1
|
Daich Varela M, Jeste M, de Guimaraes TAC, Mahroo OA, Arno G, Webster AR, Michaelides M. Clinical, Ophthalmic, and Genetic Characterization of RPGRIP1-Associated Leber Congenital Amaurosis/Early-Onset Severe Retinal Dystrophy. Am J Ophthalmol 2024; 266:255-263. [PMID: 38768745 DOI: 10.1016/j.ajo.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/22/2024]
Abstract
PURPOSE To present the clinical characteristics, retinal features, natural history, and genetics of RPGRIP1-associated early-onset severe retinal dystrophy (EOSRD)/Leber congenital amaurosis (LCA). DESIGN Retrospective case series. METHODS Review of clinical notes, multimodal retinal imaging, and molecular diagnosis of 18 patients (17 families) with EOSRD/LCA and disease-causing variants in RPGRIP1. RESULTS The mean age of visual symptoms onset was 0.87 ± 1 year (birth to 3 years), and the mean age at baseline visit was 11.4 ± 10.2 years (1-39 years). At the baseline visit, 44% of patients were legally blind (range, 2-39 years), and there was no significant association found between age and best-corrected visual acuity (BCVA) in cross-sectional analysis. Retinal evaluation showed an abolished electroretinogram or a cone-rod dystrophy pattern, no or minimal pigment deposits, a hyperautofluorescent ring at the posterior pole, and a largely preserved central macular architecture, with retained outer nuclear layer and ellipsoid zone island into adulthood. Eleven variants (48%) were previously unreported, and 13 families (76%) had a double-null (DN) genotype. Twelve patients (67%) had follow-up assessments over a 15.7 ± 9.5-year period. The rate of BCVA decline was 0.02 logarithm of the minimum angle of resolution (1 letter)/year. CONCLUSIONS RPGRIP1 EOSRD/LCA often presents at birth or early infancy, with nystagmus, decreased visual acuity, hyperopia, and photophobia. Patients with a DN genotype may develop symptoms earlier and have worse vision. Multimodal imaging may show a hyperautofluorescent posterior pole ring and relatively preserved central macular architecture, suggesting that the condition is a promising candidate for gene supplementation.
Collapse
Affiliation(s)
- Malena Daich Varela
- Moorfields Eye Hospital (M.D.V., T.A.C.deG., O.A.M., G.A., A.R.W., M.M.), London, United Kingdom; UCL Institute of Ophthalmology, University College London (M.D.V., T.A.C.deG., O.A.M., G.A., A.R.W., M.M.), London, United Kingdom
| | - Mrunmayi Jeste
- St Thomas' Hospital (M.J., O.A.M), London, United Kingdom
| | - Thales A C de Guimaraes
- Moorfields Eye Hospital (M.D.V., T.A.C.deG., O.A.M., G.A., A.R.W., M.M.), London, United Kingdom; UCL Institute of Ophthalmology, University College London (M.D.V., T.A.C.deG., O.A.M., G.A., A.R.W., M.M.), London, United Kingdom
| | - Omar A Mahroo
- Moorfields Eye Hospital (M.D.V., T.A.C.deG., O.A.M., G.A., A.R.W., M.M.), London, United Kingdom; UCL Institute of Ophthalmology, University College London (M.D.V., T.A.C.deG., O.A.M., G.A., A.R.W., M.M.), London, United Kingdom; St Thomas' Hospital (M.J., O.A.M), London, United Kingdom
| | - Gavin Arno
- Moorfields Eye Hospital (M.D.V., T.A.C.deG., O.A.M., G.A., A.R.W., M.M.), London, United Kingdom; UCL Institute of Ophthalmology, University College London (M.D.V., T.A.C.deG., O.A.M., G.A., A.R.W., M.M.), London, United Kingdom
| | - Andrew R Webster
- Moorfields Eye Hospital (M.D.V., T.A.C.deG., O.A.M., G.A., A.R.W., M.M.), London, United Kingdom; UCL Institute of Ophthalmology, University College London (M.D.V., T.A.C.deG., O.A.M., G.A., A.R.W., M.M.), London, United Kingdom
| | - Michel Michaelides
- Moorfields Eye Hospital (M.D.V., T.A.C.deG., O.A.M., G.A., A.R.W., M.M.), London, United Kingdom; UCL Institute of Ophthalmology, University College London (M.D.V., T.A.C.deG., O.A.M., G.A., A.R.W., M.M.), London, United Kingdom.
| |
Collapse
|
2
|
Miyanohara I, Ohori J, Tabuchi M, Nishio SY, Yamashita M, Usami SI. Comprehensive Genetic Evaluation in Patients with Special Reference to Late-Onset Sensorineural Hearing Loss. Genes (Basel) 2024; 15:571. [PMID: 38790200 PMCID: PMC11120787 DOI: 10.3390/genes15050571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/23/2024] [Accepted: 04/27/2024] [Indexed: 05/26/2024] Open
Abstract
Hearing loss (HL) is a common and multi-complex etiological deficit that can occur at any age and can be caused by genetic variants, aging, toxic drugs, noise, injury, viral infection, and other factors. Recently, a high incidence of genetic etiologies in congenital HL has been reported, and the usefulness of genetic testing has been widely accepted in congenital-onset or early-onset HL. In contrast, there have been few comprehensive reports on the relationship between late-onset HL and genetic causes. In this study, we performed next-generation sequencing analysis for 91 HL patients mainly consisting of late-onset HL patients. As a result, we identified 23 possibly disease-causing variants from 29 probands, affording a diagnostic rate for this study of 31.9%. The highest diagnostic rate was observed in the congenital/early-onset group (42.9%), followed by the juvenile/young adult-onset group (31.7%), and the middle-aged/aged-onset group (21.4%). The diagnostic ratio decreased with age; however, genetic etiologies were involved to a considerable degree even in late-onset HL. In particular, the responsible gene variants were found in 19 (55.9%) of 34 patients with a familial history and progressive HL. Therefore, this phenotype is considered to be a good candidate for genetic evaluation based on this diagnostic panel.
Collapse
Affiliation(s)
- Ikuyo Miyanohara
- Department of Otolaryngology-Head and Neck Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1, Sakuragaoka, Kagoshima 890-8520, Japan; (J.O.); (M.T.); (M.Y.)
| | - Junichiro Ohori
- Department of Otolaryngology-Head and Neck Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1, Sakuragaoka, Kagoshima 890-8520, Japan; (J.O.); (M.T.); (M.Y.)
| | - Minako Tabuchi
- Department of Otolaryngology-Head and Neck Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1, Sakuragaoka, Kagoshima 890-8520, Japan; (J.O.); (M.T.); (M.Y.)
| | - Shin-ya Nishio
- Department of Hearing Implant Sciences, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto 390-8621, Japan;
| | - Masaru Yamashita
- Department of Otolaryngology-Head and Neck Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1, Sakuragaoka, Kagoshima 890-8520, Japan; (J.O.); (M.T.); (M.Y.)
| | - Shin-ichi Usami
- Department of Hearing Implant Sciences, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto 390-8621, Japan;
| |
Collapse
|
3
|
Wang J, Li S, Jiang Y, Wang Y, Ouyang J, Yi Z, Sun W, Jia X, Xiao X, Wang P, Zhang Q. Pathogenic Variants in CEP290 or IQCB1 Cause Earlier-Onset Retinopathy in Senior-Loken Syndrome Compared to Those in INVS, NPHP3, or NPHP4. Am J Ophthalmol 2023; 252:188-204. [PMID: 36990420 DOI: 10.1016/j.ajo.2023.03.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/20/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023]
Abstract
PURPOSE Senior-Loken syndrome (SLSN) is an autosomal recessive disorder characterized by retinopathy and nephronophthisis. This study aimed to evaluate whether different phenotypes are associated with different variants or subsets of 10 SLSN-associated genes based on an in-house data set and a literature review. DESIGN Retrospective case series. METHODS Patients with biallelic variants in SLSN-associated genes, including NPHP1, INVS, NPHP3, NPHP4, IQCB1, CEP290, SDCCAG8, WDR19, CEP164, and TRAF3IP1, were recruited. Ocular phenotypes and nephrology medical records were collected for comprehensive analysis. RESULTS Variants in 5 genes were identified in 74 patients from 70 unrelated families, including CEP290 (61.4%), IQCB1 (28.6%), NPHP1 (4.2%), NPHP4 (2.9%), and WDR19 (2.9%). The median age at the onset of retinopathy was approximately 1 month (since birth). Nystagmus was the most common initial sign in patients with CEP290 (28 of 44, 63.6%) or IQCB1 (19 of 22, 86.4%) variants. Cone and rod responses were extinguished in 53 of 55 patients (96.4%). Characteristic fundus changes were observed in CEP290- and IQCB1-associated patients. During follow-up, 70 of the 74 patients were referred to nephrology, among whom nephronophthisis was not detected in 62 patients (88.6%) at a median age of 6 years but presented in 8 patients (11.4%) aged approximately 9 years. CONCLUSIONS Patients with pathogenic variants in CEP290 or IQCB1 presented early with retinopathy, whereas other patients with INVS, NPHP3, or NPHP4 variants first developed nephropathy. Therefore, awareness of the genetic and clinical features may facilitate the clinical management of SLSN, especially early intervention of kidney problems for patients with eyes affected first.
