior depends on many parameters such as age, gender, diseases and treatment, diet, and environmental conditions. Among them, genetic factors are believed to be the main parameters that are well-studied at the factual level, but in actuality, genome-wide studies of aggressive behavior appeared relatively recently. One of the biggest projects of the modern science-1000 Genomes-involves identification of single nucleotide polymorphisms (SNPs), i.e., differences of individual genomes from the reference genome. SNPs can be associated with hereditary diseases, their complications, comorbidities, and responses to stress or a drug. Clinical comparisons between cohorts of patients and healthy volunteers (as a control) allow for identifying SNPs whose allele frequencies significantly separate them from one another as markers of the above conditions. Computer-based preliminary analysis of millions of SNPs detected by the 1000 Genomes project can accelerate clinical search for SNP markers due to preliminary whole-genome search for the most meaningful candidate SNP markers and discarding of neutral and poorly substantiated SNPs. RESULTS Here, we combine two computer-based search methods for SNPs (that alter gene expression) {i} Web service SNP_TATA_Comparator (DNA sequence analysis) and {ii} PubMed-based manual search for articles on aggressiveness using heuristic keywords. Near the known binding sites for TATA-binding protein (TBP) in human gene promoters, we found aggressiveness-related candidate SNP markers, including rs1143627 (associated with higher aggressiveness in patients undergoing cytokine immunotherapy), rs544850971 (higher aggressiveness in old women taking lipid-lowering medication), and rs10895068 (childhood aggressiveness-related obesity in adolescence with cardiovascular complications in adulthood). CONCLUSIONS After validation of these candidate markers by clinical protocols, these SNPs may become useful for physicians (may help to improve treatment of patients) and for the general population (a lifestyle choice preventing aggressiveness-related complications).
Collapse
Affiliation(s)
- Irina V. Chadaeva
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Avenue, Novosibirsk, 630090 Russia
- Novosibirsk State University, 2 Pirogova Street, Novosibirsk, 630090 Russia
| | - Mikhail P. Ponomarenko
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Avenue, Novosibirsk, 630090 Russia
- Novosibirsk State University, 2 Pirogova Street, Novosibirsk, 630090 Russia
| | - Dmitry A. Rasskazov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Avenue, Novosibirsk, 630090 Russia
| | - Ekaterina B. Sharypova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Avenue, Novosibirsk, 630090 Russia
| | - Elena V. Kashina
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Avenue, Novosibirsk, 630090 Russia
| | - Marina Yu Matveeva
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Avenue, Novosibirsk, 630090 Russia
| | - Tatjana V. Arshinova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Avenue, Novosibirsk, 630090 Russia
| | - Petr M. Ponomarenko
- Children’s Hospital Los Angeles, 4640 Hollywood Boulevard, University of Southern California, Los Angeles, CA 90027 USA
| | - Olga V. Arkova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Avenue, Novosibirsk, 630090 Russia
- Vector-Best Inc, Koltsovo, Novosibirsk Region 630559 Russia
| | - Natalia P. Bondar
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Avenue, Novosibirsk, 630090 Russia
| | - Ludmila K. Savinkova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Avenue, Novosibirsk, 630090 Russia
| | - Nikolay A. Kolchanov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Avenue, Novosibirsk, 630090 Russia
- Novosibirsk State University, 2 Pirogova Street, Novosibirsk, 630090 Russia
| |
Collapse
|
21
|
Arkova O, Kuznetsov N, Fedorova O, Savinkova L. A real-time study of the interaction of TBP with a TATA box-containing duplex identical to an ancestral or minor allele of human gene LEP or TPI. J Biomol Struct Dyn 2016; 35:3070-3081. [PMID: 27667393 DOI: 10.1080/07391102.2016.1241190] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
It is known that only a single-nucleotide substitution (SNP: a single nucleotide polymorphism) in the sequence of a TATA box can influence the affinity of the interaction of TBP with the TATA box and contribute to the pathogenesis of complex hereditary human diseases and sometimes may be a cause of monogenic diseases (for instance, β-thalassemia). In the present work, we studied the interaction of human TBP with a double-stranded oligodeoxyribonucleotide (ODN) 15 or 26 bp long identical to a TATA box of promoters of a real-life human gene, TPI or LEP, and labeled with fluorophores TAMRA and FAM. To analyze the interaction of TBP with a TATA box of an ancestral or minor allele (SNP in the TATA box) in real time, we used the stopped-flow method with detection of a Förster resonance energy transfer (FRET) signal. The nature of the resulting kinetic curves reflecting changes in the FRET signal (and therefore of DNA conformation during the interaction with TBP) pointed to a multistage mechanism of the formation of the TBP complex with the TATA-containing ODN. The results showed that with the increasing concentration and length of the ODN, heterogeneity of conformational changes (taking place during the first second of the interaction with TBP) in DNA also increases. In contrast to the initial nonspecific interaction, the subsequent phases strictly depend on TBP concentration: at the TBP:ODN ratio of 10:1, the velocity of change of the FRET signal increases approximately 100-fold.
