1
|
Cardona Barberán A, Reddy Guggilla R, Colenbier C, Van der Velden E, Rybouchkin A, Stoop D, Leybaert L, Coucke P, Symoens S, Boel A, Vanden Meerschaut F, Heindryckx B. High rate of detected variants in male PLCZ1 and ACTL7A genes causing failed fertilization after ICSI. Hum Reprod Open 2024; 2024:hoae057. [PMID: 39411542 PMCID: PMC11479693 DOI: 10.1093/hropen/hoae057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 08/30/2024] [Indexed: 10/19/2024] Open
Abstract
STUDY QUESTION What is the frequency of PLCZ1, ACTL7A, and ACTL9 variants in male patients showing fertilization failure after ICSI, and how effective is assisted oocyte activation (AOA) for them? SUMMARY ANSWER Male patients with fertilization failure after ICSI manifest variants in PLCZ1 (29.09%), ACTL7A (14.81%), and ACTL9 (3.70%), which can be efficiently overcome by AOA treatment with ionomycin. WHAT IS KNOWN ALREADY Genetic variants in PLCZ1, and more recently, in ACTL7A, and ACTL9 male genes, have been associated with total fertilization failure or low fertilization after ICSI. A larger patient cohort is required to understand the frequency at which these variants occur, and to assess their effect on the calcium ion (Ca2+) release during oocyte activation. AOA, using ionomycin, can restore fertilization and pregnancy rates in patients with PLCZ1 variants, but it remains unknown how efficient this is for patients with ACTL7A and ACTL9 variants. STUDY DESIGN SIZE DURATION This prospective study involved two patient cohorts. In the first setting, group 1 (N = 28, 2006-2020) underwent only PLCZ1 genetic screening, while group 2 (N = 27, 2020-2023) underwent PLCZ1, ACTL7A, and ACTL9 genetic screening. Patients were only recruited when they had a mean fertilization rate of ≤33.33% in at least one ICSI cycle with at least four MII oocytes. Patients underwent a mouse oocyte activation test (MOAT) and at least one ICSI-AOA cycle using calcium chloride (CaCl2) injection and double ionomycin exposure at our centre. All patients donated a saliva sample for genetic screening and a sperm sample for further diagnostic tests, including Ca2+ imaging. PARTICIPANTS/MATERIALS SETTING METHODS Genetic screening was performed via targeted next-generation sequencing. Identified variants were classified by applying the revised ACMG guidelines into a Bayesian framework and were confirmed by bidirectional Sanger sequencing. If variants of uncertain significance or likely pathogenic or pathogenic variants were found, patients underwent additional determination of the sperm Ca2+-releasing pattern in mouse (MOCA) and in IVM human (HOCA) oocytes. Additionally, ACTL7A immunofluorescence and acrosome ultrastructure analyses by transmission electron microscopy (TEM) were performed for patients with ACTL7A and/or ACTL9 variants. MAIN RESULTS AND THE ROLE OF CHANCE Overall, the frequency rate of PLCZ1 variants was 29.09%. Moreover, 14.81% of patients carried ACTL7A variants and 3.70% carried ACTL9 variants. Seven different PLCZ1 variants were identified (p.Ile74Thr, p.Gln94*, p.Arg141His, p.His233Leu, p.Lys322*, p.Ile379Thr, and p.Ser500Leu), five of which are novel. Interestingly, PLCZ1 variants p.Ser500Leu and p.His233Leu occurred in 14.55% and 9.09% of cases. Five different variants were found in ACTL7A (p.Tyr183His, p.Gly214Ser, p.Val340Met, p.Ser364Glnfs*9, p.Arg373Cys), four of them being identified for the first time. A novel variant in ACTL9 (p.Arg271Pro) was also described. Notably, both heterozygous and homozygous variants were identified.The MOCA and HOCA tests revealed abnormal or absent Ca2+ release during fertilization in all except one patient, including patients with PLCZ1 heterozygous variants. TEM analysis revealed abnormal acrosome ultrastructure in three patients with ACTL7A variants, but only patients with homozygous ACTL7A variants showed reduced fluorescence intensity in comparison to the control.AOA treatment significantly increased the fertilization rate in the 19 patients with detected variants (from 11.24% after conventional ICSI to 61.80% after ICSI-AOA), as well as positive hCG rate (from 10.64% to 60.00%) and live birth rate (from 6.38% to 37.14%), resulting in 13 healthy newborns. In particular, four live births and two ongoing pregnancies were produced using sperm from patients with ACTL7A variants. LIMITATIONS REASONS FOR CAUTION Genetic screening included exonic and outflanking intronic regions, which implies that deep intronic variants were missed. In addition, other male genes or possible female-related factors affecting the fertilization process remain to be investigated. WIDER IMPLICATIONS OF THE FINDINGS Genetic screening of PLCZ1, ACTL7A, and ACTL9 offers a fast, cost-efficient, and easily implementable diagnostic test for total fertilization failure or low fertilization after ICSI, eliminating the need for complex diagnostic tests like MOAT or Ca2+ analysis. Nonetheless, HOCA remains the most sensitive functional test to reveal causality of uncertain significance variants. Interestingly, heterozygous PLCZ1 variants are sufficient to cause inadequate Ca2+ release during ICSI. Most importantly, AOA treatment using CaCl2 injection followed by double ionomycin exposure is highly effective for this patient group, including those with ACTL7A variants, who also display a Ca2+-release deficiency. STUDY FUNDING/COMPETING INTERESTS This study was supported by the Flemish Fund for Scientific Research (FWO) (TBM-project grant T002223N awarded to B.H.) and by the Special Research Fund (BOF) (starting grant BOF.STG.2021.0042.01 awarded to B.H.). A.C.B., R.R.G., C.C., E.V.D.V., A.R., D.S., L.L., P.C., S.S., A.B., and F.V.M. have nothing to disclose. B.H. reports a research grant from FWO and BOF, and reports being a board member of the Belgian Ethical Committee on embryo research. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Arantxa Cardona Barberán
- Ghent-Fertility And Stem cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
| | - Ramesh Reddy Guggilla
- Ghent-Fertility And Stem cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
- MedGenome Labs Ltd, Narayana Health City, Bengaluru, India
| | - Cora Colenbier
- Ghent-Fertility And Stem cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
| | - Emma Van der Velden
- Ghent-Fertility And Stem cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
| | - Andrei Rybouchkin
- Ghent-Fertility And Stem cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
| | - Dominic Stoop
- Ghent-Fertility And Stem cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
| | - Luc Leybaert
- Physiology Group, Department of Basic and Applied Medical Sciences, Ghent University, Ghent, Belgium
| | - Paul Coucke
- Department of Biomolecular Medicine, Center for Medical Genetics Ghent (CMGG), Ghent University Hospital, Ghent, Belgium
| | - Sofie Symoens
- Department of Biomolecular Medicine, Center for Medical Genetics Ghent (CMGG), Ghent University Hospital, Ghent, Belgium
| | - Annekatrien Boel
- Ghent-Fertility And Stem cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
| | - Frauke Vanden Meerschaut
- Ghent-Fertility And Stem cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
| | - Björn Heindryckx
- Ghent-Fertility And Stem cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
2
|
Bekaert B, Boel A, Rybouchkin A, Cosemans G, Declercq S, Chuva de Sousa Lopes SM, Parrington J, Stoop D, Coucke P, Menten B, Heindryckx B. Various repair events following CRISPR/Cas9-based mutational correction of an infertility-related mutation in mouse embryos. J Assist Reprod Genet 2024; 41:1605-1617. [PMID: 38557805 PMCID: PMC11224219 DOI: 10.1007/s10815-024-03095-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/12/2024] [Indexed: 04/04/2024] Open
Abstract
PURPOSE Unpredictable genetic modifications and chromosomal aberrations following CRISPR/Cas9 administration hamper the efficacy of germline editing. Repair events triggered by double-strand DNA breaks (DSBs) besides non-homologous end joining and repair template-driven homology-directed repair have been insufficiently investigated in mouse. In this work, we are the first to investigate the precise repair mechanisms triggered by parental-specific DSB induction in mouse for paternal mutational correction in the context of an infertility-related mutation. METHODS We aimed to correct a paternal 22-nucleotide deletion in Plcz1, associated with lack of fertilisation in vitro, by administrating CRISPR/Cas9 components during intracytoplasmic injection of Plcz1-null sperm in wild-type oocytes combined with assisted oocyte activation. Through targeted next-generation sequencing, 77 injected embryos and 26 blastomeres from seven injected embryos were investigated. In addition, low-pass whole genome sequencing was successfully performed on 17 injected embryo samples. RESULTS Repair mechanisms induced by two different CRISPR/Cas9 guide RNA (gRNA) designs were investigated. In 13.73% (7/51; gRNA 1) and 19.05% (4/21; gRNA 2) of the targeted embryos, only the wild-type allele was observed, of which the majority (85.71%; 6/7) showed integrity of the targeted chromosome. Remarkably, for both designs, only in one of these embryos (1/7; gRNA 1 and 1/4; gRNA2) could repair template use be detected. This suggests that alternative repair events have occurred. Next, various genetic events within the same embryo were detected after single-cell analysis of four embryos. CONCLUSION Our results suggest the occurrence of mosaicism and complex repair events after CRISPR/Cas9 DSB induction where chromosomal integrity is predominantly contained.
Collapse
Affiliation(s)
- B Bekaert
- Ghent-Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Corneel Heymanslaan 10, 9000, Ghent, Belgium
| | - A Boel
- Ghent-Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Corneel Heymanslaan 10, 9000, Ghent, Belgium
| | - A Rybouchkin
- Ghent-Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Corneel Heymanslaan 10, 9000, Ghent, Belgium
| | - G Cosemans
- Ghent-Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Corneel Heymanslaan 10, 9000, Ghent, Belgium
| | - S Declercq
- Ghent-Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Corneel Heymanslaan 10, 9000, Ghent, Belgium
| | - S M Chuva de Sousa Lopes
- Ghent-Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Corneel Heymanslaan 10, 9000, Ghent, Belgium
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, 2333 ZA, the Netherlands
| | - J Parrington
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - D Stoop
- Ghent-Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Corneel Heymanslaan 10, 9000, Ghent, Belgium
| | - P Coucke
- Center for Medical Genetics Ghent, Department of Biomolecular Medicine, Ghent University, Corneel Heymanslaan 10, 9000, Ghent, Belgium
| | - B Menten
- Center for Medical Genetics Ghent, Department of Biomolecular Medicine, Ghent University, Corneel Heymanslaan 10, 9000, Ghent, Belgium
| | - B Heindryckx
- Ghent-Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Corneel Heymanslaan 10, 9000, Ghent, Belgium.
| |
Collapse
|
3
|
Fieuws C, Van der Meulen J, Proesmans K, De Jaeghere EA, Loontiens S, Van Dorpe J, Tummers P, Denys H, Van de Vijver K, Claes KBM. Identification of potentially actionable genetic variants in epithelial ovarian cancer: a retrospective cohort study. NPJ Precis Oncol 2024; 8:71. [PMID: 38519644 PMCID: PMC10959961 DOI: 10.1038/s41698-024-00565-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 03/08/2024] [Indexed: 03/25/2024] Open
Abstract
Ovarian cancer is the most lethal gynecologic malignancy, mainly due to late-stage diagnosis, frequent recurrences, and eventually therapy resistance. To identify potentially actionable genetic variants, sequencing data of 351 Belgian ovarian cancer patients were retrospectively captured from electronic health records. The cohort included 286 (81%) patients with high-grade serous ovarian cancer, 17 (5%) with low-grade serous ovarian cancer, and 48 (14%) with other histotypes. Firstly, an overview of the prevalence and spectrum of the BRCA1/2 variants highlighted germline variants in 4% (11/250) and somatic variants in 11% (37/348) of patients. Secondly, application of a multi-gene panel in 168 tumors revealed a total of 214 variants in 28 genes beyond BRCA1/2 with a median of 1 (IQR, 1-2) genetic variant per patient. The ten most often altered genes were (in descending order): TP53, BRCA1, PIK3CA, BRCA2, KRAS, ERBB2 (HER2), TERT promotor, RB1, PIK3R1 and PTEN. Of note, the genetic landscape vastly differed between the studied histotypes. Finally, using ESCAT the clinical evidence of utility for every genetic variant was scored. Only BRCA1/2 pathogenic variants were classified as tier-I. Nearly all patients (151/168; 90%) had an ESCAT tier-II variant, most frequently in TP53 (74%), PIK3CA (9%) and KRAS (7%). In conclusion, our findings imply that although only a small proportion of genetic variants currently have direct impact on ovarian cancer treatment decisions, other variants could help to identify novel (personalized) treatment options to address the poor prognosis of ovarian cancer, particularly in rare histotypes.
Collapse
Affiliation(s)
- Charlotte Fieuws
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
| | - Joni Van der Meulen
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
| | | | - Emiel A De Jaeghere
- Cancer Research Institute Ghent, Ghent, Belgium
- Department of Medical Oncology, Ghent University Hospital, Ghent, Belgium
| | - Siebe Loontiens
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
| | - Jo Van Dorpe
- Cancer Research Institute Ghent, Ghent, Belgium
- Department of Medical Oncology, Ghent University Hospital, Ghent, Belgium
| | - Philippe Tummers
- Department of Medical Oncology, Ghent University Hospital, Ghent, Belgium
| | - Hannelore Denys
- Cancer Research Institute Ghent, Ghent, Belgium
- Department of Medical Oncology, Ghent University Hospital, Ghent, Belgium
| | - Koen Van de Vijver
- Cancer Research Institute Ghent, Ghent, Belgium
- Department of Pathology, Ghent University Hospital, Ghent, Belgium
| | - Kathleen B M Claes
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium.
- Cancer Research Institute Ghent, Ghent, Belgium.
| |
Collapse
|
4
|
Cools M, Grijp C, Neirinck J, Tavernier SJ, Schelstraete P, Van De Velde J, Morbée L, De Baere E, Bonroy C, van Bever Y, Bruggenwirth H, Vermont C, Hannema SE, De Rijke Y, Abdulhadi-Atwan M, Zangen D, Verdin H, Haerynck F. Spleen function is reduced in individuals with NR5A1 variants with or without a difference of sex development: a cross-sectional study. Eur J Endocrinol 2024; 190:34-43. [PMID: 38128121 DOI: 10.1093/ejendo/lvad174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/06/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023]
Abstract
OBJECTIVE NR5A1 is a key regulator of sex differentiation and has been implicated in spleen development through transcription activation of TLX1. Concerns exist about hypo- or asplenism in individuals who have a difference of sex development (DSD) due to an NR5A1 disease-causing variant. We aimed to assess spleen anatomy and function in a clinical cohort of such individuals and in their asymptomatic family member carriers. DESIGN Cross-sectional assessment in 22 patients with a DSD or primary ovarian insufficiency and 5 asymptomatic carriers from 18 families, harboring 14 different NR5A1 variants. METHODS Spleen anatomy was assessed by ultrasound, spleen function by peripheral blood cell count, white blood cell differentiation, percentage of nonswitched memory B cells, specific pneumococcal antibody response, % pitted red blood cells, and Howell-Jolly bodies. RESULTS Patients and asymptomatic heterozygous individuals had significantly decreased nonswitched memory B cells compared to healthy controls, but higher than asplenic patients. Thrombocytosis and spleen hypoplasia were present in 50% of heterozygous individuals. Four out of 5 individuals homozygous for the previously described p.(Arg103Gln) variant had asplenia. CONCLUSIONS Individuals harboring a heterozygous NR5A1 variant that may cause DSD have a considerable risk for functional hyposplenism, irrespective of their gonadal phenotype. Splenic function should be assessed in these individuals, and if affected or unknown, prophylaxis is recommended to prevent invasive encapsulated bacterial infections. The splenic phenotype associated with NR5A1 variants is more severe in homozygous individuals and is, at least for the p.(Arg103Gln) variant, associated with asplenism.