Collapse
Affiliation(s)
- Junwen Wang
- From the The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Shiqiang Li
- From the The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Yi Jiang
- From the The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Yingwei Wang
- From the The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Jiamin Ouyang
- From the The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Zhen Yi
- From the The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Wenmin Sun
- From the The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Xiaoyun Jia
- From the The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Xueshan Xiao
- From the The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Panfeng Wang
- From the The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Qingjiong Zhang
- From the The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China.
| |
Collapse
|
4
|
Peter VG, Kaminska K, Santos C, Quinodoz M, Cancellieri F, Cisarova K, Pescini Gobert R, Rodrigues R, Custódio S, Paris LP, Sousa AB, Coutinho Santos L, Rivolta C. The first genetic landscape of inherited retinal dystrophies in Portuguese patients identifies recurrent homozygous mutations as a frequent cause of pathogenesis. PNAS NEXUS 2023; 2:pgad043. [PMID: 36909829 PMCID: PMC10003751 DOI: 10.1093/pnasnexus/pgad043] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/15/2023]
Abstract
Inherited retinal diseases (IRDs) are a group of ocular conditions characterized by an elevated genetic and clinical heterogeneity. They are transmitted almost invariantly as monogenic traits. However, with more than 280 disease genes identified so far, association of clinical phenotypes with genotypes can be very challenging, and molecular diagnosis is essential for genetic counseling and correct management of the disease. In addition, the prevalence and the assortment of IRD mutations are often population-specific. In this work, we examined 230 families from Portugal, with individuals suffering from a variety of IRD diagnostic classes (270 subjects in total). Overall, we identified 157 unique mutations (34 previously unreported) in 57 distinct genes, with a diagnostic rate of 76%. The IRD mutational landscape was, to some extent, different from those reported in other European populations, including Spanish cohorts. For instance, the EYS gene appeared to be the most frequently mutated, with a prevalence of 10% among all IRD cases. This was, in part, due to the presence of a recurrent and seemingly founder mutation involving the deletion of exons 13 and 14 of this gene. Moreover, our analysis highlighted that as many as 51% of our cases had mutations in a homozygous state. To our knowledge, this is the first study assessing a cross-sectional genotype-phenotype landscape of IRDs in Portugal. Our data reveal a rather unique distribution of mutations, possibly shaped by a small number of rare ancestral events that have now become prevalent alleles in patients.
Collapse
Affiliation(s)
- Virginie G Peter
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel 4031, Switzerland.,Department of Ophthalmology, University of Basel, Basel 4031, Switzerland.,Department of Ophthalmology, Inselspital, Bern University Hospital, Bern 3010, Switzerland
| | - Karolina Kaminska
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel 4031, Switzerland.,Department of Ophthalmology, University of Basel, Basel 4031, Switzerland
| | - Cristina Santos
- Department of Ophthalmology, Instituto de Oftalmologia Dr Gama Pinto (IOGP), Lisbon 1169-019, Portugal.,iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisbon 1169-056, Portugal
| | - Mathieu Quinodoz
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel 4031, Switzerland.,Department of Ophthalmology, University of Basel, Basel 4031, Switzerland.,Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Francesca Cancellieri
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel 4031, Switzerland.,Department of Ophthalmology, University of Basel, Basel 4031, Switzerland
| | - Katarina Cisarova
- Department of Computational Biology, University of Lausanne, Lausanne 1015, Switzerland
| | | | - Raquel Rodrigues
- Department of Medical Genetics, Hospital Santa Maria, Centro Hospitalar Universitário Lisboa Norte (CHULN), Lisbon 1649-035, Portugal
| | - Sónia Custódio
- Department of Medical Genetics, Hospital Santa Maria, Centro Hospitalar Universitário Lisboa Norte (CHULN), Lisbon 1649-035, Portugal
| | - Liliana P Paris
- Department of Ophthalmology, Instituto de Oftalmologia Dr Gama Pinto (IOGP), Lisbon 1169-019, Portugal
| | - Ana Berta Sousa
- Department of Medical Genetics, Hospital Santa Maria, Centro Hospitalar Universitário Lisboa Norte (CHULN), Lisbon 1649-035, Portugal.,Laboratory of Basic Immunology, Faculty of Medicine, University of Lisbon, Lisbon 1649-028, Portugal
| | - Luisa Coutinho Santos
- Department of Ophthalmology, Instituto de Oftalmologia Dr Gama Pinto (IOGP), Lisbon 1169-019, Portugal
| | - Carlo Rivolta
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel 4031, Switzerland.,Department of Ophthalmology, University of Basel, Basel 4031, Switzerland.,Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK
| |
Collapse
|
5
|
Hussain HMJ, Wang M, Huang A, Schmidt R, Qian X, Yang P, Marra M, Li Y, Pennesi ME, Chen R. Novel Pathogenic Mutations Identified from Whole-Genome Sequencing in Unsolved Cases of Patients Affected with Inherited Retinal Diseases. Genes (Basel) 2023; 14:447. [PMID: 36833373 PMCID: PMC9956865 DOI: 10.3390/genes14020447] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 01/31/2023] [Accepted: 02/03/2023] [Indexed: 02/12/2023] Open
Abstract
Inherited retinal diseases (IRDs) are a diverse set of visual disorders that collectively represent a major cause of early-onset blindness. With the reduction in sequencing costs in recent years, whole-genome sequencing (WGS) is being used more frequently, particularly when targeted gene panels and whole-exome sequencing (WES) fail to detect pathogenic mutations in patients. In this study, we performed mutation screens using WGS for a cohort of 311 IRD patients whose mutations were undetermined. A total of nine putative pathogenic mutations in six IRD patients were identified, including six novel mutations. Among them, four were deep intronic mutations that affected mRNA splicing, while the other five affected protein-coding sequences. Our results suggested that the rate of resolution of unsolved cases via targeted gene panels and WES can be further enhanced with WGS; however, the overall improvement may be limited.