Collapse
Affiliation(s)
- Olga Arkova
- a Institute of Cytology and Genetics (ICG) , Siberian Branch of Russian Academy of Sciences (SB RAS) , Lavrentyev Ave. 10, Novosibirsk 630090 , Russia
| | - Nikita Kuznetsov
- b Institute of Chemical Biology and Fundamental Medicine (ICBFM) , Siberian Branch of Russian Academy of Sciences (SB RAS) , Lavrentyev Ave. 8, Novosibirsk 630090 , Russia
| | - Olga Fedorova
- b Institute of Chemical Biology and Fundamental Medicine (ICBFM) , Siberian Branch of Russian Academy of Sciences (SB RAS) , Lavrentyev Ave. 8, Novosibirsk 630090 , Russia
| | - Ludmila Savinkova
- a Institute of Cytology and Genetics (ICG) , Siberian Branch of Russian Academy of Sciences (SB RAS) , Lavrentyev Ave. 10, Novosibirsk 630090 , Russia
| |
Collapse
|
22
|
Antontseva EV, Matveeva MY, Bondar NP, Kashina EV, Leberfarb EY, Bryzgalov LO, Gervas PA, Ponomareva AA, Cherdyntseva NV, Orlov YL, Merkulova TI. Regulatory single nucleotide polymorphisms at the beginning of intron 2 of the human KRAS gene. J Biosci 2016; 40:873-83. [PMID: 26648033 DOI: 10.1007/s12038-015-9567-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
There are two regulatory single nucleotide polymorphisms (rSNPs) at the beginning of the second intron of the mouse K-ras gene that are strongly associated with lung cancer susceptibility. We performed functional analysis of three SNPs (rs12228277: T greater than A, rs12226937: G greater than A, and rs61761074: T greater than G) located in the same region of human KRAS. We found that rs12228277 and rs61761074 result in differential binding patterns of lung nuclear proteins to oligonucleotide probes corresponding two alternative alleles; in both cases, the transcription factor NF-Y is involved. G greater than A substitution (rs12226937) had no effect on the binding of lung nuclear proteins. However, all the nucleotide substitutions under study showed functional effects in a luciferase reporter assay. Among them, rs61761074 demonstrated a significant correlation with allele frequency in non-small-cell lung cancer (NSCLC). Taken together, the results of our study suggest that a T greater than G substitution at nucleotide position 615 in the second intron of the KRAS gene (rs61761074) may represent a promising genetic marker of NSCLC.