Collapse
Affiliation(s)
- Martine Cools
- Department of Internal Medicine and Pediatrics, Pediatric Endocrinology Service, Ghent University, Ghent University Hospital, 9000 Ghent, Belgium
| | - Celien Grijp
- Department of Internal Medicine and Pediatrics, Pediatric Endocrinology Service, Ghent University, Ghent University Hospital, 9000 Ghent, Belgium
| | - Jana Neirinck
- Department of Diagnostic Science, Ghent University, Department of Laboratory Medicine, Ghent University Hospital, 9000 Ghent, Belgium
| | - Simon J Tavernier
- Department of Internal Medicine and Pediatrics, PID Research Lab, Ghent University, 9000 Ghent, Belgium
- Laboratory of Molecular Signal Transduction in Inflammation, Center for Inflammation Research, VIB, 9000 Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
| | - Petra Schelstraete
- Department of Internal Medicine and Pediatrics, Pediatric Pulmonology and Infectious Diseases, Ghent University, Ghent University Hospital, 9000 Ghent, Belgium
| | - Julie Van De Velde
- Department of Internal Medicine and Pediatrics, Pediatric Endocrinology Service, Ghent University, Ghent University Hospital, 9000 Ghent, Belgium
- Center for Medical Genetics, Ghent University Hospital, Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| | - Lieve Morbée
- Department of Radiology, Ghent University Hospital, 9000 Ghent, Belgium
| | - Elfride De Baere
- Center for Medical Genetics, Ghent University Hospital, Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| | - Carolien Bonroy
- Department of Diagnostic Science, Ghent University, Department of Laboratory Medicine, Ghent University Hospital, 9000 Ghent, Belgium
| | - Yolande van Bever
- Department of Clinical Genetics, Erasmus MC, University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Hennie Bruggenwirth
- Department of Clinical Genetics, Erasmus MC, University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Clementien Vermont
- Department of Pediatric Infectious Diseases and Immunology, Erasmus Medical Center-Sophia Children's Hospital, 3015 GD Rotterdam, The Netherlands
| | - Sabine E Hannema
- Department of Pediatric Endocrinology, Erasmus Medical Center-Sophia Children's Hospital, 3015 GD Rotterdam, The Netherlands
- Department of Paediatric Endocrinology, Gastroenterology Endocrinology Metabolism, Reproduction and Development, Amsterdam UMC location Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Yolanda De Rijke
- Department of Clinical Chemistry, Erasmus MC, University Medical Center 3015 GD Rotterdam, The Netherlands
| | - Maha Abdulhadi-Atwan
- Department of Pediatrics, Pediatric Endocrinology Service, Palestine Red Crescent Society Hospital, PO Box 421, Hebron, Palestine
| | - David Zangen
- Division of Pediatric Endocrinology, Faculty of Medicine, Hadassah University Hospital, Hebrew University of Jerusalem, 91120 Jerusalem, Israel
| | - Hannah Verdin
- Center for Medical Genetics, Ghent University Hospital, Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| | - Filomeen Haerynck
- Department of Internal Medicine and Pediatrics, PID Research Lab, Ghent University, 9000 Ghent, Belgium
- Department of Pediatric Pulmonology and Immunology, Centre for Primary Immune Deficiency, Jeffrey Modell Diagnostic and Research Centre for PID, Ghent University Hospital, 9000 Ghent, Belgium
| |
Collapse
|
5
|
Bekaert B, Boel A, De Witte L, Vandenberghe W, Popovic M, Stamatiadis P, Cosemans G, Tordeurs L, De Loore AM, Chuva de Sousa Lopes SM, De Sutter P, Stoop D, Coucke P, Menten B, Heindryckx B. Retained chromosomal integrity following CRISPR-Cas9-based mutational correction in human embryos. Mol Ther 2023; 31:2326-2341. [PMID: 37376733 PMCID: PMC10422011 DOI: 10.1016/j.ymthe.2023.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 04/11/2023] [Accepted: 06/22/2023] [Indexed: 06/29/2023] Open
Abstract
Human germline gene correction by targeted nucleases holds great promise for reducing mutation transmission. However, recent studies have reported concerning observations in CRISPR-Cas9-targeted human embryos, including mosaicism and loss of heterozygosity (LOH). The latter has been associated with either gene conversion or (partial) chromosome loss events. In this study, we aimed to correct a heterozygous basepair substitution in PLCZ1, related to infertility. In 36% of the targeted embryos that originated from mutant sperm, only wild-type alleles were observed. By performing genome-wide double-digest restriction site-associated DNA sequencing, integrity of the targeted chromosome (i.e., no deletions larger than 3 Mb or chromosome loss) was confirmed in all seven targeted GENType-analyzed embryos (mutant editing and absence of mutation), while short-range LOH events (shorter than 10 Mb) were clearly observed by single-nucleotide polymorphism assessment in two of these embryos. These results fuel the currently ongoing discussion on double-strand break repair in early human embryos, making a case for the occurrence of gene conversion events or partial template-based homology-directed repair.
Collapse
Affiliation(s)
- Bieke Bekaert
- Ghent-Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Annekatrien Boel
- Ghent-Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Lisa De Witte
- Center for Medical Genetics Ghent, Department of Biomolecular Medicine, Ghent University, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Winter Vandenberghe
- Ghent-Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Mina Popovic
- Ghent-Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Panagiotis Stamatiadis
- Ghent-Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Gwenny Cosemans
- Ghent-Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Lise Tordeurs
- Ghent-Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Athina-Maria De Loore
- Ghent-Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Susana Marina Chuva de Sousa Lopes
- Ghent-Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium; Department of Anatomy and Embryology, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Petra De Sutter
- Ghent-Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Dominic Stoop
- Ghent-Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Paul Coucke
- Center for Medical Genetics Ghent, Department of Biomolecular Medicine, Ghent University, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Björn Menten
- Center for Medical Genetics Ghent, Department of Biomolecular Medicine, Ghent University, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Björn Heindryckx
- Ghent-Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium.
| |
Collapse
|
6
|
Athanasouli P, Balli M, De Jaime-Soguero A, Boel A, Papanikolaou S, van der Veer BK, Janiszewski A, Vanhessche T, Francis A, El Laithy Y, Nigro AL, Aulicino F, Koh KP, Pasque V, Cosma MP, Verfaillie C, Zwijsen A, Heindryckx B, Nikolaou C, Lluis F. The Wnt/TCF7L1 transcriptional repressor axis drives primitive endoderm formation by antagonizing naive and formative pluripotency. Nat Commun 2023; 14:1210. [PMID: 36869101 PMCID: PMC9984534 DOI: 10.1038/s41467-023-36914-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/23/2023] [Indexed: 03/05/2023] Open
Abstract
Early during preimplantation development and in heterogeneous mouse embryonic stem cells (mESC) culture, pluripotent cells are specified towards either the primed epiblast or the primitive endoderm (PE) lineage. Canonical Wnt signaling is crucial for safeguarding naive pluripotency and embryo implantation, yet the role and relevance of canonical Wnt inhibition during early mammalian development remains unknown. Here, we demonstrate that transcriptional repression exerted by Wnt/TCF7L1 promotes PE differentiation of mESCs and in preimplantation inner cell mass. Time-series RNA sequencing and promoter occupancy data reveal that TCF7L1 binds and represses genes encoding essential naive pluripotency factors and indispensable regulators of the formative pluripotency program, including Otx2 and Lef1. Consequently, TCF7L1 promotes pluripotency exit and suppresses epiblast lineage formation, thereby driving cells into PE specification. Conversely, TCF7L1 is required for PE specification as deletion of Tcf7l1 abrogates PE differentiation without restraining epiblast priming. Taken together, our study underscores the importance of transcriptional Wnt inhibition in regulating lineage specification in ESCs and preimplantation embryo development as well as identifies TCF7L1 as key regulator of this process.
Collapse
Affiliation(s)
- Paraskevi Athanasouli
- KU Leuven, Department of Development and Regeneration, Stem Cell Institute, B-3000, Leuven, Belgium
| | - Martina Balli
- KU Leuven, Department of Development and Regeneration, Stem Cell Institute, B-3000, Leuven, Belgium
| | - Anchel De Jaime-Soguero
- KU Leuven, Department of Development and Regeneration, Stem Cell Institute, B-3000, Leuven, Belgium.
| | - Annekatrien Boel
- Ghent-Fertility And Stem cell Team (G-FaST), Department for Reproductive Medicine, Department for Human Structure and Repair, Ghent University Hospital, 9000, Ghent, Belgium
| | - Sofia Papanikolaou
- Department of Rheumatology, Clinical Immunology, Medical School, University of Crete, 70013, Heraklion, Greece.,Computational Genomics Group, Institute of Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming", 16672, Athens, Greece
| | - Bernard K van der Veer
- KU Leuven, Department of Development and Regeneration, Stem Cell Institute, B-3000, Leuven, Belgium
| | - Adrian Janiszewski
- KU Leuven, Department of Development and Regeneration, Stem Cell Institute, B-3000, Leuven, Belgium
| | - Tijs Vanhessche
- KU Leuven, Department of Development and Regeneration, Stem Cell Institute, B-3000, Leuven, Belgium
| | - Annick Francis
- Department of Cardiovascular Sciences, KU Leuven, 3000, Leuven, Belgium
| | - Youssef El Laithy
- KU Leuven, Department of Development and Regeneration, Stem Cell Institute, B-3000, Leuven, Belgium
| | - Antonio Lo Nigro
- KU Leuven, Department of Development and Regeneration, Stem Cell Institute, B-3000, Leuven, Belgium
| | - Francesco Aulicino
- Centre for Genomic Regulation (CRG), Dr Aiguader 88, 08003, Barcelona, Spain
| | - Kian Peng Koh
- KU Leuven, Department of Development and Regeneration, Stem Cell Institute, B-3000, Leuven, Belgium
| | - Vincent Pasque
- KU Leuven, Department of Development and Regeneration, Stem Cell Institute, B-3000, Leuven, Belgium.,KU Leuven Institute for Single-Cell Omics (LISCO), 3000, Leuven, Belgium
| | - Maria Pia Cosma
- Centre for Genomic Regulation (CRG), Dr Aiguader 88, 08003, Barcelona, Spain.,ICREA, Pg. Lluis Companys 23, Barcelona, 08010, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Catherine Verfaillie
- KU Leuven, Department of Development and Regeneration, Stem Cell Institute, B-3000, Leuven, Belgium
| | - An Zwijsen
- Department of Cardiovascular Sciences, KU Leuven, 3000, Leuven, Belgium
| | - Björn Heindryckx
- Ghent-Fertility And Stem cell Team (G-FaST), Department for Reproductive Medicine, Department for Human Structure and Repair, Ghent University Hospital, 9000, Ghent, Belgium
| | - Christoforos Nikolaou
- Computational Genomics Group, Institute of Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming", 16672, Athens, Greece
| | - Frederic Lluis
- KU Leuven, Department of Development and Regeneration, Stem Cell Institute, B-3000, Leuven, Belgium.
| |
Collapse
|
7
|
Faizi N, Casteels I, Termote B, Coucke P, De Baere E, De Bruyne M, Balikova I. High myopia and vitreal veils in a patient with Poretti- Boltshauser syndrome due to a novel homozygous LAMA1 mutation. Ophthalmic Genet 2022; 43:653-657. [PMID: 35535551 DOI: 10.1080/13816810.2022.2068045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Nawid Faizi
- Department of Ophthalmology, University Hospital Leuven, Leuven, Belgium
| | - Ingele Casteels
- Department of Ophthalmology, University Hospital Leuven, Leuven, Belgium
| | - Bruno Termote
- Department of Radiology, Jessa Hospital Hasselt, Hasselt, Belgium
| | - Paul Coucke
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.,Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
| | - Elfride De Baere
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.,Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
| | - Marieke De Bruyne
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.,Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
| | - Irina Balikova
- Department of Ophthalmology, University Hospital Leuven, Leuven, Belgium
| |
Collapse
|
8
|
Van der Linden M, Van Gaever B, Raman L, Vermaelen K, Demedts I, Surmont V, Himpe U, Lievens Y, Ferdinande L, Dedeurwaerdere F, Van der Meulen J, Claes K, Menten B, Van Dorpe J. Application of an Ultrasensitive NGS-Based Blood Test for the Diagnosis of Early-Stage Lung Cancer: Sensitivity, a Hurdle Still Difficult to Overcome. Cancers (Basel) 2022; 14:cancers14082031. [PMID: 35454937 PMCID: PMC9026713 DOI: 10.3390/cancers14082031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/12/2022] [Accepted: 04/12/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Currently, an accurate diagnosis of lung cancer relies on the microscopic examination of tissue biopsies. These samples can, however, only be obtained by invasive procedures. The aim of our study was to evaluate the use of a liquid biopsy for early-stage lung cancer detection in patients with a lung lesion on imaging. This approach would be particularly relevant for suspected lung lesions that are difficult to reach for a tissue-based diagnosis. Despite technical improvements for the use of liquid biopsy-based cell-free DNA analysis, its application for the detection of early-stage lung cancer is currently limited by sensitivity and a biological background of somatic variants. Abstract Diagnosis of lung cancer requires histological examination of a tissue sample, which in turn requires an invasive procedure that cannot always be obtained. Circulating tumor DNA can be reliably detected in blood samples of advanced-stage lung cancer patients and might also be a minimally invasive alternative for early-stage lung cancer detection. We wanted to explore the potential of targeted deep sequencing as a test for the diagnosis of early-stage lung cancer in combination with imaging. Mutation detection on cell-free DNA from pretreatment plasma samples of 51 patients with operable non-small cell lung cancer was performed and results were compared with 12 control patients undergoing surgery for a non-malignant lung lesion. By using a variant allele frequency threshold of 1%, somatic variants were detected in 23.5% of patients with a median variant allele fraction of 3.65%. By using this threshold, we could almost perfectly discriminate early-stage lung cancer patients from controls. Our study results are discussed in the light of those from other studies. Notwithstanding the potential of today’s techniques for the use of liquid biopsy-based cell-free DNA analysis, sensitivity of this application for early-stage lung cancer detection is currently limited by a biological background of somatic variants with low variant allele fraction.
Collapse
Affiliation(s)
- Malaïka Van der Linden
- Department of Diagnostic Sciences, Ghent University, 9000 Ghent, Belgium; (M.V.d.L.); (B.V.G.); (L.R.); (L.F.)
- Cancer Research Institute Ghent, 9000 Ghent, Belgium; (K.V.); (Y.L.); (J.V.d.M.); (K.C.)
| | - Bram Van Gaever
- Department of Diagnostic Sciences, Ghent University, 9000 Ghent, Belgium; (M.V.d.L.); (B.V.G.); (L.R.); (L.F.)
- Department of Pathology, Ghent University Hospital, 9000 Ghent, Belgium
| | - Lennart Raman
- Department of Diagnostic Sciences, Ghent University, 9000 Ghent, Belgium; (M.V.d.L.); (B.V.G.); (L.R.); (L.F.)
| | - Karim Vermaelen
- Cancer Research Institute Ghent, 9000 Ghent, Belgium; (K.V.); (Y.L.); (J.V.d.M.); (K.C.)