Collapse
Affiliation(s)
- Hafiz Muhammad Jafar Hussain
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Meng Wang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Austin Huang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ryan Schmidt
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Xinye Qian
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Paul Yang
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Molly Marra
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Yumei Li
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mark E. Pennesi
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Rui Chen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
6
|
Zhang X, Cai M, Ma Y, Chen J, Huang S, Cai M, Ding Y, Ma D, Gao Q, Hu X, Zhu C, Yi L. Minigene Assay as an Effective Molecular Diagnostic Strategy in Determining the Pathogenicity of Noncanonical Splice-Site Variants in FLCN. J Mol Diagn 2023; 25:110-120. [PMID: 36410626 DOI: 10.1016/j.jmoldx.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 10/24/2022] [Accepted: 10/27/2022] [Indexed: 11/23/2022] Open
Abstract
Primary spontaneous pneumothorax (PSP) or pulmonary cyst is one of the manifestations of Birt-Hogg-Dubé syndrome, which is caused by pathogenic variants in FLCN gene. Genetic testing in patients with PSP identifies a certain number of missense or intronic variants. These variants are usually considered as variants of uncertain significance, whose functional interpretations pose a challenge in clinical genetics. To improve recognition of pathogenic splice-altering variants in FLCN gene, computational tools are used to prioritize potential splice-altering variants and then a hybrid minigene assay is performed to verify the RNA splicing pattern. Herein, variants in FLCN exon 11 and its flanking sequence are focused. Eight variants detected in 11 patients with PSP are evaluated, and six variants are prioritized by in silico tools as potential splice-altering variants of uncertain significance. Four variants (c.1177-5_1177-3delCTC, c.1292_1300+4del, c.1300+4C>T, and c.1300+5G>A) are demonstrated by minigene assay to alter RNA splicing of FLCN, and the last three of them are novel. RT-PCR of patient-derived RNA gives consistent results. Genotype-phenotype correlation analysis in patients with PSP with these variants demonstrates good concordance. Our results underline the importance of RNA analysis, which could provide molecular evidence for pathogenicity of a variant, and provide essential information for the clinical interpretation of variants. Combining the clinical information, a definitive diagnosis could be made.
Collapse
Affiliation(s)
- Xinxin Zhang
- Department of Histology and Embryology, School of Medicine, Southeast University, Nanjing, China
| | - Minghui Cai
- Department of Cardiothoracic Surgery, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, China
| | - Yuanchun Ma
- Jiangsu Key Laboratory for Molecular Medicine, School of Medicine, Nanjing University, Nanjing, China
| | - Jie Chen
- Jiangsu Key Laboratory for Molecular Medicine, School of Medicine, Nanjing University, Nanjing, China
| | - Shaoping Huang
- Department of Histology and Embryology, School of Medicine, Southeast University, Nanjing, China
| | - Mengru Cai
- Jiangsu Key Laboratory for Molecular Medicine, School of Medicine, Nanjing University, Nanjing, China
| | - Yibing Ding
- Jiangsu Key Laboratory for Molecular Medicine, School of Medicine, Nanjing University, Nanjing, China
| | - Dehua Ma
- Department of Cardiothoracic Surgery, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, China
| | - Qian Gao
- Jiangsu Key Laboratory for Molecular Medicine, School of Medicine, Nanjing University, Nanjing, China
| | - Xiaowen Hu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Chengchu Zhu
- Department of Cardiothoracic Surgery, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, China.
| | - Long Yi
- Department of Cardiothoracic Surgery, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, China; Jiangsu Key Laboratory for Molecular Medicine, School of Medicine, Nanjing University, Nanjing, China.
| |
Collapse
|
7
|
Unraveling the genetic complexities of combined retinal dystrophy and hearing impairment. Hum Genet 2021; 141:785-803. [PMID: 34148116 PMCID: PMC9035000 DOI: 10.1007/s00439-021-02303-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/15/2021] [Indexed: 12/11/2022]
Abstract
Usher syndrome, the most prevalent cause of combined hereditary vision and hearing impairment, is clinically and genetically heterogeneous. Moreover, several conditions with phenotypes overlapping Usher syndrome have been described. This makes the molecular diagnosis of hereditary deaf–blindness challenging. Here, we performed exome sequencing and analysis on 7 Mexican and 52 Iranian probands with combined retinal degeneration and hearing impairment (without intellectual disability). Clinical assessment involved ophthalmological examination and hearing loss questionnaire. Usher syndrome, most frequently due to biallelic variants in MYO7A (USH1B in 16 probands), USH2A (17 probands), and ADGRV1 (USH2C in 7 probands), was diagnosed in 44 of 59 (75%) unrelated probands. Almost half of the identified variants were novel. Nine of 59 (15%) probands displayed other genetic entities with dual sensory impairment, including Alström syndrome (3 patients), cone-rod dystrophy and hearing loss 1 (2 probands), and Heimler syndrome (1 patient). Unexpected findings included one proband each with Scheie syndrome, coenzyme Q10 deficiency, and pseudoxanthoma elasticum. In four probands, including three Usher cases, dual sensory impairment was either modified/aggravated or caused by variants in distinct genes associated with retinal degeneration and/or hearing loss. The overall diagnostic yield of whole exome analysis in our deaf–blind cohort was 92%. Two (3%) probands were partially solved and only 3 (5%) remained without any molecular diagnosis. In many cases, the molecular diagnosis is important to guide genetic counseling, to support prognostic outcomes and decisions with currently available and evolving treatment modalities.
Collapse
|
8
|
Gao FJ, Wang DD, Li JK, Hu FY, Xu P, Chen F, Qi YH, Liu W, Li W, Zhang SH, Chang Q, Xu GZ, Wu JH. Frequency and phenotypic characteristics of RPE65 mutations in the Chinese population. Orphanet J Rare Dis 2021; 16:174. [PMID: 33952291 PMCID: PMC8097799 DOI: 10.1186/s13023-021-01807-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 03/31/2021] [Indexed: 11/24/2022] Open
Abstract
Background The retinoid isomerohydrolase RPE65 has received considerable attention worldwide since a successful clinical gene therapy was approved in 2017 as the first treatment for vision loss associated with RPE65-mediated inherited retinal disease. Identifying patients with RPE65 mutations is a prerequisite to assessing the patients’ eligibility to receive RPE65-targeted gene therapies, and it is necessary to identify individuals who are most likely to benefit from gene therapies. This study aimed to investigate the RPE65 mutations frequency in the Chinese population and to determine the genetic and clinical characteristics of these patients. Results Only 20 patients with RPE65 mutations were identified, and RPE65 mutations were determined to be the 14th most common among all patients with genetic diagnoses. Ten novel variants and two hotspots associated with FAP were identified. A literature review revealed that a total of 57 patients of Chinese origin were identified with pathogenic mutations in the RPE65 gene. The mean best Snellen corrected visual acuity was worse (mean 1.3 ± 1.3 LogMAR) in patients older than 20 years old than in those younger than 15 years old (0.68 ± 0.92 LogMAR). Bone spicule-like pigment deposits (BSLPs) were observed in six patients; they were older than those without BSLP and those with white-yellow dots. Genotype–phenotype analysis revealed that truncating variants seem to lead to a more severe clinical presentation, while best corrected visual acuity testing and fundus changes did not correlate with specific RPE65 variants or mutation types. Conclusions This study provides a detailed clinical-genetic assessment of patients with RPE65 mutations of Chinese origin. These results may help to elucidate RPE65 mutations in the Chinese population and may facilitate genetic counseling and the implementation of gene therapy in China. Supplementary Information The online version contains supplementary material available at 10.1186/s13023-021-01807-3.
Collapse
Affiliation(s)
- Feng-Juan Gao
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan University, Shanghai, 200032, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality, Shanghai, China.,Key Laboratory of Myopia (Fudan University), Chinese Academy of Medical Sciences, National Health Commission, Yangpu District, China
| | - Dan-Dan Wang
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan University, Shanghai, 200032, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality, Shanghai, China.,Key Laboratory of Myopia (Fudan University), Chinese Academy of Medical Sciences, National Health Commission, Yangpu District, China
| | - Jian-Kang Li
- BGI-Shenzhen, Shenzhen, Guangdong, China.,Department of Computer Science, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Fang-Yuan Hu
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan University, Shanghai, 200032, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality, Shanghai, China.,Key Laboratory of Myopia (Fudan University), Chinese Academy of Medical Sciences, National Health Commission, Yangpu District, China
| | - Ping Xu
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan University, Shanghai, 200032, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality, Shanghai, China.,Key Laboratory of Myopia (Fudan University), Chinese Academy of Medical Sciences, National Health Commission, Yangpu District, China
| | - Fang Chen
- BGI-Shenzhen, Shenzhen, Guangdong, China.,Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark.,Shenzhen Engineering Laboratory for Birth Defects Screening, BGI-Shenzhen, Shenzhen, China
| | - Yu-He Qi
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan University, Shanghai, 200032, China
| | - Wei Liu
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan University, Shanghai, 200032, China
| | - Wei Li
- BGI-Shenzhen, Shenzhen, Guangdong, China.,BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China
| | - Sheng-Hai Zhang
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan University, Shanghai, 200032, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality, Shanghai, China.,Key Laboratory of Myopia (Fudan University), Chinese Academy of Medical Sciences, National Health Commission, Yangpu District, China
| | - Qing Chang
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan University, Shanghai, 200032, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality, Shanghai, China.,Key Laboratory of Myopia (Fudan University), Chinese Academy of Medical Sciences, National Health Commission, Yangpu District, China
| | - Ge-Zhi Xu
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan University, Shanghai, 200032, China. .,Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality, Shanghai, China. .,Key Laboratory of Myopia (Fudan University), Chinese Academy of Medical Sciences, National Health Commission, Yangpu District, China.