Collapse
Affiliation(s)
- Elena V Antontseva
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Lavrentieva avenue 10, Novosibirsk 630090, Russian Federation
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Ponomarenko MP, Arkova O, Rasskazov D, Ponomarenko P, Savinkova L, Kolchanov N. Candidate SNP Markers of Gender-Biased Autoimmune Complications of Monogenic Diseases Are Predicted by a Significant Change in the Affinity of TATA-Binding Protein for Human Gene Promoters. Front Immunol 2016; 7:130. [PMID: 27092142 PMCID: PMC4819121 DOI: 10.3389/fimmu.2016.00130] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 03/21/2016] [Indexed: 12/17/2022] Open
Abstract
Some variations of human genome [for example, single nucleotide polymorphisms (SNPs)] are markers of hereditary diseases and drug responses. Analysis of them can help to improve treatment. Computer-based analysis of millions of SNPs in the 1000 Genomes project makes a search for SNP markers more targeted. Here, we combined two computer-based approaches: DNA sequence analysis and keyword search in databases. In the binding sites for TATA-binding protein (TBP) in human gene promoters, we found candidate SNP markers of gender-biased autoimmune diseases, including rs1143627 [cachexia in rheumatoid arthritis (double prevalence among women)]; rs11557611 [demyelinating diseases (thrice more prevalent among young white women than among non-white individuals)]; rs17231520 and rs569033466 [both: atherosclerosis comorbid with related diseases (double prevalence among women)]; rs563763767 [Hughes syndrome-related thrombosis (lethal during pregnancy)]; rs2814778 [autoimmune diseases (excluding multiple sclerosis and rheumatoid arthritis) underlying hypergammaglobulinemia in women]; rs72661131 and rs562962093 (both: preterm delivery in pregnant diabetic women); and rs35518301, rs34166473, rs34500389, rs33981098, rs33980857, rs397509430, rs34598529, rs33931746, rs281864525, and rs63750953 (all: autoimmune diseases underlying hypergammaglobulinemia in women). Validation of these predicted candidate SNP markers using the clinical standards may advance personalized medicine.
Collapse
Affiliation(s)
- Mikhail P. Ponomarenko
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Olga Arkova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Dmitry Rasskazov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | | | - Ludmila Savinkova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Nikolay Kolchanov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
24
|
Turnaev II, Rasskazov DA, Arkova OV, Ponomarenko MP, Ponomarenko PM, Savinkova LK, Kolchanov NA. Hypothetical SNP markers that significantly affect the affinity of the TATA-binding protein to VEGFA, ERBB2, IGF1R, FLT1, KDR, and MET oncogene promoters as chemotherapy targets. Mol Biol 2016. [DOI: 10.1134/s0026893316010209] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Arkova OV, Ponomarenko MP, Rasskazov DA, Drachkova IA, Arshinova TV, Ponomarenko PM, Savinkova LK, Kolchanov NA. Obesity-related known and candidate SNP markers can significantly change affinity of TATA-binding protein for human gene promoters. BMC Genomics 2015; 16 Suppl 13:S5. [PMID: 26694100 PMCID: PMC4686794 DOI: 10.1186/1471-2164-16-s13-s5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Obesity affects quality of life and life expectancy and is associated with cardiovascular disorders, cancer, diabetes, reproductive disorders in women, prostate diseases in men, and congenital anomalies in children. The use of single nucleotide polymorphism (SNP) markers of diseases and drug responses (i.e., significant differences of personal genomes of patients from the reference human genome) can help physicians to improve treatment. Clinical research can validate SNP markers via genotyping of patients and demonstration that SNP alleles are significantly more frequent in patients than in healthy people. The search for biomedical SNP markers of interest can be accelerated by computer-based analysis of hundreds of millions of SNPs in the 1000 Genomes project because of selection of the most meaningful candidate SNP markers and elimination of neutral SNPs. RESULTS We cross-validated the output of two computer-based methods: DNA sequence analysis using Web service SNP_TATA_Comparator and keyword search for articles on comorbidities of obesity. Near the sites binding to TATA-binding protein (TBP) in human gene promoters, we found 22 obesity-related candidate SNP markers, including rs10895068 (male breast cancer in obesity); rs35036378 (reduced risk of obesity after ovariectomy); rs201739205 (reduced risk of obesity-related cancers due to weight loss by diet/exercise in obese postmenopausal women); rs183433761 (obesity resistance during a high-fat diet); rs367732974 and rs549591993 (both: cardiovascular complications in obese patients with type 2 diabetes mellitus); rs200487063 and rs34104384 (both: obesity-caused hypertension); rs35518301, rs72661131, and rs562962093 (all: obesity); and rs397509430, rs33980857, rs34598529, rs33931746, rs33981098, rs34500389, rs63750953, rs281864525, rs35518301, and rs34166473 (all: chronic inflammation in comorbidities of obesity). Using an electrophoretic mobility shift assay under nonequilibrium conditions, we empirically validated the statistical significance (α < 0.00025) of the differences in TBP affinity values between the minor and ancestral alleles of 4 out of the 22 SNPs: rs200487063, rs201381696, rs34104384, and rs183433761. We also measured half-life (t1/2), Gibbs free energy change (ΔG), and the association and dissociation rate constants, ka and kd, of the TBP-DNA complex for these SNPs. CONCLUSIONS Validation of the 22 candidate SNP markers by proper clinical protocols appears to have a strong rationale and may advance postgenomic predictive preventive personalized medicine.
