1
|
Margasyuk S, Zavileyskiy L, Cao C, Pervouchine D. Long-range RNA structures in the human transcriptome beyond evolutionarily conserved regions. PeerJ 2023; 11:e16414. [PMID: 38047033 PMCID: PMC10691357 DOI: 10.7717/peerj.16414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/17/2023] [Indexed: 12/05/2023] Open
Abstract
RNA structure has been increasingly recognized as a critical player in the biogenesis and turnover of many transcripts classes. In eukaryotes, the prediction of RNA structure by thermodynamic modeling meets fundamental limitations due to the large sizes and complex, discontinuous organization of eukaryotic genes. Signatures of functional RNA structures can be found by detecting compensatory substitutions in homologous sequences, but a comparative approach is applicable only within conserved sequence blocks. Here, we developed a computational pipeline called PHRIC, which is not limited to conserved regions and relies on RNA contacts derived from RNA in situ conformation sequencing (RIC-seq) experiments. It extracts pairs of short RNA fragments surrounded by nested clusters of RNA contacts and predicts long, nearly perfect complementary base pairings formed between these fragments. In application to a panel of RIC-seq experiments in seven human cell lines, PHRIC predicted ~12,000 stable long-range RNA structures with equilibrium free energy below -15 kcal/mol, the vast majority of which fall outside of regions annotated as conserved among vertebrates. These structures, nevertheless, show some level of sequence conservation and remarkable compensatory substitution patterns in other clades. Furthermore, we found that introns have a higher propensity to form stable long-range RNA structures between each other, and moreover that RNA structures tend to concentrate within the same intron rather than connect adjacent introns. These results for the first time extend the application of proximity ligation assays to RNA structure prediction beyond conserved regions.
Collapse
Affiliation(s)
- Sergey Margasyuk
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Lev Zavileyskiy
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Changchang Cao
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Dmitri Pervouchine
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Moscow, Russia
| |
Collapse
|
2
|
Boerrigter MM, Duijzer R, te Morsche RHM, Drenth JPH. Heterozygosity of ALG9 in Association with Autosomal Dominant Polycystic Liver Disease. Genes (Basel) 2023; 14:1755. [PMID: 37761895 PMCID: PMC10530326 DOI: 10.3390/genes14091755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
α-1,2-mannosyltransferase (ALG9) germline variants are linked to autosomal dominant polycystic kidney disease (ADPKD). Many individuals affected with ADPKD possess polycystic livers as a common extrarenal manifestation. We performed whole exome sequencing in a female with autosomal dominant polycystic liver disease (ADPLD) without kidney cysts and established the presence of a heterozygous missense variant (c.677G>C p.(Gly226Ala)) in ALG9. In silico pathogenicity prediction and 3D protein modeling determined this variant as pathogenic. Loss of heterozygosity is regularly seen in liver cyst walls. Immunohistochemistry indicated the absence of ALG9 in liver tissue from this patient. ALG9 expression was absent in cyst wall lining from ALG9- and PRKCSH-caused ADPLD patients but present in the liver cyst lining derived from an ADPKD patient with a PKD2 variant. Thus, heterozygous pathogenic variants in ALG9 are also associated with ADPLD. Somatic loss of heterozygosity of the ALG9 enzyme was seen in the ALG9 patient but also in ADPLD patients with a different genetic background. This expanded the phenotypic spectrum of ADPLD to ALG9.