| | - Ji-Hong Wu
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan University, Shanghai, 200032, China. .,Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality, Shanghai, China. .,Key Laboratory of Myopia (Fudan University), Chinese Academy of Medical Sciences, National Health Commission, Yangpu District, China.
| |
Collapse
|
9
|
Zou G, Zhang T, Cheng X, Igelman AD, Wang J, Qian X, Fu S, Wang K, Koenekoop RK, Fishman GA, Yang P, Li Y, Pennesi ME, Chen R. Noncoding mutation in RPGRIP1 contributes to inherited retinal degenerations. Mol Vis 2021; 27:95-106. [PMID: 33907365 PMCID: PMC8056464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 03/16/2021] [Indexed: 11/23/2022] Open
Abstract
Purpose Despite the extensive use of next-generation sequencing (NGS) technology to identify disease-causing genomic variations, a major gap in our understanding of Mendelian diseases is the unidentified molecular lesion in a significant portion of patients. For inherited retinal degenerations (IRDs), although currently close to 300 disease-associated genes have been identified, the mutations in approximately one-third of patients remain unknown. With mounting evidence that noncoding mutations might contribute significantly to disease burden, we aimed to systematically investigate the contributions of noncoding regions in the genome to IRDs. Methods In this study, we focused on RPGRIP1, which has been linked to various IRD phenotypes, including Leber congenital amaurosis (LCA), retinitis pigmentosa (RP), and macular dystrophy (MD). As several noncoding mutant alleles have been reported in RPGRIP1, and we observed that the mutation carrier frequency of RPGRIP1 is higher in patient cohorts with unsolved IRDs, we hypothesized that mutations in the noncoding regions of RPGRIP1 might be a significant contributor to pathogenicity. To test this hypothesis, we performed whole-genome sequencing (WGS) for 25 patients with unassigned IRD who carry a single mutation in RPGRIP1. Results Three noncoding variants in RPGRIP1, including a 2,890 bp deletion and two deep-intronic variants (c.2710+233G>A and c.1468-263G>C), were identified as putative second hits of RPGRIP1 in three patients with LCA. The mutant alleles were validated with direct sequencing or in vitro assays. Conclusions The results highlight the significance of the contribution of noncoding pathogenic variants to unsolved IRD cases.
Collapse
Affiliation(s)
- Gang Zou
- Department of Ophthalmology, Ningxia Eye Hospital, People’s Hospital of Ningxia Hui Autonomous Region, First Affiliated Hospital of Northwest University for Nationalities, Ningxia Clinical Research Center on Diseases of Blindness in Eye, Yinchuan, China
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas
| | - Tao Zhang
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas
| | - Xuesen Cheng
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas
| | - Austin D. Igelman
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, Oregon
| | - Jun Wang
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas
| | - Xinye Qian
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas
| | - Shangyi Fu
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas
| | - Keqing Wang
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas
| | - Robert K. Koenekoop
- Department of Paediatric Surgery, Human Genetics and Adult Ophthalmology, MUHC, Montréal, Quebec, Canada
| | - Gerald A. Fishman
- Pangere Center for Inherited Retinal Diseases, The Chicago Lighthouse, Chicago, IL
| | - Paul Yang
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, Oregon
| | - Yumei Li
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas
| | - Mark E. Pennesi
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, Oregon
| | - Rui Chen
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
10
|
Qian X, Wang J, Wang M, Igelman AD, Jones KD, Li Y, Wang K, Goetz KE, Birch DG, Yang P, Pennesi ME, Chen R. Identification of Deep-Intronic Splice Mutations in a Large Cohort of Patients With Inherited Retinal Diseases. Front Genet 2021; 12:647400. [PMID: 33737949 PMCID: PMC7960924 DOI: 10.3389/fgene.2021.647400] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 02/11/2021] [Indexed: 12/13/2022] Open
Abstract
High throughput sequencing technologies have revolutionized the identification of mutations responsible for a diverse set of Mendelian disorders, including inherited retinal disorders (IRDs). However, the causal mutations remain elusive for a significant proportion of patients. This may be partially due to pathogenic mutations located in non-coding regions, which are largely missed by capture sequencing targeting the coding regions. The advent of whole-genome sequencing (WGS) allows us to systematically detect non-coding variations. However, the interpretation of these variations remains a significant bottleneck. In this study, we investigated the contribution of deep-intronic splice variants to IRDs. WGS was performed for a cohort of 571 IRD patients who lack a confident molecular diagnosis, and potential deep intronic variants that affect proper splicing were identified using SpliceAI. A total of six deleterious deep intronic variants were identified in eight patients. An in vitro minigene system was applied to further validate the effect of these variants on the splicing pattern of the associated genes. The prediction scores assigned to splice-site disruption positively correlated with the impact of mutations on splicing, as those with lower prediction scores demonstrated partial splicing. Through this study, we estimated the contribution of deep-intronic splice mutations to unassigned IRD patients and leveraged in silico and in vitro methods to establish a framework for prioritizing deep intronic variant candidates for mechanistic and functional analyses.
Collapse
Affiliation(s)
- Xinye Qian
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, United States.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, United States
| | - Jun Wang
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, United States.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
| | - Meng Wang
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, United States.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
| | - Austin D Igelman
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, United States
| | - Kaylie D Jones
- Retina Foundation of the Southwest and Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Yumei Li
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, United States
| | - Keqing Wang
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, United States
| | - Kerry E Goetz
- Office of the Director, National Eye Institute/National Institutes of Health, Bethesda, MD, United States
| | - David G Birch
- Retina Foundation of the Southwest and Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Paul Yang
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, United States
| | - Mark E Pennesi
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, United States
| | - Rui Chen
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, United States.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
11
|
Splicing mutations in inherited retinal diseases. Prog Retin Eye Res 2021. [DOI: 10.1016/j.preteyeres.2020.100874
expr 921883647 + 833887994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
12
|
Guo Z, Chen W, Wang L, Qian L. Clinical and Genetic Spectrum of Children with Primary Ciliary Dyskinesia in China. J Pediatr 2020; 225:157-165.e5. [PMID: 32502479 DOI: 10.1016/j.jpeds.2020.05.052] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 05/22/2020] [Accepted: 05/26/2020] [Indexed: 11/19/2022]
Abstract
OBJECTIVE To report detailed knowledge about the clinical manifestations, ciliary phenotypes, genetic spectrum as well as phenotype/genotype correlation in primary ciliary dyskinesia (PCD) in Chinese children. STUDY DESIGN We recruited 50 Chinese children with PCD. Extensive clinical assessments, nasal nitric oxide, high-speed video analysis, transmission electron microscopy, and genetic testing were performed to characterize the phenotypes and genotypes of these patients. RESULTS Common clinical features included chronic wet cough (85.4%), laterality defects (70.0%), and neonatal respiratory distress (55.8%). A high prevalence of congenital abnormalities (30.2%, 13/43), observed in patients who underwent comprehensive examination for comorbidities, included thoracic deformity (11.6%, 5/43), congenital heart disease (9.3%, 4/43), and sensorineural deafness (2.3%, 1/43). For 24 children age >6 years, the mean predicted values of forced expiratory volume in 1 second were 87.2%. Bronchiectasis evident on high-resolution computed tomography was reported in 38.1% of patients (16/42). Biallelic mutations (81 total; 57 novel) were identified in 13 genes: DNAAF3, DNAAF1, DNAH5, DNAH11, CCDC39, CCDC40, CCDC114, CCDC103, HYDIN, CCNO, DNAI1, OFD1, and SPAG1. Overall, ciliary ultrastructural and beat pattern correlated well with the genotype. However, variable phenotypes were also observed in CCDC39 and DNAH5 mutant cilia. CONCLUSIONS This large PCD cohort in China broadens the clinical, ciliary phenotypes, and genetic characteristics of children with PCD. Our findings are roughly consistent with previous studies besides some peculiarities such as high prevalence of associated abnormalities.