- Department of Pulmonary Medicine, Ghent University Hospital, 9000 Ghent, Belgium;
- Department of Internal Medicine and Pediatrics, Ghent University, 9000 Ghent, Belgium
| | - Ingel Demedts
- Department of Pulmonary Medicine, AZ Delta, 8800 Roeselare, Belgium; (I.D.); (U.H.)
| | - Veerle Surmont
- Department of Pulmonary Medicine, Ghent University Hospital, 9000 Ghent, Belgium;
- Department of Internal Medicine and Pediatrics, Ghent University, 9000 Ghent, Belgium
| | - Ulrike Himpe
- Department of Pulmonary Medicine, AZ Delta, 8800 Roeselare, Belgium; (I.D.); (U.H.)
| | - Yolande Lievens
- Cancer Research Institute Ghent, 9000 Ghent, Belgium; (K.V.); (Y.L.); (J.V.d.M.); (K.C.)
- Department of Radiation Oncology, Ghent University Hospital, 9000 Ghent, Belgium
- Department of Human Structure and Repair, Ghent University, 9000 Ghent, Belgium
| | - Liesbeth Ferdinande
- Department of Diagnostic Sciences, Ghent University, 9000 Ghent, Belgium; (M.V.d.L.); (B.V.G.); (L.R.); (L.F.)
- Department of Pathology, Ghent University Hospital, 9000 Ghent, Belgium
| | | | - Joni Van der Meulen
- Cancer Research Institute Ghent, 9000 Ghent, Belgium; (K.V.); (Y.L.); (J.V.d.M.); (K.C.)
- Center for Medical Genetics, Ghent University Hospital, 9000 Ghent, Belgium;
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| | - Kathleen Claes
- Cancer Research Institute Ghent, 9000 Ghent, Belgium; (K.V.); (Y.L.); (J.V.d.M.); (K.C.)
- Center for Medical Genetics, Ghent University Hospital, 9000 Ghent, Belgium;
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| | - Björn Menten
- Center for Medical Genetics, Ghent University Hospital, 9000 Ghent, Belgium;
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| | - Jo Van Dorpe
- Department of Diagnostic Sciences, Ghent University, 9000 Ghent, Belgium; (M.V.d.L.); (B.V.G.); (L.R.); (L.F.)
- Cancer Research Institute Ghent, 9000 Ghent, Belgium; (K.V.); (Y.L.); (J.V.d.M.); (K.C.)
- Department of Pathology, Ghent University Hospital, 9000 Ghent, Belgium
- Correspondence:
| |
Collapse
|
9
|
Human germline nuclear transfer to overcome mitochondrial disease and failed fertilization after ICSI. J Assist Reprod Genet 2022; 39:609-618. [PMID: 35064435 PMCID: PMC8995215 DOI: 10.1007/s10815-022-02401-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 01/15/2022] [Indexed: 10/19/2022] Open
Abstract
PURPOSE Providing additional insights on the efficacy of human nuclear transfer (NT). Here, and earlier, NT has been applied to minimize transmission risk of mitochondrial DNA (mtDNA) diseases. NT has also been proposed for treating infertility, but it is still unclear which infertility indications would benefit. In this work, we therefore additionally assess the applicability of NT to overcome failed fertilization. METHODS Patient 1 carries a homoplasmic mtDNA mutation (m.11778G > A). Seventeen metaphase II (MII) oocytes underwent pre-implantation genetic testing (PGT), while five MII oocytes were used for spindle transfer (ST), and one in vitro matured (IVM) metaphase I oocyte underwent early pronuclear transfer (ePNT). Patients 2-3 experienced multiple failed intracytoplasmic sperm injection (ICSI) and ICSI-assisted oocyte activation (AOA) cycles. For these patients, the obtained MII oocytes underwent an additional ICSI-AOA cycle, while the IVM oocytes were subjected to ST. RESULTS For patient 1, PGT-M confirmed mutation loads close to 100%. All ST-reconstructed oocytes fertilized and cleaved, of which one progressed to the blastocyst stage. The reconstructed ePNT-zygote reached the morula stage. These samples showed an average mtDNA carry-over rate of 2.9% ± 0.8%, confirming the feasibility of NT to reduce mtDNA transmission. For patient 2-3 displaying fertilization failure, ST resulted in, respectively, 4/5 and 6/6 fertilized oocytes, providing evidence, for the first time, that NT can enable successful fertilization in this patient population. CONCLUSION Our study showcases the repertoire of disorders for which NT can be beneficial, to overcome either mitochondrial disease transmission or failed fertilization after ICSI-AOA.
Collapse
|
10
|
Claes KBM, Rosseel T, De Leeneer K. Dealing with Pseudogenes in Molecular Diagnostics in the Next Generation Sequencing Era. Methods Mol Biol 2021; 2324:363-381. [PMID: 34165726 DOI: 10.1007/978-1-0716-1503-4_22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Presence of pseudogenes is a dreadful issue in next generation sequencing (NGS), because their contamination can interfere with the detection of variants in the genuine gene and generate false positive and false negative variants.In this chapter we focus on issues related to the application of NGS strategies for analysis of genes with pseudogenes in a clinical setting. The degree to which a pseudogene impacts the ability to accurately detect and map variants in its parent gene depends on the degree of similarity (homology) with the parent gene itself. Hereby, target enrichment and mapping strategies are crucial factors to avoid "contaminating" pseudogene sequences. For target enrichment, we describe advantages and disadvantages of PCR- and capture-based strategies. For mapping strategies, we discuss crucial parameters that need to be considered to accurately distinguish sequences of functional genes from pseudogenic sequences. Finally, we discuss some examples of genes associated with Mendelian disorders, for which interesting NGS approaches are described to avoid interference with pseudogene sequences.
Collapse
Affiliation(s)
| | - Toon Rosseel
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Kim De Leeneer
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
11
|
Strubbe S, De Bruyne M, Pannicke U, Beyls E, Vandekerckhove B, Leclercq G, De Baere E, Bordon V, Vral A, Schwarz K, Haerynck F, Taghon T. A Novel Non-Coding Variant in DCLRE1C Results in Deregulated Splicing and Induces SCID Through the Generation of a Truncated ARTEMIS Protein That Fails to Support V(D)J Recombination and DNA Damage Repair. Front Immunol 2021; 12:674226. [PMID: 34220820 PMCID: PMC8248492 DOI: 10.3389/fimmu.2021.674226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 06/03/2021] [Indexed: 11/13/2022] Open
Abstract
Severe Combined Immune Deficiency (SCID) is a primary deficiency of the immune system in which opportunistic and recurring infections are often fatal during neonatal or infant life. SCID is caused by an increasing number of genetic defects that induce an abrogation of T lymphocyte development or function in which B and NK cells might be affected as well. Because of the increased availability and usage of next-generation sequencing (NGS), many novel variants in SCID genes are being identified and cause a heterogeneous disease spectrum. However, the molecular and functional implications of these new variants, of which some are non-coding, are often not characterized in detail. Using targeted NGS, we identified a novel homozygous c.465-1G>C splice acceptor site variant in the DCLRE1C gene in a T-B-NK+ SCID patient and fully characterized the molecular and functional impact. By performing a minigene splicing reporter assay, we revealed deregulated splicing of the DCLRE1C transcript since a cryptic splice acceptor in exon 7 was employed. This induced a frameshift and the generation of a p.Arg155Serfs*15 premature termination codon (PTC) within all DCLRE1C splice variants, resulting in the absence of full-length ARTEMIS protein. Consistently, a V(D)J recombination assay and a G0 micronucleus assay demonstrated the inability of the predicted mutant ARTEMIS protein to perform V(D)J recombination and DNA damage repair, respectively. Together, these experiments molecularly and functionally clarify how a newly identified c.465-1G>C variant in the DCLRE1C gene is responsible for inducing SCID. In a clinical context, this demonstrates how the experimental validation of new gene variants, that are identified by NGS, can facilitate the diagnosis of SCID which can be vital for implementing appropriate therapies.
Collapse
Affiliation(s)
- Steven Strubbe
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | | | - Ulrich Pannicke
- The Institute for Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Elien Beyls
- Department of Human Structure and Repair, Ghent University, Ghent, Belgium
| | - Bart Vandekerckhove
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Georges Leclercq
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Elfride De Baere
- Center for Medical Genetics Ghent (CMGG), Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Victoria Bordon
- Department of Internal Medicine and Pediatrics, Division of Pediatric Hemato-Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, Belgium
| | - Anne Vral
- Department of Human Structure and Repair, Ghent University, Ghent, Belgium
| | - Klaus Schwarz
- The Institute for Transfusion Medicine, University of Ulm, Ulm, Germany
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, Germa Red Cross Blood Service Baden-Württemberg – Hessen, Ulm, Germany
| | - Filomeen Haerynck
- Primary Immunodeficiency Research Lab, Jeffrey Modell Diagnosis and Research Center, Ghent University Hospital, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Division of Pediatric Immunology and Pulmonology, Ghent University Hospital, Ghent, Belgium
| | - Tom Taghon
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| |
Collapse
|
12
|
De Zaeytijd J, Van Cauwenbergh C, De Bruyne M, Van Heetvelde M, De Baere E, Coppieters F, Leroy BP. ISOLATED MACULOPATHY AND MODERATE ROD-CONE DYSTROPHY REPRESENT THE MILDER END OF THE RDH12-RELATED RETINAL DYSTROPHY SPECTRUM. Retina 2021; 41:1346-1355. [PMID: 34001834 DOI: 10.1097/iae.0000000000003028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE To describe an isolated maculopathy and an intermediate rod-cone dystrophy phenotype as the milder end of the RDH12-related retinal dystrophy spectrum. METHODS Seven patients (17-34 years of age) underwent an extensive ophthalmic workup including psychophysical and electrophysiological testing and multimodal imaging. RESULTS Three patients have isolated macular disease. Best-corrected visual acuity (BCVA) ranges from 20/125 to 20/40 with normal visual fields or only limited central, relative scotomata, and normal full-field ERGs. Both optical coherence tomography scans and autofluorescent imaging hint at relatively better-preserved foveal quality initially. An intermediate rod-cone phenotype in four patients is characterized by a central retinal dystrophy extending just beyond the vascular arcades, characteristic peripapillary sparing, and additional scattered atrophic patches. Again, foveal quality is initially better on optical coherence tomography scans. Best-corrected visual acuity ranges from counting fingers to 20/32. Goldmann visual fields vary from central scotomata to severe generalized abnormalities. ERGs range between mild and severe rod-cone dysfunction. Nine distinct RDH12 pathogenic variants, two of which are novel, are identified. CONCLUSION The classic phenotype of RDH12-related early-onset retinal dystrophy is expanded to include an isolated maculopathy and intermediate dystrophy phenotype, characterized by its later onset and milder course with a fair visual potential until much later in life, emphasizing the phenotypic heterogeneity of RDH12-related retinopathy.
Collapse
Affiliation(s)
- Julie De Zaeytijd
- Department of Ophthalmology, Ghent University Hospital, Ghent, Belgium
| | - Caroline Van Cauwenbergh
- Department of Ophthalmology, Ghent University Hospital, Ghent, Belgium
- Department of Head & Skin, Ghent University, Ghent, Belgium
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
| | - Marieke De Bruyne
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Mattias Van Heetvelde
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Elfride De Baere
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Frauke Coppieters
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Bart P Leroy
- Department of Ophthalmology, Ghent University Hospital, Ghent, Belgium
- Department of Head & Skin, Ghent University, Ghent, Belgium
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
- Division of Ophthalmology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; and
- Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| |
Collapse
|
13
|
Syx D, Ishikawa Y, Gebauer J, Boudko SP, Guillemyn B, Van Damme T, D’hondt S, Symoens S, Nampoothiri S, Gould DB, Baumann U, Bächinger HP, Malfait F. Aberrant binding of mutant HSP47 affects posttranslational modification of type I collagen and leads to osteogenesis imperfecta. PLoS Genet 2021; 17:e1009339. [PMID: 33524049 PMCID: PMC7877763 DOI: 10.1371/journal.pgen.1009339] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 02/11/2021] [Accepted: 01/05/2021] [Indexed: 12/21/2022] Open
Abstract
Heat shock protein 47 (HSP47), encoded by the SERPINH1 gene, is a molecular chaperone essential for correct folding of collagens. We report a homozygous p.(R222S) substitution in HSP47 in a child with severe osteogenesis imperfecta leading to early demise. p.R222 is a highly conserved residue located within the collagen interacting surface of HSP47. Binding assays show a significantly reduced affinity of HSP47-R222S for type I collagen. This altered interaction leads to posttranslational overmodification of type I procollagen produced by dermal fibroblasts, with increased glycosylation and/or hydroxylation of lysine and proline residues as shown by mass spectrometry. Since we also observed a normal intracellular folding and secretion rate of type I procollagen, this overmodification cannot be explained by prolonged exposure of the procollagen molecules to the modifying hydroxyl- and glycosyltransferases, as is commonly observed in other types of OI. We found significant upregulation of several molecular chaperones and enzymes involved in procollagen modification and folding on Western blot and RT-qPCR. In addition, we showed that an imbalance in binding of HSP47-R222S to unfolded type I collagen chains in a gelatin sepharose pulldown assay results in increased binding of other chaperones and modifying enzymes. The elevated expression and binding of this molecular ensemble to type I procollagen suggests a compensatory mechanism for the aberrant binding of HSP47-R222S, eventually leading to overmodification of type I procollagen chains. Together, these results illustrate the importance of HSP47 for proper posttranslational modification and provide insights into the molecular pathomechanisms of the p.(R222S) alteration in HSP47, which leads to a severe OI phenotype. Heat shock protein 47 (HSP47) is essential for correct collagen folding. We report a homozygous p.(R222S) substitution in HSP47 in a child with severe osteogenesis imperfecta. The highly conserved p.R222 residue is located within the collagen interacting surface and HSP47-R222S shows a significantly reduced affinity for type I collagen. This altered interaction leads to posttranslational overmodification of type I procollagen. In contrast to other types of OI, this overmodification is not caused by prolonged exposure of procollagen to modifying enzymes, since the intracellular folding rate of type I procollagen appears to be normal. We show significant upregulation of several molecular chaperones and collagen-modifying enzymes and increased binding of several of these molecules to unfolded type I collagen chains upon abnormal HSP47-R222S binding. This suggests a compensatory mechanism for aberrant HSP47-R222S binding, eventually leading to overmodification of type I procollagen chains, and underscores the importance of HSP47 for proper posttranslational modification.