Collapse
Affiliation(s)
- Melissa M. Boerrigter
- Department of Gastroenterology and Hepatology, Research Institute for Medical Innovation, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Renée Duijzer
- Department of Gastroenterology and Hepatology, Research Institute for Medical Innovation, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
- European Reference Network RARE-LIVER, D-20246 Hamburg, Germany
| | - René H. M. te Morsche
- Department of Gastroenterology and Hepatology, Research Institute for Medical Innovation, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Joost P. H. Drenth
- Department of Gastroenterology and Hepatology, Research Institute for Medical Innovation, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
- European Reference Network RARE-LIVER, D-20246 Hamburg, Germany
| |
Collapse
|
3
|
Boerrigter MM, te Morsche RHM, Venselaar H, Pastoors N, Geerts AM, Hoorens A, Drenth JPH. Novel α-1,3-Glucosyltransferase Variants and Their Broad Clinical Polycystic Liver Disease Spectrum. Genes (Basel) 2023; 14:1652. [PMID: 37628703 PMCID: PMC10454741 DOI: 10.3390/genes14081652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
Protein-truncating variants in α-1,3-glucosyltransferase (ALG8) are a risk factor for a mild cystic kidney disease phenotype. The association between these variants and liver cysts is limited. We aim to identify pathogenic ALG8 variants in our cohort of autosomal dominant polycystic liver disease (ADPLD) individuals. In order to fine-map the phenotypical spectrum of pathogenic ALG8 variant carriers, we performed targeted ALG8 screening in 478 ADPLD singletons, and exome sequencing in 48 singletons and 4 patients from two large ADPLD families. Eight novel and one previously reported pathogenic variant in ALG8 were discovered in sixteen patients. The ALG8 clinical phenotype ranges from mild to severe polycystic liver disease, and from innumerable small to multiple large hepatic cysts. The presence of <5 renal cysts that do not affect renal function is common in this population. Three-dimensional homology modeling demonstrated that six variants cause a truncated ALG8 protein with abnormal functioning, and one variant is predicted to destabilize ALG8. For the seventh variant, immunostaining of the liver tissue showed a complete loss of ALG8 in the cystic cells. ALG8-associated ADPLD has a broad clinical spectrum, including the possibility of developing a small number of renal cysts. This broadens the ADPLD genotype-phenotype spectrum and narrows the gap between liver-specific ADPLD and kidney-specific ADPKD.
Collapse
Affiliation(s)
- Melissa M. Boerrigter
- Department of Gastroenterology and Hepatology, Research Institute for Medical Innovation, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - René H. M. te Morsche
- Department of Gastroenterology and Hepatology, Research Institute for Medical Innovation, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Hanka Venselaar
- Center for Molecular and Biomolecular Informatics, Research Institute for Medical Innovation, 6500 HB Nijmegen, The Netherlands
| | - Nikki Pastoors
- Department of Gastroenterology and Hepatology, Research Institute for Medical Innovation, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Anja M. Geerts
- Department of Gastroenterology and Hepatology, Ghent University Hospital, 9000 Ghent, Belgium
| | - Anne Hoorens
- Department of Pathology, Ghent University Hospital, 9000 Ghent, Belgium
| | - Joost P. H. Drenth
- Department of Gastroenterology and Hepatology, Research Institute for Medical Innovation, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| |
Collapse
|
4
|
Devlin L, Dhondurao Sudhindar P, Sayer JA. Renal ciliopathies: promising drug targets and prospects for clinical trials. Expert Opin Ther Targets 2023; 27:325-346. [PMID: 37243567 DOI: 10.1080/14728222.2023.2218616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/12/2023] [Accepted: 05/23/2023] [Indexed: 05/29/2023]
Abstract
INTRODUCTION Renal ciliopathies represent a collection of genetic disorders characterized by deficiencies in the biogenesis, maintenance, or functioning of the ciliary complex. These disorders, which encompass autosomal dominant polycystic kidney disease (ADPKD), autosomal recessive polycystic kidney disease (ARPKD), and nephronophthisis (NPHP), typically result in cystic kidney disease, renal fibrosis, and a gradual deterioration of kidney function, culminating in kidney failure. AREAS COVERED Here we review the advances in basic science and clinical research into renal ciliopathies which have yielded promising small compounds and drug targets, within both preclinical studies and clinical trials. EXPERT OPINION Tolvaptan is currently the sole approved treatment option available for ADPKD patients, while no approved treatment alternatives exist for ARPKD or NPHP patients. Clinical trials are presently underway to evaluate additional medications in ADPKD and ARPKD patients. Based on preclinical models, other potential therapeutic targets for ADPKD, ARPKD, and NPHP look promising. These include molecules targeting fluid transport, cellular metabolism, ciliary signaling and cell-cycle regulation. There is a real and urgent clinical need for translational research to bring novel treatments to clinical use for all forms of renal ciliopathies to reduce kidney disease progression and prevent kidney failure.