Collapse
Affiliation(s)
- Zhuoyao Guo
- Respirology Department, Children's Hospital of Fudan University, Shanghai, P.R. China
| | - Weicheng Chen
- Cardiothoracic Surgery Department, Children's Hospital of Fudan University, Shanghai, China
| | - Libo Wang
- Respirology Department, Children's Hospital of Fudan University, Shanghai, P.R. China
| | - Liling Qian
- Respirology Department, Children's Hospital of Fudan University, Shanghai, P.R. China.
| |
Collapse
|
13
|
Zhong H, Zheng Y, Zhao Z, Lin P, Xi J, Zhu W, Lin J, Lu J, Yu M, Zhang W, Lv H, Yan C, Hu J, Wang Z, Lu J, Zhao C, Yuan Y, Luo S. Molecular landscape of CAPN3 mutations in limb-girdle muscular dystrophy type R1: from a Chinese multicentre analysis to a worldwide perspective. J Med Genet 2020; 58:729-736. [PMID: 32994280 DOI: 10.1136/jmedgenet-2020-107159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/31/2020] [Accepted: 08/14/2020] [Indexed: 01/29/2023]
Abstract
BACKGROUND Limb-girdle muscular dystrophy type R1 (LGMDR1) can be caused by recessive CAPN3 mutations accounting for the majority of LGMD. To date, no systemic evaluation has been performed to analyse the detrimental and normal mutations on CAPN3 and its hotspots. METHODS CAPN3 variants (n=112) from a total of 124 patients with LGMDR1 recruited in four centres in China were retrospectively analysed. Then external CAPN3 variants (n=2031) from online databases were integrated with our Chinese cohort data to achieve a worldwide perspective on CAPN3 mutations. According to their related phenotypes (LGMDR1 or normal), we analysed consequence, distribution, ethnicity and severity scores of CAPN3 mutations. RESULTS Two hotspot mutations were identified including c.2120A>G in Chinese population and c.550del in Europe. According to the integrated dataset, 521 mutations were classified as LGMDR1-related and converged on exons 1, 10, 5, 22 and 13 of CAPN3. The remaining 1585 variants were classified as normal-population related. The deleterious ratio of LGMDR1-relevant variants to total variants in each population was 0.26 on average with a maximum of 0.35 in Finns and a minimum of 0.21 in South Asians. Severity evaluation showed that Chinese LGMDR1-related variants exhibited a higher risk (Combined Annotation Dependent Depletion score +1.10) than that from database patients (p<0.001). CONCLUSIONS This study confirmed two hotspots and LGMDR1-related CAPN3 variants, highlighting the advantages in using a data-based comprehensive analysis to achieve a genetic landscape for patients with LGMDR1.
Collapse
Affiliation(s)
- Huahua Zhong
- Department of Neurology, Huashan Hospital Fudan University, Shanghai, China
| | - Yiming Zheng
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Zhe Zhao
- Department of Neuromuscular Disorders, Hebei Medical University Third Affiliated Hospital, Shijiazhuang, China
| | - Pengfei Lin
- Department of Neurology, Shandong University Qilu Hospital, Jinan, China
| | - Jianying Xi
- Department of Neurology, Huashan Hospital Fudan University, Shanghai, China
| | - Wenhua Zhu
- Department of Neurology, Huashan Hospital Fudan University, Shanghai, China
| | - Jie Lin
- Department of Neurology, Huashan Hospital Fudan University, Shanghai, China
| | - Jun Lu
- Department of Neurology, Huashan Hospital Fudan University, Shanghai, China
| | - Meng Yu
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Wei Zhang
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - He Lv
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Chuanzhu Yan
- Department of Neurology, Shandong University Qilu Hospital, Jinan, China
| | - Jing Hu
- Department of Neuromuscular Disorders, Hebei Medical University Third Affiliated Hospital, Shijiazhuang, China
| | - Zhaoxia Wang
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Jiahong Lu
- Department of Neurology, Huashan Hospital Fudan University, Shanghai, China
| | - Chongbo Zhao
- Department of Neurology, Huashan Hospital Fudan University, Shanghai, China
| | - Yun Yuan
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Sushan Luo
- Department of Neurology, Huashan Hospital Fudan University, Shanghai, China
| |
Collapse
|
14
|
Sallum JMF, Motta FL, Arno G, Porto FBO, Resende RG, Belfort R. Clinical and molecular findings in a cohort of 152 Brazilian severe early onset inherited retinal dystrophy patients. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2020; 184:728-752. [PMID: 32865313 DOI: 10.1002/ajmg.c.31828] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/25/2020] [Accepted: 07/28/2020] [Indexed: 12/17/2022]
Abstract
Leber congenital amaurosis (LCA) and early-onset retinal dystrophy (EORD) are severe inherited retinal dystrophy that can cause deep blindness childhood. They represent 5% of all retinal dystrophies in the world population and about 10% in Brazil. Clinical findings and molecular basis of syndromic and nonsyndromic LCA/EORD in a Brazilian sample (152 patients/137 families) were studied. In this population, 15 genes were found to be related to the phenotype, 38 new variants were detected and four new complex alleles were discovered. Among 123 variants found, the most common were CEP290: c.2991+1655A>G, CRB1: p.Cys948Tyr, and RPGRIP1: exon10-18 deletion.
Collapse
Affiliation(s)
- Juliana Maria Ferraz Sallum
- Department of Ophthalmology, Universidade Federal de São Paulo, Sao Paulo, Brazil.,Instituto de Genética Ocular, Sao Paulo, Brazil
| | - Fabiana Louise Motta
- Department of Ophthalmology, Universidade Federal de São Paulo, Sao Paulo, Brazil.,Instituto de Genética Ocular, Sao Paulo, Brazil
| | - Gavin Arno
- UCL Institute of Ophthalmology, London, UK.,Moorfields Eye Hospital, London, UK
| | - Fernanda Belga Ottoni Porto
- INRET Clínica e Centro de Pesquisa, Belo Horizonte, Minas Gerais, Brazil.,Centro Oftalmológico de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Rubens Belfort
- Department of Ophthalmology, Universidade Federal de São Paulo, Sao Paulo, Brazil
| |
Collapse
|
15
|
Zou X, Fang S, Wu S, Li H, Sun Z, Zhu T, Wei X, Sui R. Detailed comparison of phenotype between male patients carrying variants in exons 1-14 and ORF15 of RPGR. Exp Eye Res 2020; 198:108147. [PMID: 32702353 DOI: 10.1016/j.exer.2020.108147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 07/05/2020] [Accepted: 07/08/2020] [Indexed: 12/19/2022]
Abstract
PURPOSE To compare disease severity in detail between patients carrying variants in exons 1-14 and ORF15 of retinitis pigmentosa GTPase regulator (RPGR). METHODS Systematic next-generation sequencing data analysis, Sanger sequencing validation and segregation analysis were utilised to identify the pathogenic variants. Detailed ophthalmic examinations, including electroretinograms, fundus photography, fundus autofluorescence and optical coherence tomography were performed. Statistical analysis, including age adjustment and comparison, were performed based on cross-sectional level to compare disease severity between variants in the two RPGR variant groups. RESULTS Sixty-two variants were identified in RPGR in 86 patients from 77 unrelated families. Twenty-nine (37.7%) had variants in RPGR-exons 1-14 (group 1) and 48 (62.3%) in RPGR-ORF15 (group 2). Eighty-four patients were diagnosed with X-linked retinitis pigmentosa and only two patients with cone-rod dystrophy. LogMAR visual acuity increased 0.035 and 0.022 each year on average in group 1 and group 2, respectively. Group 2 patients had better visual acuity with a mean logMAR difference of 0.4378, which is significant after age adjustment (P < 0.01). Neither the value of log (ellipsoid zone width) nor central retinal thickness was significantly correlated with variant grouping after considering the effect of the age variable (P = 0.56 and 0.40, respectively). Spherical refractive error did not differ significantly between the two variant groups (P = 0.17). Patterns of autofluorescence included a hyperfluorescent ring at the posterior pole, diffuse hyperfluorescence in the macular area, and dark macular autofluorescence with or without fovea hyperfluorescence. The age and proportion of fundus autofluorescence patterns between the two variant groups were significantly different (P < 0.01). CONCLUSIONS Patients with variants in exons 1-14 retained less visual acuity than patients with ORF15 variants and deteriorated faster. However, the ellipsoid zone widths, central retinal thickness and refractions were comparable between the two groups. Autofluorescence pattern relates to the age and the variant grouping.