Collapse
Affiliation(s)
- Olga V Arkova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyeva Avenue, Novosibirsk 630090, Russia
| | - Mikhail P Ponomarenko
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyeva Avenue, Novosibirsk 630090, Russia
- Novosibirsk State University, 2 Pirogova Street, Novosibirsk 630090, Russia
- Laboratory of Evolutionary Bioinformatics and Theoretical Genetics, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Avenue, Novosibirsk 630090, Russia
| | - Dmitry A Rasskazov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyeva Avenue, Novosibirsk 630090, Russia
| | - Irina A Drachkova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyeva Avenue, Novosibirsk 630090, Russia
| | - Tatjana V Arshinova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyeva Avenue, Novosibirsk 630090, Russia
| | - Petr M Ponomarenko
- Children's Hospital Los Angeles, 4640 Hollywood Boulevard, University of Southern California, Los Angeles, CA 90027, USA
| | - Ludmila K Savinkova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyeva Avenue, Novosibirsk 630090, Russia
| | - Nikolay A Kolchanov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyeva Avenue, Novosibirsk 630090, Russia
- Novosibirsk State University, 2 Pirogova Street, Novosibirsk 630090, Russia
| |
Collapse
|
26
|
Ponomarenko M, Rasskazov D, Arkova O, Ponomarenko P, Suslov V, Savinkova L, Kolchanov N. How to Use SNP_TATA_Comparator to Find a Significant Change in Gene Expression Caused by the Regulatory SNP of This Gene's Promoter via a Change in Affinity of the TATA-Binding Protein for This Promoter. BIOMED RESEARCH INTERNATIONAL 2015; 2015:359835. [PMID: 26516624 PMCID: PMC4609514 DOI: 10.1155/2015/359835] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 08/24/2015] [Indexed: 01/11/2023]
Abstract
The use of biomedical SNP markers of diseases can improve effectiveness of treatment. Genotyping of patients with subsequent searching for SNPs more frequent than in norm is the only commonly accepted method for identification of SNP markers within the framework of translational research. The bioinformatics applications aimed at millions of unannotated SNPs of the "1000 Genomes" can make this search for SNP markers more focused and less expensive. We used our Web service involving Fisher's Z-score for candidate SNP markers to find a significant change in a gene's expression. Here we analyzed the change caused by SNPs in the gene's promoter via a change in affinity of the TATA-binding protein for this promoter. We provide examples and discuss how to use this bioinformatics application in the course of practical analysis of unannotated SNPs from the "1000 Genomes" project. Using known biomedical SNP markers, we identified 17 novel candidate SNP markers nearby: rs549858786 (rheumatoid arthritis); rs72661131 (cardiovascular events in rheumatoid arthritis); rs562962093 (stroke); rs563558831 (cyclophosphamide bioactivation); rs55878706 (malaria resistance, leukopenia), rs572527200 (asthma, systemic sclerosis, and psoriasis), rs371045754 (hemophilia B), rs587745372 (cardiovascular events); rs372329931, rs200209906, rs367732974, and rs549591993 (all four: cancer); rs17231520 and rs569033466 (both: atherosclerosis); rs63750953, rs281864525, and rs34166473 (all three: malaria resistance, thalassemia).