Collapse
Affiliation(s)
- Laura Devlin
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Praveen Dhondurao Sudhindar
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - John A Sayer
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
- Renal Services, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
- NIHR Newcastle Biomedical Research Centre, Newcastle Upon Tyne, UK
| |
Collapse
|
5
|
Hureaux M, Heidet L, Vargas-Poussou R, Dorval G. [Major advances in pediatric nephro-genetics]. Med Sci (Paris) 2023; 39:234-245. [PMID: 36943120 DOI: 10.1051/medsci/2023028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023] Open
Abstract
The rise of genetics in the last decades has allowed major advances in the understanding of the mechanisms leading to inherited kidney diseases. From the first positional cloning studies to the advent of high-throughput sequencing (NGS), genome analysis technologies have become increasingly efficient, with an extraordinary level of resolution. Moreover, sequencing prices have decreased from one million dollars for the sequencing of James Watson's genome in 2008, to a few hundred dollars for the sequencing of a genome today. Thus, molecular diagnosis has a central place in the diagnosis of these patients and influences the therapeutic management in many situations. However, although NGS is a powerful tool for the identification of variants involved in diseases, it also exposes to the risk of over-interpretation of certain variants, leading to erroneous diagnoses, requiring the use of specialists. In this review, we first propose a brief retrospective of the essential steps that led to the current knowledge and the development of NGS for the study of hereditary nephropathies in children. This review is then an opportunity to present the main hereditary nephropathies and the underlying molecular mechanisms. Among them, we emphasize ciliopathies, congenital anomalies of the kidney and urinary tract, podocytopathies and tubulopathies.
Collapse
Affiliation(s)
- Marguerite Hureaux
- Service de médecine génomique des maladies rares, AP-HP, université Paris Cité, France - Inserm U970, Paris CardioVascular Research Center, université Paris Cité, faculté de médecine, France - Centre de référence des maladies rénales héréditaires de l'enfant et de l'adulte MARHEA, hôpital Necker-Enfants Malades, Paris, France
| | - Laurence Heidet
- Centre de référence des maladies rénales héréditaires de l'enfant et de l'adulte MARHEA, hôpital Necker-Enfants Malades, Paris, France - Service de néphrologie pédiatrique, AP-HP, université Paris Cité, France - CNRS, centre de recherche des Cordeliers, Inserm UMRS 1138, Sorbonne université, université Paris Cité, France
| | - Rosa Vargas-Poussou
- Service de médecine génomique des maladies rares, AP-HP, université Paris Cité, France - Centre de référence des maladies rénales héréditaires de l'enfant et de l'adulte MARHEA, hôpital Necker-Enfants Malades, Paris, France - CNRS, centre de recherche des Cordeliers, Inserm UMRS 1138, Sorbonne université, université Paris Cité, France
| | - Guillaume Dorval
- Service de médecine génomique des maladies rares, AP-HP, université Paris Cité, France - Centre de référence des maladies rénales héréditaires de l'enfant et de l'adulte MARHEA, hôpital Necker-Enfants Malades, Paris, France - Inserm U1163, Laboratoire des maladies rénales héréditaires, institut Imagine, université Paris Cité, France
| |
Collapse
|
6
|
Norcia LF, Watanabe EM, Hamamoto Filho PT, Hasimoto CN, Pelafsky L, de Oliveira WK, Sassaki LY. Polycystic Liver Disease: Pathophysiology, Diagnosis and Treatment. Hepat Med 2022; 14:135-161. [PMID: 36200122 PMCID: PMC9528914 DOI: 10.2147/hmer.s377530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 09/07/2022] [Indexed: 11/25/2022] Open
Abstract
Polycystic liver disease (PLD) is a clinical condition characterized by the presence of more than 10 cysts in the liver. It is a rare disease Of genetic etiology that presents as an isolated disease or assoc\iated with polycystic kidney disease. Ductal plate malformation, ciliary dysfunction, and changes in cell signaling are the main factors involved in its pathogenesis. Most patients with PLD are asymptomatic, but in 2–5% of cases the disease has disabling symptoms and a significant reduction in quality of life. The diagnosis is based on family history of hepatic and/or renal polycystic disease, clinical manifestations, patient age, and polycystic liver phenotype shown on imaging examinations. PLD treatment has evolved considerably in the last decades. Somatostatin analogues hold promise in controlling disease progression, but liver transplantation remains a unique curative treatment modality.