Collapse
Affiliation(s)
- Xuan Zou
- Department of Ophthalmology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Sha Fang
- School of Statistics, Capital University of Economics and Business, Beijing, 100070, China
| | - Shijing Wu
- Department of Ophthalmology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Hui Li
- Department of Ophthalmology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Zixi Sun
- Department of Ophthalmology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Tian Zhu
- Department of Ophthalmology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Xing Wei
- Department of Ophthalmology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Ruifang Sui
- Department of Ophthalmology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| |
Collapse
|
16
|
Splicing mutations in inherited retinal diseases. Prog Retin Eye Res 2020; 80:100874. [PMID: 32553897 DOI: 10.1016/j.preteyeres.2020.100874] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 05/30/2020] [Accepted: 05/31/2020] [Indexed: 12/15/2022]
Abstract
Mutations which induce aberrant transcript splicing represent a distinct class of disease-causing genetic variants in retinal disease genes. Such mutations may either weaken or erase regular splice sites or create novel splice sites which alter exon recognition. While mutations affecting the canonical GU-AG dinucleotides at the splice donor and splice acceptor site are highly predictive to cause a splicing defect, other variants in the vicinity of the canonical splice sites or those affecting additional cis-acting regulatory sequences within exons or introns are much more difficult to assess or even to recognize and require additional experimental validation. Splicing mutations are unique in that the actual outcome for the transcript (e.g. exon skipping, pseudoexon inclusion, intron retention) and the encoded protein can be quite different depending on the individual mutation. In this article, we present an overview on the current knowledge about and impact of splicing mutations in inherited retinal diseases. We introduce the most common sub-classes of splicing mutations including examples from our own work and others and discuss current strategies for the identification and validation of splicing mutations, as well as therapeutic approaches, open questions, and future perspectives in this field of research.
Collapse
|
17
|
Zhang L, Cheng J, Zhou Q, Khan MA, Fu J, Duan C, Sun S, Lv H, Fu J. Targeted Next-Generation Sequencing Identified Novel Compound Heterozygous Variants in the CDH23 Gene Causing Usher Syndrome Type ID in a Chinese Patient. Front Genet 2020; 11:422. [PMID: 32425987 PMCID: PMC7204213 DOI: 10.3389/fgene.2020.00422] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 04/03/2020] [Indexed: 01/15/2023] Open
Abstract
Usher syndrome includes a group of genetically and clinically heterogeneous autosomal recessive diseases, such as retinitis pigmentosa (RP) and sensorineural hearing loss. Usher syndrome type I (USHI) is characterized by profound hearing impairment beginning at birth, vestibular dysfunction, and unintelligible speech in addition to RP. The relationships between the Usher syndrome causing genes and the resultant phenotypes of Usher syndrome have not yet been fully elucidated. In the present study, we recruited a Chinese family with Usher syndrome and conducted paneled next-generation sequencing, Sanger sequencing, segregation analysis, and expression profile analysis. The functional effects of the identified cadherin-related 23 (CDH23) pathogenic variants were analyzed. The M101 pedigree consisted of a proband and seven family members, and the proband was a 39-year-old Chinese male who claimed that he first began to experience night blindness 11 years ago. We revealed novel, missense compound heterozygous variants c. 2572G > A (p.V858I) and c. 2891G > A (p.R964Q) in the CDH23 gene, which co-segregated with the disease phenotype causing Usher syndrome type ID (USH1D) in this Chinese pedigree. CDH23 mRNA was highly expressed in the retina, and this protein was highly conserved as revealed by the comparison of Homo sapiens CDH23 with those from nine other species. This is the first study to identify the novel, missense compound heterozygous variants c. 2572G > A (p.V858I) and c.2891G > A (p.R964Q) of CDH23, which might cause USH1D in the studied Chinese family, thereby extending CDH23 mutation spectra. Identifying CDH23 pathogenic variants should help in the detailed phenotypic characterization of USH1D.
Collapse
Affiliation(s)
- Lianmei Zhang
- Department of Pathology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, China.,Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China
| | - Jingliang Cheng
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China
| | - Qi Zhou
- Department of Ophthalmology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Md Asaduzzaman Khan
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China
| | - Jiewen Fu
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China
| | - Chengxia Duan
- Department of Ophthalmology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Suan Sun
- Department of Pathology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Hongbin Lv
- Department of Ophthalmology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Junjiang Fu
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China
| |
Collapse
|
18
|
Sánchez-Monteagudo A, Álvarez-Sauco M, Sastre I, Martínez-Torres I, Lupo V, Berenguer M, Espinós C. Genetics of Wilson disease and Wilson-like phenotype in a clinical series from eastern Spain. Clin Genet 2020; 97:758-763. [PMID: 32043565 DOI: 10.1111/cge.13719] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/13/2020] [Accepted: 02/07/2020] [Indexed: 12/12/2022]
Abstract
Wilson's disease (WD) is an autosomal recessive disorder caused by ATP7B mutations. Subjects with only one mutation may show clinical signs and individuals with biallelic changes may remain asymptomatic. We aimed to achieve a conclusive genetic diagnosis for 34 patients clinically diagnosed of WD. Genetic analysis comprised from analysis of exons to WES (whole exome sequencing), including promoter, introns, UTRs (untranslated regions), besides of study of large deletions/duplications by MLPA (multiplex ligation-dependent probe amplification). Biallelic ATP7B mutations were identified in 30 patients, so that four patients were analyzed using WES. Two affected siblings resulted to be compound heterozygous for mutations in CCDC115, which is involved in a form of congenital disorder of glycosylation. In sum, the majority of patients with a WD phenotype carry ATP7B mutations. However, if genetic diagnosis is not achieved, additional genes should be considered because other disorders may mimic WD.