Collapse
Affiliation(s)
- Delfien Syx
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Yoshihiro Ishikawa
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, Oregon, United States of America
- Department of Ophthalmology, UCSF School of Medicine, San Francisco, California, United States of America
| | - Jan Gebauer
- Institute of Biochemistry, University of Cologne, Cologne, Germany
| | - Sergei P. Boudko
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Brecht Guillemyn
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Tim Van Damme
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Sanne D’hondt
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Sofie Symoens
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Sheela Nampoothiri
- Amrita Institute of Medical Sciences and Research Center, Cochin, Kerala, India
| | - Douglas B. Gould
- Department of Ophthalmology, UCSF School of Medicine, San Francisco, California, United States of America
- Department of Anatomy, Institute for Human Genetics, UCSF School of Medicine, San Francisco, California, United States of America
| | - Ulrich Baumann
- Institute of Biochemistry, University of Cologne, Cologne, Germany
| | - Hans Peter Bächinger
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Fransiska Malfait
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
- * E-mail:
| |
Collapse
|
14
|
Strubbe I, Van Cauwenbergh C, De Zaeytijd J, De Jaegere S, De Bruyne M, Rosseel T, Van de Sompele S, De Baere E, Leroy BP. Phenocopy of a heterozygous carrier of X-linked retinitis pigmentosa due to mosaicism for a RHO variant. Sci Rep 2021; 11:117. [PMID: 33420188 PMCID: PMC7794345 DOI: 10.1038/s41598-020-80400-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 12/17/2020] [Indexed: 11/16/2022] Open
Abstract
We describe both phenotype and pathogenesis in two male siblings with typical retinitis pigmentosa (RP) and the potentially X-linked RP (XLRP) carrier phenotype in their mother. Two affected sons, two unaffected daughters, and their mother underwent detailed ophthalmological assessments including Goldmann perimetry, color vision testing, multimodal imaging and ISCEV-standard electroretinography. Genetic testing consisted of targeted next-generation sequencing (NGS) of known XLRP genes and whole exome sequencing (WES) of known inherited retinal disease genes (RetNet-WES). Variant validation and segregation analysis were performed by Sanger sequencing. The mutational load of the RHO variant in the mother was assessed in DNA from leucocytes, buccal cells and hair follicles using targeted NGS. Both affected sons showed signs of classical RP, while the mother displayed patches of hyperautofluorescence on blue light autofluorescence imaging and regional, intraretinal, spicular pigmentation, reminiscent of a carrier phenotype of XLRP. XLRP testing was negative. RetNet-WES testing revealed RHO variant c.404G > C p.(Arg135Pro) in a mosaic state (21% of the reads) in the mother and in a heterozygous state in both sons. Targeted NGQSS of the RHO variant in different maternal tissues showed a mutation load between 25.06% and 41.72%. We report for the first time that somatic mosaicism of RHO variant c.404G > C p.(Arg135Pro) mimics the phenotype of a female carrier of XLRP, in combination with heterozygosity for the variant in the two affected sons.
Collapse
Affiliation(s)
- Ine Strubbe
- Department of Ophthalmology, Ghent University Hospital, Ghent, Belgium.,Department of Head & Skin, Ghent University, Ghent, Belgium
| | - Caroline Van Cauwenbergh
- Department of Ophthalmology, Ghent University Hospital, Ghent, Belgium.,Department of Head & Skin, Ghent University, Ghent, Belgium
| | - Julie De Zaeytijd
- Department of Ophthalmology, Ghent University Hospital, Ghent, Belgium
| | - Sarah De Jaegere
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Marieke De Bruyne
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Toon Rosseel
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Stijn Van de Sompele
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Elfride De Baere
- Department of Head & Skin, Ghent University, Ghent, Belgium. .,Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium. .,Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.
| | - Bart P Leroy
- Department of Ophthalmology, Ghent University Hospital, Ghent, Belgium. .,Department of Head & Skin, Ghent University, Ghent, Belgium. .,Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium. .,Division of Ophthalmology, Children's Hospital of Philadelphia, Philadelphia, PA, USA. .,Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| |
Collapse
|
15
|
Backers L, Parton B, De Bruyne M, Tavernier SJ, Van Den Bogaert K, Lambrecht BN, Haerynck F, Claes KBM. Missing heritability in Bloom syndrome: First report of a deep intronic variant leading to pseudo-exon activation in the BLM gene. Clin Genet 2020; 99:292-297. [PMID: 33073370 DOI: 10.1111/cge.13859] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/17/2020] [Accepted: 09/30/2020] [Indexed: 12/16/2022]
Abstract
Pathogenic biallelic variants in the BLM/RECQL3 gene cause a rare autosomal recessive disorder called Bloom syndrome (BS). This syndrome is characterized by severe growth delay, immunodeficiency, dermatological manifestations and a predisposition to a wide variety of cancers, often multiple and very early in life. Literature shows that the main mode of BLM inactivation is protein translation termination. We expanded the molecular spectrum of BS by reporting the first deep intronic variant causing intron exonisation. We describe a patient with a clinical phenotype of BS and a strong increase in sister chromatid exchanges (SCE), who was found to be compound heterozygous for a novel nonsense variant c.3379C>T, p.(Gln1127Ter) in exon 18 and a deep intronic variant c.3020-258A>G in intron 15 of the BLM gene. The deep intronic variant creates a high-quality de novo donor splice site, which leads to retention of two intron segments. Both pseudo-exons introduce a premature stop codon into the reading frame and abolish BLM protein expression, confirmed by Western Blot analysis. These findings illustrate the role of non-coding variation in Mendelian disorders and herewith highlight an unmet need in routine testing of Mendelian disorders, being the added value of RNA-based approaches to provide a complete molecular diagnosis.
Collapse
Affiliation(s)
- Lynn Backers
- Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University and Ghent University Hospital, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
| | - Bram Parton
- Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University and Ghent University Hospital, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
| | - Marieke De Bruyne
- Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Simon J Tavernier
- Unit of Molecular Signal Transduction in Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Kris Van Den Bogaert
- Center for Human Genetics, University Hospitals Leuven - Catholic University Leuven, Leuven, Belgium
| | - Bart N Lambrecht
- Unit of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium.,Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Filomeen Haerynck
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Kathleen B M Claes
- Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University and Ghent University Hospital, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
| |
Collapse
|
16
|
Velázquez C, K. DL, Esteban-Cardeñosa EM, Avila Cobos F, Lastra E, Abella LE, de la Cruz V, Lobatón CD, Claes KB, Durán M, Infante M. Germline Genetic Findings Which May Impact Therapeutic Decisions in Families with a Presumed Predisposition for Hereditary Breast and Ovarian Cancer. Cancers (Basel) 2020; 12:cancers12082151. [PMID: 32756499 PMCID: PMC7465232 DOI: 10.3390/cancers12082151] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/29/2020] [Accepted: 08/01/2020] [Indexed: 12/20/2022] Open
Abstract
In this study, we aim to gain insight in the germline mutation spectrum of ATM, BARD1, BRIP1, ERCC4, PALB2, RAD51C and RAD51D in breast and ovarian cancer families from Spain. We have selected 180 index cases in whom a germline mutation in BRCA1 and BRCA2 was previously ruled out. The importance of disease-causing variants in these genes lies in the fact that they may have possible therapeutic implications according to clinical guidelines. All variants were assessed by combined annotation dependent depletion (CADD) for scoring their deleteriousness. In addition, we used the cancer genome interpreter to explore the implications of some variants in drug response. Finally, we compiled and evaluated the family history to assess whether carrying a pathogenic mutation was associated with age at diagnosis, tumour diversity of the pedigree and total number of cancer cases in the family. Eight unequivocal pathogenic mutations were found and another fourteen were prioritized as possible causal variants. Some of these molecular results could contribute to cancer diagnosis, treatment selection and prevention. We found a statistically significant association between tumour diversity in the family and carrying a variant with a high score predicting pathogenicity (p = 0.0003).
Collapse
Affiliation(s)
- Carolina Velázquez
- Cancer Genetics Group, Instituto de Biología y Genética Molecular (UVa-CSIC), 47003 Valladolid, Spain; (C.V.); (E.M.E.-C.); (C.D.L.); (M.D.)
| | - De Leeneer K.
- Center for Medical Genetics, Ghent University Hospital, and Cancer Research Institute Ghent (CRIG), Ghent University, 9000 Ghent, Belgium; (D.L.K.); (F.A.C.); (K.B.C.)
| | - Eva M. Esteban-Cardeñosa
- Cancer Genetics Group, Instituto de Biología y Genética Molecular (UVa-CSIC), 47003 Valladolid, Spain; (C.V.); (E.M.E.-C.); (C.D.L.); (M.D.)
| | - Francisco Avila Cobos
- Center for Medical Genetics, Ghent University Hospital, and Cancer Research Institute Ghent (CRIG), Ghent University, 9000 Ghent, Belgium; (D.L.K.); (F.A.C.); (K.B.C.)
| | - Enrique Lastra
- Unit of Genetic Counseling in Cancer, Complejo Hospitalario de Burgos, 09006 Burgos, Spain;
| | - Luis E. Abella
- Unit of Genetic Counseling in Cancer, Hospital Universitario Rio Hortega, 47012 Valladolid, Spain; (L.E.A.); (V.d.l.C.)
| | - Virginia de la Cruz
- Unit of Genetic Counseling in Cancer, Hospital Universitario Rio Hortega, 47012 Valladolid, Spain; (L.E.A.); (V.d.l.C.)
| | - Carmen D. Lobatón
- Cancer Genetics Group, Instituto de Biología y Genética Molecular (UVa-CSIC), 47003 Valladolid, Spain; (C.V.); (E.M.E.-C.); (C.D.L.); (M.D.)
| | - Kathleen B. Claes
- Center for Medical Genetics, Ghent University Hospital, and Cancer Research Institute Ghent (CRIG), Ghent University, 9000 Ghent, Belgium; (D.L.K.); (F.A.C.); (K.B.C.)
| | - Mercedes Durán
- Cancer Genetics Group, Instituto de Biología y Genética Molecular (UVa-CSIC), 47003 Valladolid, Spain; (C.V.); (E.M.E.-C.); (C.D.L.); (M.D.)
| | - Mar Infante
- Cancer Genetics Group, Instituto de Biología y Genética Molecular (UVa-CSIC), 47003 Valladolid, Spain; (C.V.); (E.M.E.-C.); (C.D.L.); (M.D.)
- Correspondence: ; Tel.: +34-983184809
| |
Collapse
|
17
|
De Thaye E, Van de Vijver K, Van der Meulen J, Taminau J, Wagemans G, Denys H, Van Dorpe J, Berx G, Ceelen W, Van Bocxlaer J, De Wever O. Establishment and characterization of a cell line and patient-derived xenograft (PDX) from peritoneal metastasis of low-grade serous ovarian carcinoma. Sci Rep 2020; 10:6688. [PMID: 32317693 PMCID: PMC7174384 DOI: 10.1038/s41598-020-63738-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 03/13/2020] [Indexed: 12/24/2022] Open
Abstract
Peritoneal spread indicates poor prognosis in patients with serous ovarian carcinoma (SOC) and is generally treated by surgical cytoreduction and chemotherapy. Novel treatment options are urgently needed to improve patient outcome. Clinically relevant cell lines and patient-derived xenograft (PDX) models are of critical importance to therapeutic regimen evaluation. Here, a PDX model was established, by orthotopic engraftment after subperitoneal tumor slurry injection of low-grade SOC, resulting in an early-stage transplantable peritoneal metastasis (PM)-PDX model. Histology confirmed the micropapillary and cribriform growth pattern with intraluminal tumor budding and positivity for PAX8 and WT1. PM-PDX dissociated cells show an epithelial morphotype with a 42 h doubling time and 40% colony forming efficiency, they are low sensitive to platinum derivatives and highly sensitive to paclitaxel (IC50: 6.3 ± 2.2 nM, mean ± SEM). The patient primary tumor, PM, PM-PDX and derived cell line all show a KRAS c.35 G > T (p.(Gly12Val)) mutation and show sensitivity to the MEK inhibitor trametinib in vitro (IC50: 7.2 ± 0.5 nM, mean ± SEM) and in the PM mouse model. These preclinical models closely reflecting patient tumors are useful to further elucidate LGSOC disease progression, therapy response and resistance mechanisms.
Collapse
Affiliation(s)
- Elien De Thaye
- Laboratory of Medical Biochemistry and Clinical Analysis, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Koen Van de Vijver
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Department of Pathology, Ghent University Hospital, Ghent, Belgium
| | - Joni Van der Meulen
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Molecular Diagnostics Ghent University Hospital, Ghent, Belgium
| | - Joachim Taminau
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Molecular and Cellular Oncology lab, Ghent University, Ghent, Belgium
| | - Glenn Wagemans
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Laboratory of Experimental Cancer Research, Ghent University, Ghent, Belgium
| | - Hannelore Denys
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Department of Medical Oncology, Ghent University Hospital, Ghent, Belgium
| | - Jo Van Dorpe
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Department of Pathology, Ghent University Hospital, Ghent, Belgium
| | - Geert Berx
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Molecular and Cellular Oncology lab, Ghent University, Ghent, Belgium
| | - Wim Ceelen
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Department of GI Surgery, Ghent University Hospital, Ghent, Belgium
| | - Jan Van Bocxlaer
- Laboratory of Medical Biochemistry and Clinical Analysis, Ghent University, Ghent, Belgium
| | - Olivier De Wever
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
- Laboratory of Experimental Cancer Research, Ghent University, Ghent, Belgium.
| |
Collapse
|
18
|
Mayer AK, Mahajnah M, Thomas MG, Cohen Y, Habib A, Schulze M, Maconachie GDE, AlMoallem B, De Baere E, Lorenz B, Traboulsi EI, Kohl S, Azem A, Bauer P, Gottlob I, Sharkia R, Wissinger B. Homozygous stop mutation in AHR causes autosomal recessive foveal hypoplasia and infantile nystagmus. Brain 2020; 142:1528-1534. [PMID: 31009037 DOI: 10.1093/brain/awz098] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 02/04/2019] [Accepted: 02/16/2019] [Indexed: 01/27/2023] Open
Abstract
Herein we present a consanguineous family with three children affected by foveal hypoplasia with infantile nystagmus, following an autosomal recessive mode of inheritance. The patients showed normal electroretinography responses, no signs of albinism, and no anterior segment or brain abnormalities. Upon whole exome sequencing, we identified a homozygous mutation (c.1861C>T;p.Q621*) in the aryl hydrocarbon receptor (AHR) gene that perfectly co-segregated with the disease in the larger family. AHR is a ligand-activated transcription factor that has been intensively studied in xenobiotic-induced toxicity. Further, it has been shown to play a physiological role under normal cellular conditions, such as in immunity, inflammatory response and neurogenesis. Notably, knockout of the Ahr gene in mouse impairs optic nerve myelin sheath formation and results in oculomotor deficits sharing many features with our patients: the eye movement disorder in Ahr-/- mice appears early in development and presents as conjugate horizontal pendular nystagmus. We therefore propose AHR to be a novel disease gene for a new, recessively inherited disorder in humans, characterized by infantile nystagmus and foveal hypoplasia.