Collapse
Affiliation(s)
- Luiz Fernando Norcia
- Department of Surgery, São Paulo State University (Unesp), Medical School, Botucatu, São Paulo, Brazil
- Correspondence: Luiz Fernando Norcia, Department of Surgery, São Paulo State University (UNESP), Medical School, 783 Pedro Delmanto Street, Botucatu, São Paulo, 18610-303, Brazil, Tel +55 19982840542, Email
| | - Erika Mayumi Watanabe
- Department of Radiology, São Paulo State University (Unesp), Medical School, Botucatu, São Paulo, Brazil
| | - Pedro Tadao Hamamoto Filho
- Department of Neurology, Psychology and Psychiatry, São Paulo State University (Unesp), Medical School, Botucatu, São Paulo, Brazil
| | - Claudia Nishida Hasimoto
- Department of Surgery, São Paulo State University (Unesp), Medical School, Botucatu, São Paulo, Brazil
| | - Leonardo Pelafsky
- Department of Surgery, São Paulo State University (Unesp), Medical School, Botucatu, São Paulo, Brazil
| | - Walmar Kerche de Oliveira
- Department of Surgery, São Paulo State University (Unesp), Medical School, Botucatu, São Paulo, Brazil
| | - Ligia Yukie Sassaki
- Department of Internal Medicine, São Paulo State University (Unesp), Medical School, Botucatu, São Paulo, Brazil
| |
Collapse
|
7
|
Genetics, pathobiology and therapeutic opportunities of polycystic liver disease. Nat Rev Gastroenterol Hepatol 2022; 19:585-604. [PMID: 35562534 DOI: 10.1038/s41575-022-00617-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/07/2022] [Indexed: 12/12/2022]
Abstract
Polycystic liver diseases (PLDs) are inherited genetic disorders characterized by progressive development of intrahepatic, fluid-filled biliary cysts (more than ten), which constitute the main cause of morbidity and markedly affect the quality of life. Liver cysts arise in patients with autosomal dominant PLD (ADPLD) or in co-occurrence with renal cysts in patients with autosomal dominant or autosomal recessive polycystic kidney disease (ADPKD and ARPKD, respectively). Hepatic cystogenesis is a heterogeneous process, with several risk factors increasing the odds of developing larger cysts. Depending on the causative gene, PLDs can arise exclusively in the liver or in parallel with renal cysts. Current therapeutic strategies, mainly based on surgical procedures and/or chronic administration of somatostatin analogues, show modest benefits, with liver transplantation as the only potentially curative option. Increasing research has shed light on the genetic landscape of PLDs and consequent cholangiocyte abnormalities, which can pave the way for discovering new targets for therapy and the design of novel potential treatments for patients. Herein, we provide a critical and comprehensive overview of the latest advances in the field of PLDs, mainly focusing on genetics, pathobiology, risk factors and next-generation therapeutic strategies, highlighting future directions in basic, translational and clinical research.
Collapse
|
8
|
Yu Z, Shen X, Hu C, Zeng J, Wang A, Chen J. Molecular Mechanisms of Isolated Polycystic Liver Diseases. Front Genet 2022; 13:846877. [PMID: 35571028 PMCID: PMC9104337 DOI: 10.3389/fgene.2022.846877] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/23/2022] [Indexed: 11/13/2022] Open
Abstract
Polycystic liver disease (PLD) is a rare autosomal dominant disorder including two genetically and clinically distinct forms: autosomal dominant polycystic kidney disease (ADPKD) and isolated polycystic liver disease (PCLD). The main manifestation of ADPKD is kidney cysts, while PCLD has predominantly liver presentations with mild or absent kidney cysts. Over the past decade, PRKCSH, SEC63, ALG8, and LRP5 have been candidate genes of PCLD. Recently, more candidate genes such as GANAB, SEC61B, and ALR9 were also reported in PCLD patients. This review focused on all candidate genes of PCLD, including the newly established novel candidate genes. In addition, we also discussed some other genes which might also contribute to the disease.