Collapse
Affiliation(s)
- Ana Sánchez-Monteagudo
- Unit of Genetics and Genomics of Neuromuscular and Neurodegenerative Disorders, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain.,Rare Diseases Joint Unit, CIPF-IIS La Fe, Valencia, Spain
| | - María Álvarez-Sauco
- Department of Neurology, Hospital General Universitari d'Elx, Alicante, Spain
| | - Isabel Sastre
- Department of Neurology, Hospital Universitari i Politècnic La Fe, Valencia, Spain
| | | | - Vincenzo Lupo
- Unit of Genetics and Genomics of Neuromuscular and Neurodegenerative Disorders, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain.,Rare Diseases Joint Unit, CIPF-IIS La Fe, Valencia, Spain
| | - Marina Berenguer
- Rare Diseases Joint Unit, CIPF-IIS La Fe, Valencia, Spain.,Hepatology - Liver Transplantation Unit, Digestive Medicine Service, IIS La Fe and CIBER-EHD, Hospital Universitari i Politècnic La Fe, Valencia, Spain.,Department of Medicine, Universitat de València, Valencia, Spain
| | - Carmen Espinós
- Unit of Genetics and Genomics of Neuromuscular and Neurodegenerative Disorders, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain.,Rare Diseases Joint Unit, CIPF-IIS La Fe, Valencia, Spain
| |
Collapse
|
19
|
Xiao X, Sun W, Li S, Jia X, Zhang Q. Spectrum, frequency, and genotype-phenotype of mutations in SPATA7. Mol Vis 2019; 25:821-833. [PMID: 31908400 PMCID: PMC6925664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 11/30/2019] [Indexed: 11/25/2022] Open
Abstract
PURPOSE To describe the mutation spectrum of SPATA7 and associated ocular phenotypes. METHODS As part of a continuing examination of the genetic basis of inherited ophthalmic diseases, sequencing variations in SPATA7 were identified in sequencing data from 5,090 probands. Mutations in SPATA7 were identified in 12 Chinese patients from ten families. Family history and clinical data were examined in detail in these patients. To evaluate possible gene-specific fundus changes, the results were combined with data from 66 patients from 50 families previously reported in the literature. RESULTS Seven homozygous or compound heterozygous mutations, including two novel mutations (c.367C>T, p.Q123* and c.1083-2A>G) and five known mutations in SPATA7, were identified in ten families, including six families with Leber congenital amaurosis (LCA), three families with juvenile retinitis pigmentosa, and one family with early-onset high myopia. These families accounted for approximately 2.2% (6/269) of LCA and 0.4% (10/2,252) of inherited retinal dystrophies in this case series. A combined analysis of data from the present study and data from 60 families reported in the literature showed that 93.3% (112/120) of mutant alleles were truncation mutations, whereas only about 5.0% were missense mutations, and 1.7% were non-frameshift indels. Common SPATA7-associated fundus changes, including narrow arterioles, a relatively well-preserved macular region, and widespread RPE atrophy resulting in diffuse mottled hypopigmentation in the midperipheral retina, were identified in this cohort and in patients in the literature. Missense mutations were not associated with specific phenotypic features or severity. CONCLUSIONS Narrow arterioles, a relatively well-preserved macular region, and widespread RPE atrophy resulting in diffuse mottling hypopigmentation in the midperipheral retina may be considered early and common fundus changes specific to SPATA7-associated retinopathy. The fact that similar mutations result in varied phenotypes points to the existence of other potential modifiers of the disease. Uncovering the identity of these modifiers might aid the development of novel treatments.
Collapse
|
20
|
Caspar SM, Dubacher N, Kopps AM, Meienberg J, Henggeler C, Matyas G. Clinical sequencing: From raw data to diagnosis with lifetime value. Clin Genet 2019; 93:508-519. [PMID: 29206278 DOI: 10.1111/cge.13190] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 11/28/2017] [Accepted: 11/30/2017] [Indexed: 12/22/2022]
Abstract
High-throughput sequencing (HTS) has revolutionized genetics by enabling the detection of sequence variants at hitherto unprecedented large scale. Despite these advances, however, there are still remaining challenges in the complete coverage of targeted regions (genes, exome or genome) as well as in HTS data analysis and interpretation. Moreover, it is easy to get overwhelmed by the plethora of available methods and tools for HTS. Here, we review the step-by-step process from the generation of sequence data to molecular diagnosis of Mendelian diseases. Highlighting advantages and limitations, this review addresses the current state of (1) HTS technologies, considering targeted, whole-exome, and whole-genome sequencing on short- and long-read platforms; (2) read alignment, variant calling and interpretation; as well as (3) regulatory issues related to genetic counseling, reimbursement, and data storage.
Collapse
Affiliation(s)
- S M Caspar
- Center for Cardiovascular Genetics and Gene Diagnostics, Foundation for People with Rare Diseases, Schlieren-Zurich, Switzerland
| | - N Dubacher
- Center for Cardiovascular Genetics and Gene Diagnostics, Foundation for People with Rare Diseases, Schlieren-Zurich, Switzerland
| | - A M Kopps
- Center for Cardiovascular Genetics and Gene Diagnostics, Foundation for People with Rare Diseases, Schlieren-Zurich, Switzerland
| | - J Meienberg
- Center for Cardiovascular Genetics and Gene Diagnostics, Foundation for People with Rare Diseases, Schlieren-Zurich, Switzerland
| | - C Henggeler
- Center for Cardiovascular Genetics and Gene Diagnostics, Foundation for People with Rare Diseases, Schlieren-Zurich, Switzerland
| | - G Matyas
- Center for Cardiovascular Genetics and Gene Diagnostics, Foundation for People with Rare Diseases, Schlieren-Zurich, Switzerland.,Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
21
|
Frésard L, Smail C, Ferraro NM, Teran NA, Li X, Smith KS, Bonner D, Kernohan KD, Marwaha S, Zappala Z, Balliu B, Davis JR, Liu B, Prybol CJ, Kohler JN, Zastrow DB, Reuter CM, Fisk DG, Grove ME, Davidson JM, Hartley T, Joshi R, Strober BJ, Utiramerur S, Lind L, Ingelsson E, Battle A, Bejerano G, Bernstein JA, Ashley EA, Boycott KM, Merker JD, Wheeler MT, Montgomery SB. Identification of rare-disease genes using blood transcriptome sequencing and large control cohorts. Nat Med 2019; 25:911-919. [PMID: 31160820 PMCID: PMC6634302 DOI: 10.1038/s41591-019-0457-8] [Citation(s) in RCA: 178] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 04/15/2019] [Indexed: 02/08/2023]
Abstract
It is estimated that 350 million individuals worldwide suffer from rare diseases, which are predominantly caused by mutation in a single gene1. The current molecular diagnostic rate is estimated at 50%, with whole-exome sequencing (WES) among the most successful approaches2-5. For patients in whom WES is uninformative, RNA sequencing (RNA-seq) has shown diagnostic utility in specific tissues and diseases6-8. This includes muscle biopsies from patients with undiagnosed rare muscle disorders6,9, and cultured fibroblasts from patients with mitochondrial disorders7. However, for many individuals, biopsies are not performed for clinical care, and tissues are difficult to access. We sought to assess the utility of RNA-seq from blood as a diagnostic tool for rare diseases of different pathophysiologies. We generated whole-blood RNA-seq from 94 individuals with undiagnosed rare diseases spanning 16 diverse disease categories. We developed a robust approach to compare data from these individuals with large sets of RNA-seq data for controls (n = 1,594 unrelated controls and n = 49 family members) and demonstrated the impacts of expression, splicing, gene and variant filtering strategies on disease gene identification. Across our cohort, we observed that RNA-seq yields a 7.5% diagnostic rate, and an additional 16.7% with improved candidate gene resolution.
Collapse
Affiliation(s)
- Laure Frésard
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA, USA.