Collapse
Affiliation(s)
- Anja K Mayer
- Molecular Genetics Laboratory, Institute for Ophthalmic Research, University of Tuebingen, Tuebingen, Germany
| | - Muhammad Mahajnah
- Child Neurology and Development Center, Hillel-Yaffe Medical Center, Hadera, Israel.,The Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Mervyn G Thomas
- Ulverscroft Eye Unit, Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, UK
| | - Yuval Cohen
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel.,Ophthalmology Department, Hillel Yaffe Medical Center, Hadera, Israel
| | - Adib Habib
- Pediatric Department, St. Vincent French Hospital, Nazareth, Israel
| | - Martin Schulze
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany
| | - Gail D E Maconachie
- Ulverscroft Eye Unit, Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, UK
| | - Basamat AlMoallem
- Center for Medical Genetics Ghent, Ghent University and Ghent University Hospital, Ghent, Belgium.,Department of Ophthalmology, King Abdul-Aziz University Hospital, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Elfride De Baere
- Center for Medical Genetics Ghent, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Birgit Lorenz
- Department of Ophthalmology, Justus Liebig University Giessen, Giessen, Germany
| | | | - Susanne Kohl
- Molecular Genetics Laboratory, Institute for Ophthalmic Research, University of Tuebingen, Tuebingen, Germany
| | - Abdussalam Azem
- Department of Biochemistry and Molecular Biology, Tel Aviv University, Tel Aviv, Israel
| | - Peter Bauer
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany
| | - Irene Gottlob
- Ulverscroft Eye Unit, Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, UK
| | - Rajech Sharkia
- The Triangle Regional Research and Development Center, Kfar Qari', Israel.,Beit-Berl Academic College, Beit-Berl, Israel
| | - Bernd Wissinger
- Molecular Genetics Laboratory, Institute for Ophthalmic Research, University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
19
|
Bauwens M, Storch S, Weisschuh N, Ceuterick‐de Groote C, De Rycke R, Guillemyn B, De Jaegere S, Coppieters F, Van Coster R, Leroy BP, De Baere E. Functional characterization of novel MFSD8 pathogenic variants anticipates neurological involvement in juvenile isolated maculopathy. Clin Genet 2020; 97:426-436. [PMID: 31721179 PMCID: PMC7064892 DOI: 10.1111/cge.13673] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/30/2019] [Accepted: 11/01/2019] [Indexed: 12/22/2022]
Abstract
Biallelic MFSD8 variants are an established cause of severe late-infantile subtype of neuronal ceroid lipofuscinosis (v-LINCL), a severe lysosomal storage disorder, but have also been associated with nonsyndromic adult-onset maculopathy. Here, we functionally characterized two novel MFSD8 variants found in a child with juvenile isolated maculopathy, in order to establish a refined prognosis. ABCA4 locus resequencing was followed by the analysis of other inherited retinal disease genes by whole exome sequencing (WES). Minigene assays and cDNA sequencing were used to assess the effect of a novel MFSD8 splice variant. MFSD8 expression was quantified with qPCR and overexpression studies were analyzed by immunoblotting. Transmission electron microscopy (TEM) was performed on a skin biopsy and ophthalmological and neurological re-examinations were conducted. WES revealed two novel MFSD8 variants: c.[590del];[439+3A>C] p.[Gly197Valfs*2];[Ile67Glufs*3]. Characterization of the c.439+3A>C variant via splice assays showed exon-skipping (p.Ile67Glufs*3), while overexpression studies of the corresponding protein indicated expression of a truncated polypeptide. In addition, a significantly reduced MFSD8 RNA expression was noted in patient's lymphocytes. TEM of a skin biopsy revealed typical v-LINCL lipopigment inclusions while neurological imaging of the proband displayed subtle cerebellar atrophy. Functional characterization demonstrated the pathogenicity of two novel MFSD8 variants, found in a child with an initial diagnosis of juvenile isolated maculopathy but likely evolving to v-LINCL with a protracted disease course. Our study allowed a refined neurological prognosis in the proband and expands the natural history of MFSD8-associated disease.
Collapse
Affiliation(s)
| | - Stephan Storch
- Department of Biochemistry, Children's HospitalUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Nicole Weisschuh
- Molecular Genetics Laboratory, Institute for Ophthalmic ResearchUniversity of TuebingenTuebingenGermany
| | | | - Riet De Rycke
- Department of Biomedical Molecular BiologyGhent UniversityGhentBelgium
- VIB‐UGent Center for Inflammation ResearchGhentBelgium
- Ghent University Expertise Centre for Transmission Electron Microscopy and VIB BioImaging CoreGhentBelgium
| | | | - Sarah De Jaegere
- Center for Medical GeneticsGhent University HospitalGhentBelgium
| | | | - Rudy Van Coster
- Department of Pediatrics, Division of Pediatric Neurology and MetabolismGhent University HospitalGhentBelgium
| | - Bart P. Leroy
- Center for Medical GeneticsGhent University HospitalGhentBelgium
- Department of OphthalmologyGhent University and Ghent University HospitalGhentBelgium
- Division of Ophthalmology and Center for Cellular & Molecular TherapeuticsThe Children's Hospital of PhiladelphiaPhiladelphiaPennsylvania
| | - Elfride De Baere
- Center for Medical GeneticsGhent UniversityGhentBelgium
- Center for Medical GeneticsGhent University HospitalGhentBelgium
| |
Collapse
|
20
|
Francies FZ, Herd O, Cairns A, Nietz S, Murdoch M, Slabbert J, Claes KBM, Vral A, Baeyens A. Chromosomal radiosensitivity of triple negative breast cancer patients. Int J Radiat Biol 2019; 95:1507-1516. [PMID: 31348739 DOI: 10.1080/09553002.2019.1649502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Purpose: Based on clinical and molecular data, breast cancer is a heterogeneous disease. Breast cancers that have no expression of estrogen receptor (ER), progesterone receptor (PR) and human epidermal growth factor receptor 2 (HER2) are defined as triple negative breast cancers (TNBCs); luminal cancers have different expressions of ER, PR and/or HER2. TNBCs are frequently linked with advanced disease, poor prognosis and occurrence in young African women, and about 15% of the cases are associated with germline BRCA1/2 mutations. Since radiotherapy is utilized as a principle treatment in the management of TNBC, we aimed to investigate the chromosomal instability and radiosensitivity of lymphocytes in TNBC patients compared to luminal breast cancer patients and healthy controls using the micronucleus (MN) assay. The effect of mutations in breast cancer susceptibility genes on chromosomal radiosensitivity was also evaluated.Methods: Chromosomal radiosensitivity was evaluated in the G0 (83 patients and 90 controls) and S/G2 (34 patients and 17 controls) phase of the cell cycle by exposing blood samples from all patients and controls to 2 and 4 Gy ionizing radiation (IR).Results: In the G0 MN assay, the combined cohort of all breast cancer, TNBC and luminal patients' exhibit significantly elevated spontaneous MN values compared to controls indicating chromosomal instability. Chromosomal radiosensitivity is also significantly elevated in the combined cohort of all breast cancer patients compared to controls. The TNBC patients, however, do not exhibit enhanced chromosomal radiosensitivity. Similarly, in the S/G2 phase, 76% of TNBC patients do not show enhanced chromosomal radiosensitivity compared to the controls. In both the G0 and S/G2 phase, luminal breast cancer patients demonstrate a shift toward chromosomal radiosensitivity compared to TNBC patients and controls.Conclusions: The observations of the MN assay suggest increased chromosomal instability and chromosomal radiosensitivity in South African breast cancer patients. However, in TNBC patients, the irradiated MN values are not elevated. Our results suggest that the healthy lymphocytes in TNBC patients could handle higher doses of IR.
Collapse
Affiliation(s)
- Flavia Zita Francies
- Department of Radiation Sciences, Radiobiology, University of the Witwatersrand, Johannesburg, South Africa
| | - Olivia Herd
- Department of Radiation Sciences, Radiobiology, University of the Witwatersrand, Johannesburg, South Africa
| | - Alan Cairns
- Department of Surgery, Donald Gordon Medical Centre, Johannesburg, South Africa
| | - Sarah Nietz
- Department of Surgery, Charlotte Maxeke Johannesburg Academic Hospital and Donald Gordon Medical Centre, Johannesburg, South Africa
| | - Marshall Murdoch
- Department of Surgery, Donald Gordon Medical Centre, Johannesburg, South Africa
| | | | - Kathleen B M Claes
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
| | - Anne Vral
- Department of Human Structure and Repair, Ghent University, Ghent, Belgium
| | - Ans Baeyens
- Department of Radiation Sciences, Radiobiology, University of the Witwatersrand, Johannesburg, South Africa.,Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium.,Department of Human Structure and Repair, Ghent University, Ghent, Belgium
| |
Collapse
|
21
|
De Wever J, Everaert H, Coppieters F, Rottiers H, Dewettinck K, Lefever S, Messens K. The development of a novel SNP genotyping assay to differentiate cacao clones. Sci Rep 2019; 9:9512. [PMID: 31267023 PMCID: PMC6606624 DOI: 10.1038/s41598-019-45884-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 06/14/2019] [Indexed: 12/01/2022] Open
Abstract
In this study, a double-mismatch allele-specific (DMAS) qPCR SNP genotyping method has been designed, tested and validated specifically for cacao, using 65 well annotated international cacao reference accessions retrieved from the Center for Forestry Research and Technology Transfer (CEFORTT) and the International Cocoa Quarantine Centre (ICQC). In total, 42 DMAS-qPCR SNP genotyping assays have been validated, with a 98.05% overall efficiency in calling the correct genotype. In addition, the test allowed for the identification of 15.38% off-types and two duplicates, highlighting the problem of mislabeling in cacao collections and the need for conclusive genotyping assays. The developed method showed on average a high genetic diversity (He = 0.416) and information index (I = 0.601), making it applicable to assess intra-population variation. Furthermore, only the 13 most informative markers were needed to achieve maximum differentiation. This simple, effective method provides robust and accurate genotypic data which allows for more efficient resource management (e.g. tackling mislabeling, conserving valuable genetic material, parentage analysis, genetic diversity studies), thus contributing to an increased knowledge on the genetic background of cacao worldwide. Notably, the described method can easily be integrated in other laboratories for a wide range of objectives and organisms.
Collapse
Affiliation(s)
- Jocelyn De Wever
- Research unit Molecular Biology, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, 9000, Belgium. .,Center for Medical Genetics Ghent (CMGG), Ghent University Hospital, Ghent, 9000, Belgium.
| | - Helena Everaert
- Research unit Molecular Biology, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, 9000, Belgium.,Laboratory of Food Technology and Engineering (FTE), Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Ghent, 9000, Belgium
| | - Frauke Coppieters
- Center for Medical Genetics Ghent (CMGG), Ghent University Hospital, Ghent, 9000, Belgium
| | - Hayley Rottiers
- Research unit Molecular Biology, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, 9000, Belgium.,Laboratory of Food Technology and Engineering (FTE), Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Ghent, 9000, Belgium
| | - Koen Dewettinck
- Laboratory of Food Technology and Engineering (FTE), Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Ghent, 9000, Belgium
| | - Steve Lefever
- Center for Medical Genetics Ghent (CMGG), Ghent University Hospital, Ghent, 9000, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, 9000, Belgium.,Bioinformatics Institute Ghent (BIG), Ghent University, Ghent, 9000, Belgium
| | - Kathy Messens
- Research unit Molecular Biology, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, 9000, Belgium
| |
Collapse
|
22
|
Wang D, Liang S, Zhang X, Dey SK, Li Y, Xu C, Yu Y, Li M, Zhao G, Zhang Z. Targeted next-generation sequencing approach for molecular genetic diagnosis of hereditary colorectal cancer: Identification of a novel single nucleotide germline insertion in adenomatous polyposis coli gene causes familial adenomatous polyposis. Mol Genet Genomic Med 2018; 7:e00505. [PMID: 30523670 PMCID: PMC6382451 DOI: 10.1002/mgg3.505] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 09/26/2018] [Accepted: 10/10/2018] [Indexed: 12/12/2022] Open
Abstract
Background Familial adenomatous polyposis (FAP) is an autosomal dominantly inherited disease which primarily manifested with developing adenomas or polyps in colon or rectum. It is caused by the germline mutations in adenomatous polyposis coli (APC) gene. Patients with FAP are usually manifested with “hundreds or even thousands” adenomas or polyps in colon or rectum. However, without proper clinical diagnosis and timely surgical interventions, colorectal adenomas, or polyps gradually increase in size and in numbers which finally leads to colorectal cancer (CRC) at the mean age of 36 years of the patient. Methods In this study, we identified a family with FAP. In this family, FAP has been diagnosed clinically based on symptoms, medical test reports, and positive family history for three generations. In order to unveil the molecular genetic consequences underlying the disease phenotype, we performed next‐generation sequencing with a customized and designed panel of genes reported to be associated with hereditary CRC. The variant identified by next‐generation sequencing has been validated by Sanger sequencing. Results A heterozygous novel insertion [c.3992_3993insA; p.Thr1332Asnfs*10] in exon 16 of APC gene has been identified. This novel insertion is cosegregated well with the FAP phenotype among all the affected members of this family. This mutation causes a frameshift by the formation of a premature stop codon which finally results in the formation of a truncated APC protein of 1,342 amino acids instead of the wild type APC protein of 2,843 amino acids. Hence, this is a loss‐of‐function mutation. This mutation was not found in unaffected family members or in normal control individuals. Conclusion Our present study emphasizes the importance of a novel approach of the gene panel‐based high‐throughput sequencing technology for easy and rapid screening for patients with FAP or CRC which will help the clinician for follow‐up and management.
Collapse
Affiliation(s)
- Dan Wang
- Department of Pathology, Tianjin Medical University General Hospital, Tianjin, China
| | - Shengyun Liang
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, China
| | - Xipeng Zhang
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Subrata Kumar Dey
- Department of Biotechnology, Centre for Genetic Studies, School of Biotechnology and Biological Sciences, Maulana Abul Kalam Azad University of Technology (Formerly West Bengal University of Technology), Salt Lake City, Kolkata, India
| | - Yuwei Li
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Chen Xu
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Yongjun Yu
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Mingsen Li
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Guoru Zhao
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zhao Zhang
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
| |
Collapse
|
23
|
Boel A, De Saffel H, Steyaert W, Callewaert B, De Paepe A, Coucke PJ, Willaert A. CRISPR/Cas9-mediated homology-directed repair by ssODNs in zebrafish induces complex mutational patterns resulting from genomic integration of repair-template fragments. Dis Model Mech 2018; 11:11/10/dmm035352. [PMID: 30355591 PMCID: PMC6215429 DOI: 10.1242/dmm.035352] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 08/31/2018] [Indexed: 12/30/2022] Open
Abstract
Targeted genome editing by CRISPR/Cas9 is extremely well fitted to generate gene disruptions, although precise sequence replacement by CRISPR/Cas9-mediated homology-directed repair (HDR) suffers from low efficiency, impeding its use for high-throughput knock-in disease modeling. In this study, we used next-generation sequencing (NGS) analysis to determine the efficiency and reliability of CRISPR/Cas9-mediated HDR using several types of single-stranded oligodeoxynucleotide (ssODN) repair templates for the introduction of disease-relevant point mutations in the zebrafish genome. Our results suggest that HDR rates are strongly determined by repair-template composition, with the most influential factor being homology-arm length. However, we found that repair using ssODNs does not only lead to precise sequence replacement but also induces integration of repair-template fragments at the Cas9 cut site. We observed that error-free repair occurs at a relatively constant rate of 1-4% when using different repair templates, which was sufficient for transmission of point mutations to the F1 generation. On the other hand, erroneous repair mainly accounts for the variability in repair rate between the different repair templates. To further improve error-free HDR rates, elucidating the mechanism behind this erroneous repair is essential. We show that the error-prone nature of ssODN-mediated repair, believed to act via synthesis-dependent strand annealing (SDSA), is most likely due to DNA synthesis errors. In conclusion, caution is warranted when using ssODNs for the generation of knock-in models or for therapeutic applications. We recommend the application of in-depth NGS analysis to examine both the efficiency and error-free nature of HDR events. This article has an associated First Person interview with the first author of the paper. Summary: NGS-based analysis reveals that CRISPR/Cas9-induced double-strand-break repair using single-stranded repair templates is error prone in zebrafish, resulting in complex patterns of integrated repair-template fragments.