Collapse
Affiliation(s)
- Ziqi Yu
- Munich Medical Research School, LMU Munich, Munich, Germany
| | - Xiang Shen
- Munich Medical Research School, LMU Munich, Munich, Germany
| | - Chong Hu
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Nanchang Medical College, Jiangxi Provincial People's Hospital, Nanchang, China
| | - Jun Zeng
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Nanchang Medical College, Jiangxi Provincial People's Hospital, Nanchang, China
| | - Aiyao Wang
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Nanchang Medical College, Jiangxi Provincial People's Hospital, Nanchang, China
| | - Jianyong Chen
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Nanchang Medical College, Jiangxi Provincial People's Hospital, Nanchang, China
| |
Collapse
|
9
|
Senum SR, Li Y(SM, Benson KA, Joli G, Olinger E, Lavu S, Madsen CD, Gregory AV, Neatu R, Kline TL, Audrézet MP, Outeda P, Nau CB, Meijer E, Ali H, Steinman TI, Mrug M, Phelan PJ, Watnick TJ, Peters DJ, Ong AC, Conlon PJ, Perrone RD, Cornec-Le Gall E, Hogan MC, Torres VE, Sayer JA, Harris PC, Harris PC. Monoallelic IFT140 pathogenic variants are an important cause of the autosomal dominant polycystic kidney-spectrum phenotype. Am J Hum Genet 2022; 109:136-156. [PMID: 34890546 DOI: 10.1016/j.ajhg.2021.11.016] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/15/2021] [Indexed: 12/18/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD), characterized by progressive cyst formation/expansion, results in enlarged kidneys and often end stage kidney disease. ADPKD is genetically heterogeneous; PKD1 and PKD2 are the common loci (∼78% and ∼15% of families) and GANAB, DNAJB11, and ALG9 are minor genes. PKD is a ciliary-associated disease, a ciliopathy, and many syndromic ciliopathies have a PKD phenotype. In a multi-cohort/-site collaboration, we screened ADPKD-diagnosed families that were naive to genetic testing (n = 834) or for whom no PKD1 and PKD2 pathogenic variants had been identified (n = 381) with a PKD targeted next-generation sequencing panel (tNGS; n = 1,186) or whole-exome sequencing (WES; n = 29). We identified monoallelic IFT140 loss-of-function (LoF) variants in 12 multiplex families and 26 singletons (1.9% of naive families). IFT140 is a core component of the intraflagellar transport-complex A, responsible for retrograde ciliary trafficking and ciliary entry of membrane proteins; bi-allelic IFT140 variants cause the syndromic ciliopathy, short-rib thoracic dysplasia (SRTD9). The distinctive monoallelic phenotype is mild PKD with large cysts, limited kidney insufficiency, and few liver cysts. Analyses of the cystic kidney disease probands of Genomics England 100K showed that 2.1% had IFT140 LoF variants. Analysis of the UK Biobank cystic kidney disease group showed probands with IFT140 LoF variants as the third most common group, after PKD1 and PKD2. The proximity of IFT140 to PKD1 (∼0.5 Mb) in 16p13.3 can cause diagnostic confusion, and PKD1 variants could modify the IFT140 phenotype. Importantly, our studies link a ciliary structural protein to the ADPKD spectrum.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Peter C Harris
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
10
|
Zhang J, Zhang C, Gao E, Zhou Q. Next-Generation Sequencing-Based Genetic Diagnostic Strategies of Inherited Kidney Diseases. KIDNEY DISEASES (BASEL, SWITZERLAND) 2021; 7:425-437. [PMID: 34901190 DOI: 10.1159/000519095] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 08/10/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND At least 10% of adults and most of the children who receive renal replacement therapy have inherited kidney diseases. These disorders substantially decrease their life quality and have a large effect on the health-care system. Multisystem complications, with typical challenges for rare disorders, including variable phenotypes and fragmented clinical and biological data, make genetic diagnosis of inherited kidney disorders difficult. In current clinical practice, genetic diagnosis is important for clinical management, estimating disease development, and applying personal treatment for patients. SUMMARY Inherited kidney diseases comprise hundreds of different disorders. Here, we have summarized various monogenic kidney disorders. These disorders are caused by mutations in genes coding for a wide range of proteins including receptors, channels/transporters, enzymes, transcription factors, and structural components that might also have a role in extrarenal organs (bone, eyes, brain, skin, ear, etc.). With the development of next-generation sequencing technologies, genetic testing and analysis become more accessible, promoting our understanding of the pathophysiologic mechanisms of inherited kidney diseases. However, challenges exist in interpreting the significance of genetic variants and translating them to guide clinical managements. Alport syndrome is chosen as an example to introduce the practical application of genetic testing and diagnosis on inherited kidney diseases, considering its clinical features, genetic backgrounds, and genetic testing for making a genetic diagnosis. KEY MESSAGES Recent advances in genomics have highlighted the complexity of Mendelian disorders, which is due to allelic heterogeneity (distinct mutations in the same gene produce distinct phenotypes), locus heterogeneity (mutations in distinct genes result in similar phenotypes), reduced penetrance, variable expressivity, modifier genes, and/or environmental factors. Implementation of precision medicine in clinical nephrology can improve the clinical diagnostic rate and treatment efficiency of kidney diseases, which requires a good understanding of genetics for nephrologists.