| | - Craig Smail
- Biomedical Informatics Program, Stanford University, Stanford, CA, USA
| | - Nicole M Ferraro
- Biomedical Informatics Program, Stanford University, Stanford, CA, USA
| | - Nicole A Teran
- Department of Genetics, School of Medicine, Stanford University, Stanford, CA, USA
| | - Xin Li
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Kevin S Smith
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Devon Bonner
- Stanford Center for Undiagnosed Diseases, Stanford University, Stanford, CA, USA
| | - Kristin D Kernohan
- Newborn Screening Ontario (NSO), Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| | - Shruti Marwaha
- Stanford Center for Undiagnosed Diseases, Stanford University, Stanford, CA, USA
- Stanford Cardiovascular Institute, School of Medicine, Stanford University, Stanford, CA, USA
| | - Zachary Zappala
- Department of Genetics, School of Medicine, Stanford University, Stanford, CA, USA
| | - Brunilda Balliu
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Joe R Davis
- Department of Genetics, School of Medicine, Stanford University, Stanford, CA, USA
| | - Boxiang Liu
- Department of Biology, School of Humanities and Sciences, Stanford University, Stanford, CA, USA
| | - Cameron J Prybol
- Department of Genetics, School of Medicine, Stanford University, Stanford, CA, USA
| | - Jennefer N Kohler
- Stanford Center for Undiagnosed Diseases, Stanford University, Stanford, CA, USA
| | - Diane B Zastrow
- Stanford Center for Undiagnosed Diseases, Stanford University, Stanford, CA, USA
| | - Chloe M Reuter
- Stanford Center for Undiagnosed Diseases, Stanford University, Stanford, CA, USA
| | - Dianna G Fisk
- Stanford Medicine Clinical Genomics Program, School of Medicine, Stanford University, Stanford, CA, USA
| | - Megan E Grove
- Stanford Medicine Clinical Genomics Program, School of Medicine, Stanford University, Stanford, CA, USA
| | - Jean M Davidson
- Stanford Center for Undiagnosed Diseases, Stanford University, Stanford, CA, USA
| | - Taila Hartley
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Ruchi Joshi
- Stanford Medicine Clinical Genomics Program, School of Medicine, Stanford University, Stanford, CA, USA
| | - Benjamin J Strober
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Sowmithri Utiramerur
- Stanford Medicine Clinical Genomics Program, School of Medicine, Stanford University, Stanford, CA, USA
| | - Lars Lind
- Department of Medical Sciences, Cardiovascular Epidemiology, Uppsala University, Uppsala, Sweden
| | - Erik Ingelsson
- Stanford Cardiovascular Institute, School of Medicine, Stanford University, Stanford, CA, USA
- Department of Medicine, Division of Cardiovascular Medicine, School of Medicine, Stanford University, Stanford, CA, USA
| | - Alexis Battle
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
| | - Gill Bejerano
- Department of Computer Science, Stanford University, Stanford, CA, USA
- Department of Pediatrics, School of Medicine, Stanford University, Stanford, CA, USA
- Department of Developmental Biology, School of Medicine, Stanford University, Stanford, CA, USA
- Department of Biomedical Data Science, School of Medicine, Stanford University, Stanford, CA, USA
| | - Jonathan A Bernstein
- Department of Pediatrics, School of Medicine, Stanford University, Stanford, CA, USA
| | - Euan A Ashley
- Department of Genetics, School of Medicine, Stanford University, Stanford, CA, USA
- Stanford Center for Undiagnosed Diseases, Stanford University, Stanford, CA, USA
- Department of Medicine, Division of Cardiovascular Medicine, School of Medicine, Stanford University, Stanford, CA, USA
| | - Kym M Boycott
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Jason D Merker
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA, USA
- Stanford Medicine Clinical Genomics Program, School of Medicine, Stanford University, Stanford, CA, USA
- Departments of Pathology and Laboratory Medicine & Genetics, Lineberger Comprehensive Cancer Center, University of North Carolina School Medicine, Chapel Hill, NC, USA
| | - Matthew T Wheeler
- Stanford Center for Undiagnosed Diseases, Stanford University, Stanford, CA, USA
- Stanford Cardiovascular Institute, School of Medicine, Stanford University, Stanford, CA, USA
| | - Stephen B Montgomery
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA, USA.
- Department of Genetics, School of Medicine, Stanford University, Stanford, CA, USA.
| |
Collapse
|
22
|
Zhong Z, Rong F, Dai Y, Yibulayin A, Zeng L, Liao J, Wang L, Huang Z, Zhou Z, Chen J. Seven novel variants expand the spectrum of RPE65-related Leber congenital amaurosis in the Chinese population. Mol Vis 2019; 25:204-214. [PMID: 30996589 PMCID: PMC6441358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 03/16/2019] [Indexed: 11/04/2022] Open
Abstract
Purpose To screen RPE65 in 187 families with Leber congenital amaurosis (LCA). Methods Sanger sequencing and/or targeted exome sequencing was employed to identify mutations in the RPE65 gene, and intrafamilial cosegregation analysis if DNA was available. In silico analyses and splicing assay were used to evaluate the variants' pathogenicity. Results Genetic analysis revealed 15 mutations in RPE65 in 14 pedigrees, including one splice-site mutation, one frameshift mutation, three nonsense mutations, and ten missense mutations. Of the mutations identified in RPE65, seven are novel associated with LCA, including five missense variants (c.124C>T, c.149T>C, c.340A>C, c.425A>G, and c.1399C>G) and two indel (insertions or deletions) variants (c.858+1delG and c.1181_1182insT). In vitro splicing assay was performed to evaluate the functional impact on RNA splicing of novel mutations if two of three in silico analyses were predicated to be non-pathogenic at the protein level. Among these 15 variants, 14 were classified as 'pathogenic variants,' and a variant (c.124C>T) was 'variants with uncertain significance' according to the standards and guidelines of the American College of Medical Genetics and Genomics. Conclusions Mutations in RPE65 were responsible for 11 of the cohort of 187 Chinese families with LCA, which expands the spectrum of RPE65-related LCA in the Chinese population and potentially facilitates its clinical implementation.
Collapse
Affiliation(s)
- Zilin Zhong
- Department of Ophthalmology of Shanghai Tenth People's Hospital, and Tongji Eye Institute, Tongji University School of Medicine, Shanghai, China,Department of Medical Genetics, Tongji University School of Medicine, Shanghai, China
| | - Feng Rong
- Kizilsu Kirgiz Autonomous Prefecture People's Hospital, Atushi, Xinjiang, China
| | - Yinghui Dai
- Department of Ophthalmology, the First Affiliated Hospital of Benbu medical college, Benbu, Anhui, China
| | - Alakezi Yibulayin
- Kizilsu Kirgiz Autonomous Prefecture People's Hospital, Atushi, Xinjiang, China
| | - Lin Zeng
- Kizilsu Kirgiz Autonomous Prefecture People's Hospital, Atushi, Xinjiang, China
| | - Jian Liao
- Department of Ophthalmology of Shanghai Tenth People's Hospital, and Tongji Eye Institute, Tongji University School of Medicine, Shanghai, China,Department of Medical Genetics, Tongji University School of Medicine, Shanghai, China
| | - Liefeng Wang
- Department of Biotechnology, Gannan Medical University, Ganzhou, Jiangxi Province, China
| | - Zhihua Huang
- School of Basic Medical Sciences, Gannan Medical University, Ganzhou, Jiangxi Province, China
| | - Zhenping Zhou
- Kizilsu Kirgiz Autonomous Prefecture People's Hospital, Atushi, Xinjiang, China
| | - Jianjun Chen
- Department of Ophthalmology of Shanghai Tenth People's Hospital, and Tongji Eye Institute, Tongji University School of Medicine, Shanghai, China,Department of Medical Genetics, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
23
|
Motta FL, Martin RP, Filippelli-Silva R, Salles MV, Sallum JMF. Relative frequency of inherited retinal dystrophies in Brazil. Sci Rep 2018; 8:15939. [PMID: 30374144 PMCID: PMC6206004 DOI: 10.1038/s41598-018-34380-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 10/15/2018] [Indexed: 11/09/2022] Open
Abstract
Among the Brazilian population, the frequency rates of inherited retinal dystrophies and their causative genes are underreported. To increase the knowledge about these dystrophies in our population, we retrospectively studied the medical records of 1,246 Brazilian patients with hereditary retinopathies during 20 years of specialized outpatient clinic care. Of these patients, 559 had undergone at least one genetic test. In this cohort, the most prevalent dystrophies were non-syndromic retinitis pigmentosa (35%), Stargardt disease (21%), Leber congenital amaurosis (9%), and syndromic inherited retinal dystrophies (12%). Most patients had never undergone genetic testing (55%), and among the individuals with molecular test results, 28.4% had negative or inconclusive results compared to 71.6% with a conclusive molecular diagnosis. ABCA4 was the most frequent disease-causing gene, accounting for 20% of the positive cases. Pathogenic variants also occurred frequently in the CEP290, USH2A, CRB1, RPGR, and CHM genes. The relative frequency rates of different inherited retinal dystrophies in Brazil are similar to those found globally. Although mutations in more than 250 genes lead to hereditary retinopathies, only 66 genes were responsible for 70% of the cases, which indicated that smaller and cheaper gene panels can be just as effective and provide more affordable solutions for implementation by the Brazilian public health system.
Collapse
Affiliation(s)
- Fabiana Louise Motta
- Department of Ophthalmology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Renan Paulo Martin
- Department of Biophysics, Universidade Federal de São Paulo, São Paulo, Brazil.,Institute of Genetic Medicine, Johns Hopkins Medicine, Baltimore, USA
| | | | | | - Juliana Maria Ferraz Sallum
- Department of Ophthalmology, Universidade Federal de São Paulo, São Paulo, Brazil. .,Instituto de Genética Ocular, Sao Paulo, Brazil.
| |
Collapse
|