Collapse
Affiliation(s)
- Mikhail Ponomarenko
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Dmitry Rasskazov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Olga Arkova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Petr Ponomarenko
- Children's Hospital Los Angeles, University of Southern California, Los Angeles, CA 90027, USA
| | - Valentin Suslov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Ludmila Savinkova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Nikolay Kolchanov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| |
Collapse
|
27
|
Human Genes Encoding Transcription Factors and Chromatin-Modifying Proteins Have Low Levels of Promoter Polymorphism: A Study of 1000 Genomes Project Data. Int J Genomics 2015; 2015:260159. [PMID: 26417590 PMCID: PMC4568383 DOI: 10.1155/2015/260159] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 07/29/2015] [Indexed: 12/15/2022] Open
Abstract
The expression level of each gene is controlled by its regulatory regions, which determine the precise regulation in a tissue-specific manner, according to the developmental stage of the body and the necessity of a response to external stimuli. Nucleotide substitutions in regulatory gene regions may modify the affinity of transcription factors to their specific DNA binding sites, affecting the transcription rates of genes. In our previous research, we found that genes controlling the sensory perception of smell and genes involved in antigen processing and presentation were overrepresented significantly among genes with high SNP contents in their promoter regions. The goal of our study was to reveal functional features of human genes containing extremely small numbers of SNPs in promoter regions. Two functional groups were found to be overrepresented among genes whose promoters did not contain SNPs: (1) genes involved in gene-specific transcription and (2) genes controlling chromatin organization. We revealed that the 5′-regulatory regions of genes encoding transcription factors and chromatin-modifying proteins were characterized by reduced genetic variability. One important exception from this rule refers to genes encoding transcription factors with zinc-coordinating DNA-binding domains (DBDs), which underwent extensive expansion in vertebrates, particularly, in primate evolution. Hence, we obtained new evidence for evolutionary forces shaping variability in 5′-regulatory regions of genes.
Collapse
|
28
|
Ignatieva EV, Podkolodnaya OA, Orlov YL, Vasiliev GV, Kolchanov NA. Regulatory genomics: Combined experimental and computational approaches. RUSS J GENET+ 2015. [DOI: 10.1134/s1022795415040067] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
Luo C, Sun L, Ma J, Wang J, Qu H, Shu D. Association of single nucleotide polymorphisms in the microRNA miR-1596 locus with residual feed intake in chickens. Anim Genet 2015; 46:265-71. [PMID: 25818998 DOI: 10.1111/age.12284] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2015] [Indexed: 02/04/2023]
Abstract
MicroRNAs are an abundant class of small non-coding RNAs that regulate gene expression. Genetic variations in microRNA sequences may be associated with phenotype differences by influencing the expression of microRNAs and/or their targets. This study identified two single nucleotide polymorphisms (SNPs) in the genomic region of the microRNA miR-1596 locus of chicken. Of the two SNPs, one was 95 bp upstream of miR-1596 (g.5678784A>T) and the other was in the middle of the sequence producing the mature microRNA gga-miR-1596-3p (g.5678944A>G). Genotypic distribution of the two SNPs had large differences among 12 chicken breeds (lines), especially between the fast-growing commercial lines and the slow-growing Chinese indigenous breeds for the g.5678784A>T SNP. Only the g.5678784A>T SNP was significantly associated with residual feed intake (RFI) in the F2 population derived from a fast-growing and a slow-growing broiler as well as in the pure Huiyang bearded chicken. The birds with the AA genotype of the g.5678784A>T SNP had lower RFI and higher expression of the mature gga-miR-1596-3p microRNA of miR-1596 than did those with the other genotypes of the same SNP. We also found that the expression of the mature gga-miR-1596-3p microRNA of miR-1596 was significantly associated with RFI. These findings suggest that miR-1596 can become a candidate gene related to RFI, and its genetic variation may contribute to changes in RFI by altering expression levels of the mature gga-miR-1596-3p microRNA in chicken.
Collapse
Affiliation(s)
- C Luo
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; State Key Laboratory of Livestock and Poultry Breeding, Guangzhou, 510640, China
| | | | | | | | | | | |
Collapse
|