Collapse
Affiliation(s)
- Annekatrien Boel
- Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Hanna De Saffel
- Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Wouter Steyaert
- Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Bert Callewaert
- Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Anne De Paepe
- Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Paul J Coucke
- Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Andy Willaert
- Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| |
Collapse
|
24
|
CRISPR/Cas9-mediated genome editing in naïve human embryonic stem cells. Sci Rep 2017; 7:16650. [PMID: 29192200 PMCID: PMC5709416 DOI: 10.1038/s41598-017-16932-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 11/20/2017] [Indexed: 12/26/2022] Open
Abstract
The combination of genome-edited human embryonic stem cells (hESCs) and subsequent neural differentiation is a powerful tool to study neurodevelopmental disorders. Since the naïve state of pluripotency has favourable characteristics for efficient genome-editing, we optimized a workflow for the CRISPR/Cas9 system in these naïve stem cells. Editing efficiencies of respectively 1.3–8.4% and 3.8–19% were generated with the Cas9 nuclease and the D10A Cas9 nickase mutant. Next to this, wildtype and genome-edited naïve hESCs were successfully differentiated to neural progenitor cells. As a proof-of-principle of our workflow, two monoclonal genome-edited naïve hESCs colonies were obtained for TUNA, a long non-coding RNA involved in pluripotency and neural differentiation. In these genome-edited hESCs, an effect was seen on expression of TUNA, although not on neural differentiation potential. In conclusion, we optimized a genome-editing workflow in naïve hESCs that can be used to study candidate genes involved in neural differentiation and/or functioning.
Collapse
|
25
|
Diagnosis of Fanconi Anaemia by ionising radiation- or mitomycin C-induced micronuclei. DNA Repair (Amst) 2017; 61:17-24. [PMID: 29154021 DOI: 10.1016/j.dnarep.2017.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 08/25/2017] [Accepted: 11/03/2017] [Indexed: 11/22/2022]
Abstract
Fanconi Anaemia (FA) is an autosomal recessive disorder characterised by defects in DNA repair, associated with chromosomal instability and cellular hypersensitivity to DNA cross-linking agents such as mitomycin C (MMC). The FA repair pathway involves complex DNA repair mechanisms crucial for genomic stability. Deficiencies in DNA repair genes give rise to chromosomal radiosensitivity. FA patients have shown increased clinical radiosensitivity by exhibiting adverse normal tissue side-effects. The study aimed to investigate chromosomal radiosensitivity of homozygous and heterozygous carriers of FA mutations using three micronucleus (MN) assays. The G0 and S/G2MN assays are cytogenetic assays to evaluate DNA damage induced by ionising radiation in different phases of the cell cycle. The MMC MN assay detects DNA damage induced by a crosslinking agent in the G0 phase. Patients with a clinical diagnosis of FA and their parents were screened for the complete coding region of 20 FA genes. Blood samples of all FA patients and parents were exposed to ionising radiation of 2 and 4Gy. Chromosomal radiosensitivity was evaluated in the G0 and S/G2 phase. Most of our patients were homozygous for the founder mutation FANCG c.637_643delTACCGCC; p.(Tyr213Lysfs*6) while one patient was compound heterozygous for FANCG c.637_643delTACCGCC and FANCG c.1379G > A, p.(Gly460Asp), a novel missense mutation. Another patient was compound heterozygous for two deleterious FANCA mutations. In FA patients, the G0- and S/G2-MN assays show significantly increased chromosomal radiosensitivity and genomic instability. Moreover, chromosomal damage was significantly elevated in MMC treated FA cells. We also observed an increase in chromosomal radiosensitivity and genomic instability in the parents using 3 assays. The effect was significant using the MMC MN assay. The MMC MN assay is advantageous as it is less labour intense, time effective and has potential as a reliable alternative method for detecting FA patients from parents and controls.
Collapse
|
26
|
Biallelic and monoallelic ESR2 variants associated with 46,XY disorders of sex development. Genet Med 2017; 20:717-727. [PMID: 29261182 DOI: 10.1038/gim.2017.163] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Accepted: 08/04/2017] [Indexed: 11/08/2022] Open
Abstract
PURPOSE Disorders or differences of sex development (DSDs) are rare congenital conditions characterized by atypical sex development. Despite advances in genomic technologies, the molecular cause remains unknown in 50% of cases. METHODS Homozygosity mapping and whole-exome sequencing revealed an ESR2 variant in an individual with syndromic 46,XY DSD. Additional cases with 46,XY DSD underwent whole-exome sequencing and targeted next-generation sequencing of ESR2. Functional characterization of the identified variants included luciferase assays and protein structure analysis. Gonadal ESR2 expression was assessed in human embryonic data sets and immunostaining of estrogen receptor-β (ER-β) was performed in an 8-week-old human male embryo. RESULTS We identified a homozygous ESR2 variant, c.541_543del p.(Asn181del), located in the highly conserved DNA-binding domain of ER-β, in an individual with syndromic 46,XY DSD. Two additional heterozygous missense variants, c.251G>T p.(Gly84Val) and c.1277T>G p.(Leu426Arg), located in the N-terminus and the ligand-binding domain of ER-β, were found in unrelated, nonsyndromic 46,XY DSD cases. Significantly increased transcriptional activation and an impact on protein conformation were shown for the p.(Asn181del) and p.(Leu426Arg) variants. Testicular ESR2 expression was previously documented and ER-β immunostaining was positive in the developing intestine and eyes. CONCLUSION Our study supports a role for ESR2 as a novel candidate gene for 46,XY DSD.
Collapse
|
27
|
Povysil G, Tzika A, Vogt J, Haunschmid V, Messiaen L, Zschocke J, Klambauer G, Hochreiter S, Wimmer K. panelcn.MOPS: Copy-number detection in targeted NGS panel data for clinical diagnostics. Hum Mutat 2017; 38:889-897. [PMID: 28449315 PMCID: PMC5518446 DOI: 10.1002/humu.23237] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 04/21/2017] [Accepted: 04/22/2017] [Indexed: 11/10/2022]
Abstract
Targeted next‐generation‐sequencing (NGS) panels have largely replaced Sanger sequencing in clinical diagnostics. They allow for the detection of copy‐number variations (CNVs) in addition to single‐nucleotide variants and small insertions/deletions. However, existing computational CNV detection methods have shortcomings regarding accuracy, quality control (QC), incidental findings, and user‐friendliness. We developed panelcn.MOPS, a novel pipeline for detecting CNVs in targeted NGS panel data. Using data from 180 samples, we compared panelcn.MOPS with five state‐of‐the‐art methods. With panelcn.MOPS leading the field, most methods achieved comparably high accuracy. panelcn.MOPS reliably detected CNVs ranging in size from part of a region of interest (ROI), to whole genes, which may comprise all ROIs investigated in a given sample. The latter is enabled by analyzing reads from all ROIs of the panel, but presenting results exclusively for user‐selected genes, thus avoiding incidental findings. Additionally, panelcn.MOPS offers QC criteria not only for samples, but also for individual ROIs within a sample, which increases the confidence in called CNVs. panelcn.MOPS is freely available both as R package and standalone software with graphical user interface that is easy to use for clinical geneticists without any programming experience. panelcn.MOPS combines high sensitivity and specificity with user‐friendliness rendering it highly suitable for routine clinical diagnostics.
Collapse
Affiliation(s)
- Gundula Povysil
- Institute of Bioinformatics, Johannes Kepler University Linz, Linz, Austria
| | - Antigoni Tzika
- Division of Human Genetics, Medical University Innsbruck, Innsbruck, Austria
| | - Julia Vogt
- Division of Human Genetics, Medical University Innsbruck, Innsbruck, Austria
| | - Verena Haunschmid
- Institute of Bioinformatics, Johannes Kepler University Linz, Linz, Austria
| | - Ludwine Messiaen
- Medical Genomics Laboratory, Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama
| | - Johannes Zschocke
- Division of Human Genetics, Medical University Innsbruck, Innsbruck, Austria
| | - Günter Klambauer
- Institute of Bioinformatics, Johannes Kepler University Linz, Linz, Austria
| | - Sepp Hochreiter
- Institute of Bioinformatics, Johannes Kepler University Linz, Linz, Austria
| | - Katharina Wimmer
- Division of Human Genetics, Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
28
|
Davey S, Navarrete C, Brown C. Simultaneous human platelet antigen genotyping and detection of novel single nucleotide polymorphisms by targeted next-generation sequencing. Transfusion 2017; 57:1497-1504. [PMID: 28370162 DOI: 10.1111/trf.14092] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 02/04/2017] [Accepted: 02/08/2017] [Indexed: 01/03/2023]
Abstract
BACKGROUND Twenty-nine human platelet antigen systems have been described to date, but the majority of current genotyping methods are restricted to the identification of those most commonly associated with alloantibody production in a clinical context. This can result in a protracted investigation if causative human platelet antigens are rare or novel. A targeted next-generation sequencing approach was designed to detect all known human platelet antigens with the additional capability of identifying novel mutations in the encoding genes. STUDY DESIGN AND METHODS A targeted enrichment, high-sensitivity HaloPlex assay was designed to sequence all exons and flanking regions of the six genes known to encode human platelet antigens. Indexed DNA libraries were prepared from 47 previously human platelet antigen-genotyped samples and subsequently combined into one of three pools for sequencing on an Illumina MiSeq platform. The generated FASTQ files were aligned and scrutinized for each human platelet antigen polymorphism using SureCall data analysis software. RESULTS Forty-six samples were successfully genotyped for human platelet antigens 1 through 29bw, with an average per base coverage depth of 1144. Concordance with historical human platelet antigen genotypes was 100%. A putative novel mutation in Exon 10 of the integrin β-3 (ITGB3) gene from an unsolved case of fetal neonatal alloimmune thrombocytopenia was also detected. CONCLUSION A next-generation sequencing-based method that can accurately define all known human platelet antigen polymorphisms was developed. With the ability to sequence up to 96 samples simultaneously, our HaloPlex design could be used for high-throughput human platelet antigen genotyping. This method is also applicable for investigating fetal neonatal alloimmune thrombocytopenia when rare or novel human platelet antigens are suspected.
Collapse
Affiliation(s)
- Sue Davey
- Histocompatibility and Immunogenetics Department, National Health Service Blood and Transplant, Colindale, London, United Kingdom
| | - Cristina Navarrete
- Histocompatibility and Immunogenetics Department, National Health Service Blood and Transplant, Colindale, London, United Kingdom.,Division of Infection and Immunity, University College London, London, United Kingdom
| | - Colin Brown
- Histocompatibility and Immunogenetics Department, National Health Service Blood and Transplant, Colindale, London, United Kingdom
| |
Collapse
|
29
|
Van Cauwenbergh C, Coppieters F, Roels D, De Jaegere S, Flipts H, De Zaeytijd J, Walraedt S, Claes C, Fransen E, Van Camp G, Depasse F, Casteels I, de Ravel T, Leroy BP, De Baere E. Mutations in Splicing Factor Genes Are a Major Cause of Autosomal Dominant Retinitis Pigmentosa in Belgian Families. PLoS One 2017; 12:e0170038. [PMID: 28076437 PMCID: PMC5226823 DOI: 10.1371/journal.pone.0170038] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Accepted: 12/27/2016] [Indexed: 12/14/2022] Open
Abstract
Purpose Autosomal dominant retinitis pigmentosa (adRP) is characterized by an extensive genetic heterogeneity, implicating 27 genes, which account for 50 to 70% of cases. Here 86 Belgian probands with possible adRP underwent genetic testing to unravel the molecular basis and to assess the contribution of the genes underlying their condition. Methods Mutation detection methods evolved over the past ten years, including mutation specific methods (APEX chip analysis), linkage analysis, gene panel analysis (Sanger sequencing, targeted next-generation sequencing or whole exome sequencing), high-resolution copy number screening (customized microarray-based comparative genomic hybridization). Identified variants were classified following American College of Medical Genetics and Genomics (ACMG) recommendations. Results Molecular genetic screening revealed mutations in 48/86 cases (56%). In total, 17 novel pathogenic mutations were identified: four missense mutations in RHO, five frameshift mutations in RP1, six mutations in genes encoding spliceosome components (SNRNP200, PRPF8, and PRPF31), one frameshift mutation in PRPH2, and one frameshift mutation in TOPORS. The proportion of RHO mutations in our cohort (14%) is higher than reported in a French adRP population (10.3%), but lower than reported elsewhere (16.5–30%). The prevalence of RP1 mutations (10.5%) is comparable to other populations (3.5%-10%). The mutation frequency in genes encoding splicing factors is unexpectedly high (altogether 19.8%), with PRPF31 the second most prevalent mutated gene (10.5%). PRPH2 mutations were found in 4.7% of the Belgian cohort. Two families (2.3%) have the recurrent NR2E3 mutation p.(Gly56Arg). The prevalence of the recurrent PROM1 mutation p.(Arg373Cys) was higher than anticipated (3.5%). Conclusions Overall, we identified mutations in 48 of 86 Belgian adRP cases (56%), with the highest prevalence in RHO (14%), RP1 (10.5%) and PRPF31 (10.5%). Finally, we expanded the molecular spectrum of PRPH2, PRPF8, RHO, RP1, SNRNP200, and TOPORS-associated adRP by the identification of 17 novel mutations.
Collapse
Affiliation(s)
- Caroline Van Cauwenbergh
- Center for Medical Genetics Ghent, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Frauke Coppieters
- Center for Medical Genetics Ghent, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Dimitri Roels
- Department of Ophthalmology, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Sarah De Jaegere
- Center for Medical Genetics Ghent, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Helena Flipts
- Center for Medical Genetics Ghent, Ghent University and Ghent University Hospital, Ghent, Belgium
- Center for Human Genetics, University Hospitals Leuven, Louvain, Belgium
| | - Julie De Zaeytijd
- Department of Ophthalmology, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Sophie Walraedt
- Department of Ophthalmology, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Charlotte Claes
- Center for Medical Genetics Antwerp, Antwerp University, Antwerp, Belgium
| | - Erik Fransen
- Center for Medical Genetics Antwerp, Antwerp University, Antwerp, Belgium
| | - Guy Van Camp
- Center for Medical Genetics Antwerp, Antwerp University, Antwerp, Belgium
| | - Fanny Depasse
- Department of Ophthalmology, Hôpital Erasme-ULB, Brussels, Belgium
| | - Ingele Casteels
- Department of Ophthalmology, University Hospitals Leuven, Louvain, Belgium
| | - Thomy de Ravel
- Center for Human Genetics, University Hospitals Leuven, Louvain, Belgium
| | - Bart P. Leroy
- Center for Medical Genetics Ghent, Ghent University and Ghent University Hospital, Ghent, Belgium
- Department of Ophthalmology, Ghent University and Ghent University Hospital, Ghent, Belgium
- Division of Ophthalmology & Center for Cellular & Molecular Therapy, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Elfride De Baere
- Center for Medical Genetics Ghent, Ghent University and Ghent University Hospital, Ghent, Belgium
- * E-mail:
| |
Collapse
|
30
|
A comprehensive custom panel design for routine hereditary cancer testing: preserving control, improving diagnostics and revealing a complex variation landscape. Sci Rep 2017; 7:39348. [PMID: 28051113 PMCID: PMC5209725 DOI: 10.1038/srep39348] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 11/22/2016] [Indexed: 01/02/2023] Open
Abstract
We wanted to implement an NGS strategy to globally analyze hereditary cancer with diagnostic quality while retaining the same degree of understanding and control we had in pre-NGS strategies. To do this, we developed the I2HCP panel, a custom bait library covering 122 hereditary cancer genes. We improved bait design, tested different NGS platforms and created a clinically driven custom data analysis pipeline. The I2HCP panel was developed using a training set of hereditary colorectal cancer, hereditary breast and ovarian cancer and neurofibromatosis patients and reached an accuracy, analytical sensitivity and specificity greater than 99%, which was maintained in a validation set. I2HCP changed our diagnostic approach, involving clinicians and a genetic diagnostics team from panel design to reporting. The new strategy improved diagnostic sensitivity, solved uncertain clinical diagnoses and identified mutations in new genes. We assessed the genetic variation in the complete set of hereditary cancer genes, revealing a complex variation landscape that coexists with the disease-causing mutation. We developed, validated and implemented a custom NGS-based strategy for hereditary cancer diagnostics that improved our previous workflows. Additionally, the existence of a rich genetic variation in hereditary cancer genes favors the use of this panel to investigate their role in cancer risk.