Collapse
Affiliation(s)
- Jiahui Zhang
- Life Sciences Institute, The Key Laboratory of Biosystems Homeostasis & Protection of Ministry of Education, Zhejiang University, Hangzhou, China.,Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| | - Changming Zhang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China.,Zhejiang University School of Medicine, Hangzhou, China
| | - Erzhi Gao
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Qing Zhou
- Life Sciences Institute, The Key Laboratory of Biosystems Homeostasis & Protection of Ministry of Education, Zhejiang University, Hangzhou, China.,Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| |
Collapse
|
11
|
Masyuk TV, Masyuk AI, LaRusso NF. Polycystic Liver Disease: Advances in Understanding and Treatment. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2021; 17:251-269. [PMID: 34724412 DOI: 10.1146/annurev-pathol-042320-121247] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Polycystic liver disease (PLD) is a group of genetic disorders characterized by progressive development of cholangiocyte-derived fluid-filled hepatic cysts. PLD is the most common manifestation of autosomal dominant and autosomal recessive polycystic kidney diseases and rarely occurs as autosomal dominant PLD. The mechanisms of PLD are a sequence of the primary (mutations in PLD-causative genes), secondary (initiation of cyst formation), and tertiary (progression of hepatic cystogenesis) interconnected molecular and cellular events in cholangiocytes. Nonsurgical, surgical, and limited pharmacological treatment options are currently available for clinical management of PLD. Substantial evidence suggests that pharmacological targeting of the signaling pathways and intracellular processes involved in the progression of hepatic cystogenesis is beneficial for PLD. Many of these targets have been evaluated in preclinical and clinical trials. In this review, we discuss the genetic, molecular, and cellular mechanisms of PLD and clinical and preclinical treatment strategies. Expected final online publication date for the Annual Review of Pathology: Mechanisms of Disease, Volume 17 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Tatyana V Masyuk
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota 55905, USA;
| | - Anatoliy I Masyuk
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota 55905, USA;
| | - Nicholas F LaRusso
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota 55905, USA;
| |
Collapse
|
12
|
Delbarba E, Econimo L, Dordoni C, Martin E, Mazza C, Savoldi G, Alberici F, Scolari F, Izzi C. Expanding the variability of the ADPKD-GANAB clinical phenotype in a family of Italian ancestry. J Nephrol 2021; 35:645-652. [PMID: 34357571 DOI: 10.1007/s40620-021-01131-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 11/16/2020] [Indexed: 01/08/2023]
Abstract
BACKGROUND Causative mutations in the GANAB gene have been described in only 14 families, 9 diagnosed with late-onset Autosomal Dominant Polycystic Kidney Disease (ADPKD) and 5 with Autosomal Dominant Polycystic Liver Disease (ADPLD). CASE Diagnosis of ADPKD was made in a 45-year old man during screening for hernia repair. CT scan showed enlarged cystic kidneys, nephrolithiasis and normal-sized liver with multiple cysts. Hematuria, hypertension and aortic root dilatation were also documented. Renal function was normal. Molecular analysis of PKD genes disclosed a heterozygous p.R839W GANAB variant inherited from the mother. Both his elderly parents presented normal-sized bilateral cystic kidneys but normal renal function. The GANAB-ADPKD mother had no liver cysts. The father was screened for PKD-related genes and no variant was found. GENETIC ANALYSIS We describe a new family with late-onset ADPKD due to the p.R839W GANAB variant, previously reported in a severe ADPLD patient, requiring liver transplantation. DISCUSSION Since ADPKD-GANAB is an ultrarare, recently described disease, reporting further patients may help unraveling gene-related phenotype. In our patients the p.R839W GANAB variant was not related to severe ADPLD, as previously reported, but with mild ADPKD and a plethora of renal and extrarenal manifestations, usually described in PKD1/PKD2 patients. The evidence that the GANAB variant may cause both ADPKD and ADPLD of variable severity supports that renal and hepatic cystogenesis are the result of a common defective polycystin-1 pathway.