Collapse
|
31
|
Neveling K, Mensenkamp AR, Derks R, Kwint M, Ouchene H, Steehouwer M, van Lier B, Bosgoed E, Rikken A, Tychon M, Zafeiropoulou D, Castelein S, Hehir-Kwa J, Tjwan Thung D, Hofste T, Lelieveld SH, Bertens SMM, Adan IBJF, Eijkelenboom A, Tops BB, Yntema H, Stokowy T, Knappskog PM, Høberg-Vetti H, Steen VM, Boyle E, Martin B, Ligtenberg MJL, Shendure J, Nelen MR, Hoischen A. BRCA Testing by Single-Molecule Molecular Inversion Probes. Clin Chem 2016; 63:503-512. [PMID: 27974384 DOI: 10.1373/clinchem.2016.263897] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 09/29/2016] [Indexed: 12/16/2022]
Abstract
BACKGROUND Despite advances in next generation DNA sequencing (NGS), NGS-based single gene tests for diagnostic purposes require improvements in terms of completeness, quality, speed, and cost. Single-molecule molecular inversion probes (smMIPs) are a technology with unrealized potential in the area of clinical genetic testing. In this proof-of-concept study, we selected 2 frequently requested gene tests, those for the breast cancer genes BRCA1 and BRCA2, and developed an automated work flow based on smMIPs. METHODS The BRCA1 and BRCA2 smMIPs were validated using 166 human genomic DNA samples with known variant status. A generic automated work flow was built to perform smMIP-based enrichment and sequencing for BRCA1, BRCA2, and the checkpoint kinase 2 (CHEK2) c.1100del variant. RESULTS Pathogenic and benign variants were analyzed in a subset of 152 previously BRCA-genotyped samples, yielding an analytical sensitivity and specificity of 100%. Following automation, blind analysis of 65 in-house samples and 267 Norwegian samples correctly identified all true-positive variants (>3000), with no false positives. Consequent to process optimization, turnaround times were reduced by 60% to currently 10-15 days. Copy number variants were detected with an analytical sensitivity of 100% and an analytical specificity of 88%. CONCLUSIONS smMIP-based genetic testing enables automated and reliable analysis of the coding sequences of BRCA1 and BRCA2. The use of single-molecule tags, double-tiled targeted enrichment, and capturing and sequencing in duplo, in combination with automated library preparation and data analysis, results in a robust process and reduces routine turnaround times. Furthermore, smMIP-based copy number variation analysis could make independent copy number variation tools like multiplex ligation-dependent probes amplification dispensable.
Collapse
Affiliation(s)
- Kornelia Neveling
- Department of Human Genetics, Radboud university medical center, Nijmegen, the Netherlands
| | - Arjen R Mensenkamp
- Department of Human Genetics, Radboud university medical center, Nijmegen, the Netherlands
| | - Ronny Derks
- Department of Human Genetics, Radboud university medical center, Nijmegen, the Netherlands
| | - Michael Kwint
- Department of Human Genetics, Radboud university medical center, Nijmegen, the Netherlands
| | - Hicham Ouchene
- Department of Human Genetics, Radboud university medical center, Nijmegen, the Netherlands
| | - Marloes Steehouwer
- Department of Human Genetics, Radboud university medical center, Nijmegen, the Netherlands
| | - Bart van Lier
- Department of Human Genetics, Radboud university medical center, Nijmegen, the Netherlands
| | - Ermanno Bosgoed
- Department of Human Genetics, Radboud university medical center, Nijmegen, the Netherlands
| | - Alwin Rikken
- Department of Human Genetics, Radboud university medical center, Nijmegen, the Netherlands
| | - Marloes Tychon
- Department of Human Genetics, Radboud university medical center, Nijmegen, the Netherlands
| | - Dimitra Zafeiropoulou
- Department of Human Genetics, Radboud university medical center, Nijmegen, the Netherlands
| | - Steven Castelein
- Department of Human Genetics, Radboud university medical center, Nijmegen, the Netherlands
| | - Jayne Hehir-Kwa
- Department of Human Genetics, Radboud university medical center, Nijmegen, the Netherlands
| | - Djie Tjwan Thung
- Department of Human Genetics, Radboud university medical center, Nijmegen, the Netherlands
| | - Tom Hofste
- Department of Human Genetics, Radboud university medical center, Nijmegen, the Netherlands
| | - Stefan H Lelieveld
- Department of Human Genetics, Radboud university medical center, Nijmegen, the Netherlands
| | - Stijn M M Bertens
- Department of Mechanical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Ivo B J F Adan
- Department of Mechanical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Astrid Eijkelenboom
- Department of Pathology, Radboud university medical center, Nijmegen, the Netherlands
| | - Bastiaan B Tops
- Department of Pathology, Radboud university medical center, Nijmegen, the Netherlands
| | - Helger Yntema
- Department of Human Genetics, Radboud university medical center, Nijmegen, the Netherlands
| | - Tomasz Stokowy
- Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway.,Western Norway Familial Cancer Center, Haukeland University Hospital, Bergen, Norway
| | - Per M Knappskog
- Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | - Hildegunn Høberg-Vetti
- Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway.,Western Norway Familial Cancer Center, Haukeland University Hospital, Bergen, Norway
| | - Vidar M Steen
- Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Evan Boyle
- Department of Genome Sciences, University of Washington, Seattle, WA
| | - Beth Martin
- Department of Genome Sciences, University of Washington, Seattle, WA
| | - Marjolijn J L Ligtenberg
- Department of Human Genetics, Radboud university medical center, Nijmegen, the Netherlands.,Department of Pathology, Radboud university medical center, Nijmegen, the Netherlands
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, WA
| | - Marcel R Nelen
- Department of Human Genetics, Radboud university medical center, Nijmegen, the Netherlands;
| | - Alexander Hoischen
- Department of Human Genetics, Radboud university medical center, Nijmegen, the Netherlands.,Donders Centre for Neuroscience, Radboud University Nijmegen, Nijmegen, the Netherlands
| |
Collapse
|
32
|
CRISPR/Cas9 mediated knockout of rb1 and rbl1 leads to rapid and penetrant retinoblastoma development in Xenopus tropicalis. Sci Rep 2016; 6:35264. [PMID: 27739525 PMCID: PMC5064383 DOI: 10.1038/srep35264] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 09/28/2016] [Indexed: 12/17/2022] Open
Abstract
Retinoblastoma is a pediatric eye tumor in which bi-allelic inactivation of the Retinoblastoma 1 (RB1) gene is the initiating genetic lesion. Although recently curative rates of retinoblastoma have increased, there are at this time no molecular targeted therapies available. This is, in part, due to the lack of highly penetrant and rapid retinoblastoma animal models that facilitate rapid identification of targets that allow therapeutic intervention. Different mouse models are available, all based on genetic deactivation of both Rb1 and Retinoblastoma-like 1 (Rbl1), and each showing different kinetics of retinoblastoma development. Here, we show by CRISPR/Cas9 techniques that similar to the mouse, neither rb1 nor rbl1 single mosaic mutant Xenopus tropicalis develop tumors, whereas rb1/rbl1 double mosaic mutant tadpoles rapidly develop retinoblastoma. Moreover, occasionally presence of pinealoblastoma (trilateral retinoblastoma) was detected. We thus present the first CRISPR/Cas9 mediated cancer model in Xenopus tropicalis and the first genuine genetic non-mammalian retinoblastoma model. The rapid kinetics of our model paves the way for use as a pre-clinical model. Additionally, this retinoblastoma model provides unique possibilities for fast elucidation of novel drug targets by triple multiplex CRISPR/Cas9 gRNA injections (rb1 + rbl1 + modifier gene) in order to address the clinically unmet need of targeted retinoblastoma therapy.
Collapse
|
33
|
Coppieters F, Ascari G, Dannhausen K, Nikopoulos K, Peelman F, Karlstetter M, Xu M, Brachet C, Meunier I, Tsilimbaris M, Tsika C, Blazaki S, Vergult S, Farinelli P, Van Laethem T, Bauwens M, De Bruyne M, Chen R, Langmann T, Sui R, Meire F, Rivolta C, Hamel C, Leroy B, De Baere E. Isolated and Syndromic Retinal Dystrophy Caused by Biallelic Mutations in RCBTB1, a Gene Implicated in Ubiquitination. Am J Hum Genet 2016; 99:470-80. [PMID: 27486781 PMCID: PMC4974088 DOI: 10.1016/j.ajhg.2016.06.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Accepted: 06/20/2016] [Indexed: 11/24/2022] Open
Abstract
Inherited retinal dystrophies (iRDs) are a group of genetically and clinically heterogeneous conditions resulting from mutations in over 250 genes. Here, homozygosity mapping and whole-exome sequencing (WES) in a consanguineous family revealed a homozygous missense mutation, c.973C>T (p.His325Tyr), in RCBTB1. In affected individuals, it was found to segregate with retinitis pigmentosa (RP), goiter, primary ovarian insufficiency, and mild intellectual disability. Subsequent analysis of WES data in different cohorts uncovered four additional homozygous missense mutations in five unrelated families in whom iRD segregates with or without syndromic features. Ocular phenotypes ranged from typical RP starting in the second decade to chorioretinal dystrophy with a later age of onset. The five missense mutations affect highly conserved residues either in the sixth repeat of the RCC1 domain or in the BTB1 domain. A founder haplotype was identified for mutation c.919G>A (p.Val307Met), occurring in two families of Mediterranean origin. We showed ubiquitous mRNA expression of RCBTB1 and demonstrated predominant RCBTB1 localization in human inner retina. RCBTB1 was very recently shown to be involved in ubiquitination, more specifically as a CUL3 substrate adaptor. Therefore, the effect on different components of the CUL3 and NFE2L2 (NRF2) pathway was assessed in affected individuals’ lymphocytes, revealing decreased mRNA expression of NFE2L2 and several NFE2L2 target genes. In conclusion, our study puts forward mutations in RCBTB1 as a cause of autosomal-recessive non-syndromic and syndromic iRD. Finally, our data support a role for impaired ubiquitination in the pathogenetic mechanism of RCBTB1 mutations.
Collapse
|
34
|
BATCH-GE: Batch analysis of Next-Generation Sequencing data for genome editing assessment. Sci Rep 2016; 6:30330. [PMID: 27461955 PMCID: PMC4962088 DOI: 10.1038/srep30330] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 07/04/2016] [Indexed: 02/02/2023] Open
Abstract
Targeted mutagenesis by the CRISPR/Cas9 system is currently revolutionizing genetics. The ease of this technique has enabled genome engineering in-vitro and in a range of model organisms and has pushed experimental dimensions to unprecedented proportions. Due to its tremendous progress in terms of speed, read length, throughput and cost, Next-Generation Sequencing (NGS) has been increasingly used for the analysis of CRISPR/Cas9 genome editing experiments. However, the current tools for genome editing assessment lack flexibility and fall short in the analysis of large amounts of NGS data. Therefore, we designed BATCH-GE, an easy-to-use bioinformatics tool for batch analysis of NGS-generated genome editing data, available from https://github.com/WouterSteyaert/BATCH-GE.git. BATCH-GE detects and reports indel mutations and other precise genome editing events and calculates the corresponding mutagenesis efficiencies for a large number of samples in parallel. Furthermore, this new tool provides flexibility by allowing the user to adapt a number of input variables. The performance of BATCH-GE was evaluated in two genome editing experiments, aiming to generate knock-out and knock-in zebrafish mutants. This tool will not only contribute to the evaluation of CRISPR/Cas9-based experiments, but will be of use in any genome editing experiment and has the ability to analyze data from every organism with a sequenced genome.
Collapse
|
35
|
Bogaert DJA, Dullaers M, Lambrecht BN, Vermaelen KY, De Baere E, Haerynck F. Genes associated with common variable immunodeficiency: one diagnosis to rule them all? J Med Genet 2016; 53:575-90. [PMID: 27250108 DOI: 10.1136/jmedgenet-2015-103690] [Citation(s) in RCA: 196] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 05/10/2016] [Indexed: 12/15/2022]
Abstract
Common variable immunodeficiency (CVID) is a primary antibody deficiency characterised by hypogammaglobulinaemia, impaired production of specific antibodies after immunisation and increased susceptibility to infections. CVID shows a considerable phenotypical and genetic heterogeneity. In contrast to many other primary immunodeficiencies, monogenic forms count for only 2-10% of patients with CVID. Genes that have been implicated in monogenic CVID include ICOS, TNFRSF13B (TACI), TNFRSF13C (BAFF-R), TNFSF12 (TWEAK), CD19, CD81, CR2 (CD21), MS4A1 (CD20), TNFRSF7 (CD27), IL21, IL21R, LRBA, CTLA4, PRKCD, PLCG2, NFKB1, NFKB2, PIK3CD, PIK3R1, VAV1, RAC2, BLK, IKZF1 (IKAROS) and IRF2BP2 With the increasing number of disease genes identified in CVID, it has become clear that CVID is an umbrella diagnosis and that many of these genetic defects cause distinct disease entities. Moreover, there is accumulating evidence that at least a subgroup of patients with CVID has a complex rather than a monogenic inheritance. This review aims to discuss current knowledge regarding the molecular genetic basis of CVID with an emphasis on the relationship with the clinical and immunological phenotype.
Collapse
Affiliation(s)
- Delfien J A Bogaert
- Clinical Immunology Research Lab, Department of Pulmonary Medicine, Ghent University Hospital, Ghent, Belgium Department of Pediatric Immunology and Pulmonology, Centre for Primary Immunodeficiency, Jeffrey Modell Diagnosis and Research Centre, Ghent University Hospital, Ghent, Belgium Center for Medical Genetics, Ghent University and Ghent University Hospital, Ghent, Belgium Laboratory of Immunoregulation, VIB Inflammation Research Center, Ghent, Belgium
| | - Melissa Dullaers
- Clinical Immunology Research Lab, Department of Pulmonary Medicine, Ghent University Hospital, Ghent, Belgium Laboratory of Immunoregulation, VIB Inflammation Research Center, Ghent, Belgium Department of Internal Medicine, Ghent University, Ghent, Belgium
| | - Bart N Lambrecht
- Laboratory of Immunoregulation, VIB Inflammation Research Center, Ghent, Belgium Department of Internal Medicine, Ghent University, Ghent, Belgium
| | - Karim Y Vermaelen
- Clinical Immunology Research Lab, Department of Pulmonary Medicine, Ghent University Hospital, Ghent, Belgium Department of Internal Medicine, Ghent University, Ghent, Belgium Tumor Immunology Laboratory, Department of Pulmonary Medicine, Ghent University Hospital, Ghent, Belgium
| | - Elfride De Baere
- Center for Medical Genetics, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Filomeen Haerynck
- Clinical Immunology Research Lab, Department of Pulmonary Medicine, Ghent University Hospital, Ghent, Belgium Department of Pediatric Immunology and Pulmonology, Centre for Primary Immunodeficiency, Jeffrey Modell Diagnosis and Research Centre, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
36
|
Baert A, Depuydt J, Van Maerken T, Poppe B, Malfait F, Storm K, van den Ende J, Van Damme T, De Nobele S, Perletti G, De Leeneer K, Claes KBM, Vral A. Increased chromosomal radiosensitivity in asymptomatic carriers of a heterozygous BRCA1 mutation. Breast Cancer Res 2016; 18:52. [PMID: 27184744 PMCID: PMC4869288 DOI: 10.1186/s13058-016-0709-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 04/23/2016] [Indexed: 01/08/2023] Open
Abstract
Background Breast cancer risk increases drastically in individuals carrying a germline BRCA1 mutation. The exposure to ionizing radiation for diagnostic or therapeutic purposes of BRCA1 mutation carriers is counterintuitive, since BRCA1 is active in the DNA damage response pathway. The aim of this study was to investigate whether healthy BRCA1 mutations carriers demonstrate an increased radiosensitivity compared with healthy individuals. Methods We defined a novel radiosensitivity indicator (RIND) based on two endpoints measured by the G2 micronucleus assay, reflecting defects in DNA repair and G2 arrest capacity after exposure to doses of 2 or 4 Gy. We investigated if a correlation between the RIND score and nonsense-mediated decay (NMD) could be established. Results We found significantly increased radiosensitivity in the cohort of healthy BRCA1 mutation carriers compared with healthy controls. In addition, our analysis showed a significantly different distribution over the RIND scores (p = 0.034, Fisher’s exact test) for healthy BRCA1 mutation carriers compared with non-carriers: 72 % of mutation carriers showed a radiosensitive phenotype (RIND score 1–4), whereas 72 % of the healthy volunteers showed no radiosensitivity (RIND score 0). Furthermore, 28 % of BRCA1 mutation carriers had a RIND score of 3 or 4 (not observed in control subjects). The radiosensitive phenotype was similar for relatives within several families, but not for unrelated individuals carrying the same mutation. The median RIND score was higher in patients with a mutation leading to a premature termination codon (PTC) located in the central part of the gene than in patients with a germline mutation in the 5′ end of the gene. Conclusions We show that BRCA1 mutations are associated with a radiosensitive phenotype related to a compromised DNA repair and G2 arrest capacity after exposure to either 2 or 4 Gy. Our study confirms that haploinsufficiency is the mechanism involved in radiosensitivity in patients with a PTC allele, but it suggests that further research is needed to evaluate alternative mechanisms for mutations not subjected to NMD. Electronic supplementary material The online version of this article (doi:10.1186/s13058-016-0709-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Annelot Baert
- Department of Basic Medical Sciences, Ghent University, Ghent, Belgium
| | - Julie Depuydt
- Department of Basic Medical Sciences, Ghent University, Ghent, Belgium
| | - Tom Van Maerken
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Bruce Poppe
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Fransiska Malfait
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Katrien Storm
- Department of Medical Genetics, University of Antwerp/University Hospital of Antwerp, Antwerp, Belgium
| | - Jenneke van den Ende
- Department of Medical Genetics, University of Antwerp/University Hospital of Antwerp, Antwerp, Belgium
| | - Tim Van Damme
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Sylvia De Nobele
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Gianpaolo Perletti
- Department of Basic Medical Sciences, Ghent University, Ghent, Belgium.,Biomedical Research Division, Department of Theoretical and Applied Sciences, University of Insubria, Busto Arsizio, Italy
| | - Kim De Leeneer
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | | | - Anne Vral
- Department of Basic Medical Sciences, Ghent University, Ghent, Belgium.
| |
Collapse
|
37
|
Coppieters F, Verniers K, De Leeneer K, Vandesompele J, Lefever S. Targeted resequencing and variant validation using pxlence PCR assays. BIOMOLECULAR DETECTION AND QUANTIFICATION 2016; 6:22-6. [PMID: 27077044 PMCID: PMC4822215 DOI: 10.1016/j.bdq.2015.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Revised: 08/14/2015] [Accepted: 09/06/2015] [Indexed: 11/10/2022]
Abstract
The advent of next-generation sequencing technologies had a profound impact on molecular diagnostics. PCR is a popular method for target enrichment of disease gene panels. Using our proprietary primer-design pipeline, primerXL, we have created almost one million assays covering over 98% of the human exome. Here we describe the assay specification and both in silico and wet-lab validation of a selected set of 2294 assays using both next-generation sequencing and Sanger sequencing. Using a universal PCR protocol without optimization, these assays result in high coverage uniformity and limited non-specific coverage. In addition, data indicates a positive correlation between the predictive in silico specificity score and the amount of assay non-specific coverage.
Collapse
Affiliation(s)
- Frauke Coppieters
- Center for Medical Genetics, Ghent University, Ghent, Belgium
- pxlence, Dendermonde, Belgium
| | | | - Kim De Leeneer
- Center for Medical Genetics, Ghent University, Ghent, Belgium
| | - Jo Vandesompele
- Center for Medical Genetics, Ghent University, Ghent, Belgium
- pxlence, Dendermonde, Belgium
| | - Steve Lefever
- Center for Medical Genetics, Ghent University, Ghent, Belgium
- pxlence, Dendermonde, Belgium
| |
Collapse
|
38
|
Verdin H, Fernández-Miñán A, Benito-Sanz S, Janssens S, Callewaert B, De Waele K, De Schepper J, François I, Menten B, Heath KE, Gómez-Skarmeta JL, De Baere E. Profiling of conserved non-coding elements upstream of SHOX and functional characterisation of the SHOX cis-regulatory landscape. Sci Rep 2015; 5:17667. [PMID: 26631348 PMCID: PMC4668379 DOI: 10.1038/srep17667] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 11/02/2015] [Indexed: 02/07/2023] Open
Abstract
Genetic defects such as copy number variations (CNVs) in non-coding regions containing conserved non-coding elements (CNEs) outside the transcription unit of their target gene, can underlie genetic disease. An example of this is the short stature homeobox (SHOX) gene, regulated by seven CNEs located downstream and upstream of SHOX, with proven enhancer capacity in chicken limbs. CNVs of the downstream CNEs have been reported in many idiopathic short stature (ISS) cases, however, only recently have a few CNVs of the upstream enhancers been identified. Here, we set out to provide insight into: (i) the cis-regulatory role of these upstream CNEs in human cells, (ii) the prevalence of upstream CNVs in ISS, and (iii) the chromatin architecture of the SHOX cis-regulatory landscape in chicken and human cells. Firstly, luciferase assays in human U2OS cells, and 4C-seq both in chicken limb buds and human U2OS cells, demonstrated cis-regulatory enhancer capacities of the upstream CNEs. Secondly, CNVs of these upstream CNEs were found in three of 501 ISS patients. Finally, our 4C-seq interaction map of the SHOX region reveals a cis-regulatory domain spanning more than 1 Mb and harbouring putative new cis-regulatory elements.
Collapse
Affiliation(s)
- Hannah Verdin
- Center for Medical Genetics Ghent, Ghent University, Ghent, Belgium
| | - Ana Fernández-Miñán
- Centro Andaluz de Biología del Desarrollo, Consejo Superior de Investigaciones Científicas and Universidad Pablo de Olavide, Sevilla, Spain
| | - Sara Benito-Sanz
- Institute of Medical and Molecular Genetics (INGEMM), Hospital Universitario La Paz, Universidad Autónoma de Madrid, IdiPAZ, Madrid, Spain.,Centro de Investigación Biomédica en Enfermedades Raras (CIBERER), Instituto Carlos III, Madrid, Spain
| | - Sandra Janssens
- Center for Medical Genetics Ghent, Ghent University, Ghent, Belgium
| | - Bert Callewaert
- Center for Medical Genetics Ghent, Ghent University, Ghent, Belgium
| | | | - Jean De Schepper
- Department of Pediatrics, Ghent University Hospital, Ghent, Belgium
| | - Inge François
- Department of Pediatric Endocrinology, University Hospitals Leuven, Leuven, Belgium
| | - Björn Menten
- Center for Medical Genetics Ghent, Ghent University, Ghent, Belgium
| | - Karen E Heath
- Institute of Medical and Molecular Genetics (INGEMM), Hospital Universitario La Paz, Universidad Autónoma de Madrid, IdiPAZ, Madrid, Spain.,Centro de Investigación Biomédica en Enfermedades Raras (CIBERER), Instituto Carlos III, Madrid, Spain
| | - José Luis Gómez-Skarmeta
- Centro Andaluz de Biología del Desarrollo, Consejo Superior de Investigaciones Científicas and Universidad Pablo de Olavide, Sevilla, Spain
| | - Elfride De Baere
- Center for Medical Genetics Ghent, Ghent University, Ghent, Belgium
| |
Collapse
|
39
|
Dvorakova S, Sykorova V, Vaclavikova E, Sykorova P, Vlcek P, Kodetova D, Lastuvka P, Betka J, Mokrejs M, Vcelak J, Bendlova B. A 3-bp Deletion VK600-1E in the BRAF Gene Detected in a Young Woman with Papillary Thyroid Carcinoma. Endocr Pathol 2015; 26:309-14. [PMID: 26231782 DOI: 10.1007/s12022-015-9387-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Papillary thyroid cancer (PTC) derived from follicular cells is a frequent thyroid tumor. The incidence of this type of malignancy is still growing worldwide. Several major genetic causes are recognized to cause PTC-mutations in the BRAF and RAS genes or rearrangements with the RET proto-oncogene. The most common genetic change found in PTC is a V600E mutation in the BRAF gene presented in 36-69 % of all PTC cases. For routine purposes, several methods were developed to selectively detect only this mutation. However, these methods miss other mutations in the BRAF gene located elsewhere. We focused on the analysis of the exon 15 of the BRAF gene by next-generation sequencing. Here we report a three nucleotide deletion VK600-1E in one patient and present this finding in the context of 13 previously described PTC cases with this deletion. Our patient is the second youngest one among the reported cases. Clinical features of PTC patients with VK600-1E are summarized. For the future, it is important to evaluate genotype-phenotype characteristics of patients with rare BRAF mutations and to follow up them for years.
Collapse
Affiliation(s)
- S Dvorakova
- Department of Molecular Endocrinology, Institute of Endocrinology, Narodni 8, 11694, Prague 1, Czech Republic.
| | - V Sykorova
- Department of Molecular Endocrinology, Institute of Endocrinology, Narodni 8, 11694, Prague 1, Czech Republic
| | - E Vaclavikova
- Department of Molecular Endocrinology, Institute of Endocrinology, Narodni 8, 11694, Prague 1, Czech Republic
| | - P Sykorova
- Department of Nuclear Medicine and Endocrinology, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, V Uvalu 84, 15006, Prague 5, Czech Republic
| | - P Vlcek
- Department of Nuclear Medicine and Endocrinology, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, V Uvalu 84, 15006, Prague 5, Czech Republic
| | - D Kodetova
- Department of Pathology and Molecular Medicine, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, V Uvalu 84, 15006, Prague 5, Czech Republic
| | - P Lastuvka
- Department of Otorhinolaryngology and Head and Neck Surgery, 1st Faculty of Medicine, Charles University in Prague and Motol University Hospital, V Uvalu 84, 15006, Prague 5, Czech Republic
| | - J Betka
- Department of Otorhinolaryngology and Head and Neck Surgery, 1st Faculty of Medicine, Charles University in Prague and Motol University Hospital, V Uvalu 84, 15006, Prague 5, Czech Republic
| | - M Mokrejs
- Department of Molecular Endocrinology, Institute of Endocrinology, Narodni 8, 11694, Prague 1, Czech Republic
| | - J Vcelak
- Department of Molecular Endocrinology, Institute of Endocrinology, Narodni 8, 11694, Prague 1, Czech Republic
| | - B Bendlova
- Department of Molecular Endocrinology, Institute of Endocrinology, Narodni 8, 11694, Prague 1, Czech Republic
| |
Collapse
|
40
|
Francies FZ, Wainstein T, De Leeneer K, Cairns A, Murdoch M, Nietz S, Cubasch H, Poppe B, Van Maerken T, Crombez B, Coene I, Kerr R, Slabbert JP, Vral A, Krause A, Baeyens A, Claes KBM. BRCA1, BRCA2 and PALB2 mutations and CHEK2 c.1100delC in different South African ethnic groups diagnosed with premenopausal and/or triple negative breast cancer. BMC Cancer 2015; 15:912. [PMID: 26577449 PMCID: PMC4647511 DOI: 10.1186/s12885-015-1913-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 11/05/2015] [Indexed: 12/20/2022] Open
Abstract
Background Current knowledge of the aetiology of hereditary breast cancer in the four main South African population groups (black, coloured, Indian and white) is limited. Risk assessments in the black, coloured and Indian population groups are challenging because of restricted information regarding the underlying genetic contributions to inherited breast cancer in these populations. We focused this study on premenopausal patients (diagnosed with breast cancer before the age of 50; n = 78) and triple negative breast cancer (TNBC) patients (n = 30) from the four South African ethnic groups. The aim of this study was to determine the frequency and spectrum of germline mutations in BRCA1, BRCA2 and PALB2 and to evaluate the presence of the CHEK2 c.1100delC allele in these patients. Methods In total, 108 South African breast cancer patients underwent mutation screening using a Next-Generation Sequencing (NGS) approach in combination with Multiplex Ligation-dependent Probe Amplification (MLPA) to detect large rearrangements in BRCA1 and BRCA2. Results In 13 (12 %) patients a deleterious mutation in BRCA1/2 was detected, three of which were novel mutations in black patients. None of the study participants was found to have an unequivocal pathogenic mutation in PALB2. Two (white) patients tested positive for the CHEK2 c.1100delC mutation, however, one of these also carried a deleterious BRCA2 mutation. Additionally, six variants of unknown clinical significance were identified (4 in BRCA2, 2 in PALB2), all in black patients. Within the group of TNBC patients, a higher mutation frequency was obtained (23.3 %; 7/30) than in the group of patients diagnosed before the age of 50 (7.7 %; 6/78). Conclusion This study highlights the importance of evaluating germline mutations in major breast cancer genes in all of the South African population groups. This NGS study shows that mutation analysis is warranted in South African patients with triple negative and/or in premenopausal breast cancer. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1913-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- F Z Francies
- iThemba LABS-National Research Foundation, Somerset West, South Africa. .,Department of Radiation Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| | - T Wainstein
- Division of Human Genetics, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa.
| | - K De Leeneer
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium.
| | - A Cairns
- Department of Surgery, Charlotte Maxeke Johannesburg Academic Hospital and Donald Gordon Medical Centre, Johannesburg, South Africa.
| | - M Murdoch
- Department of Surgery, Charlotte Maxeke Johannesburg Academic Hospital and Donald Gordon Medical Centre, Johannesburg, South Africa.
| | - S Nietz
- Department of Surgery, Charlotte Maxeke Johannesburg Academic Hospital and Donald Gordon Medical Centre, Johannesburg, South Africa.
| | - H Cubasch
- Batho Pele Breast Unit, Chris Hani Baragwanath Academic Hospital, Johannesburg, South Africa.
| | - B Poppe
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium.
| | - T Van Maerken
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium.
| | - B Crombez
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium.
| | - I Coene
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium.
| | - R Kerr
- Division of Human Genetics, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa.
| | - J P Slabbert
- iThemba LABS-National Research Foundation, Somerset West, South Africa.
| | - A Vral
- Department of Basic Medical Sciences, Ghent University, Ghent, Belgium.
| | - A Krause
- Division of Human Genetics, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa. .,Division of Human Genetics, National Health Laboratory Services, Johannesburg, South Africa.
| | - A Baeyens
- iThemba LABS-National Research Foundation, Somerset West, South Africa. .,Department of Radiation Sciences, University of the Witwatersrand, Johannesburg, South Africa. .,Department of Basic Medical Sciences, Ghent University, Ghent, Belgium.
| | - K B M Claes
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium.
| |
Collapse
|