Collapse
Affiliation(s)
- Elisa Delbarba
- Division of Nephrology and Dialysis, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia and ASST-Spedali Civili of Brescia, Brescia, Italy
| | - Laura Econimo
- Division of Nephrology and Dialysis, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia and ASST-Spedali Civili of Brescia, Brescia, Italy
| | - Chiara Dordoni
- Division of Nephrology and Dialysis, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia and ASST-Spedali Civili of Brescia, Brescia, Italy.,Prenatal Diagnosis Unit, Department of Obstetrics and Gynecology, ASST-Spedali Civili, Brescia, Italy
| | - Eva Martin
- Radiology Unit, Montichiari Hospital, ASST-Spedali Civili, Brescia, Italy
| | - Cinzia Mazza
- Medical Genetics Laboratory, ASST-Spedali Civili, Brescia, Italy
| | | | - Federico Alberici
- Division of Nephrology and Dialysis, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia and ASST-Spedali Civili of Brescia, Brescia, Italy
| | - Francesco Scolari
- Division of Nephrology and Dialysis, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia and ASST-Spedali Civili of Brescia, Brescia, Italy.
| | - Claudia Izzi
- Division of Nephrology and Dialysis, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia and ASST-Spedali Civili of Brescia, Brescia, Italy.,Prenatal Diagnosis Unit, Department of Obstetrics and Gynecology, ASST-Spedali Civili, Brescia, Italy
| |
Collapse
|
13
|
Suwabe T, Chamberlain AM, Killian JM, King BF, Gregory AV, Madsen CD, Wang X, Kline TL, Chebib FT, Hogan MC, Kamath PS, Harris PC, Torres VE. Epidemiology of autosomal-dominant polycystic liver disease in Olmsted county. JHEP Rep 2020; 2:100166. [PMID: 33145487 PMCID: PMC7593615 DOI: 10.1016/j.jhepr.2020.100166] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/15/2020] [Accepted: 07/22/2020] [Indexed: 12/25/2022] Open
Abstract
Background & Aims Isolated autosomal-dominant polycystic liver disease (ADPLD) is generally considered a rare disease. However, the frequency of truncating mutations to ADPLD genes in large, population sequencing databases is 1:496. With the increasing use of abdominal imaging, incidental detection of hepatic cysts and ADPLD has become more frequent. The present study was performed to ascertain the incidence and point prevalence of ADPLD in Olmsted County, MN, USA, and how these are impacted by the increasing utilisation of abdominal imaging. Methods The Rochester Epidemiology Project and radiology databases of Mayo Clinic and Olmsted Medical Center were searched to identify all subjects meeting diagnostic criteria for definite, likely, or possible ADPLD. Annual incidence rates were calculated using incident cases during 1980–2016 as numerator, and age- and sex-specific estimates of the population of Olmsted County as denominator. Point prevalence was calculated using prevalence cases as numerator, and age- and sex-specific estimates of the population of Olmsted County on 1 January 2010 as denominator. Results The incidence rate and point prevalence of combined definite and likely ADPLD were 1.01 per 100,000 person-years and 9.5 per 100,000 population, respectively. Only 15 of 35 definite and likely incident ADPLD cases had received a diagnostic code, and only 8 had clinically significant hepatomegaly. The incidence rates were much higher when adding possible cases, mainly identified through radiology databases, particularly in recent years and in older patients because of the increased utilisation of imaging studies. Conclusions Clinically significant isolated ADPLD is a rare disease with a prevalence <1:10,000 population. The overall prevalence of ADPLD, however, to a large extent not clinically significant, is likely much higher and closer to the reported genetic prevalence. Lay summary Isolated autosomal-dominant polycystic liver disease (ADPLD) is generally considered a rare disease. However, we demonstrate that it is a relatively common disease, which is rarely (<1:10,000 population) clinically significant. Isolated autosomal-dominant polycystic liver disease (ADPLD) is generally considered a rare disease. Truncating mutations to ADPLD genes are fairly common (1:496) in large, population sequencing databases. We identified 35 individuals meeting diagnostic criteria for definite or likely ADPLD and 99 additional patients with possible ADPLD. The point prevalence of definite or likely ADPLD on 01/01/2010 was 9.5/100,000 or 36.0/100,000 population if adding possible cases. Clinically significant isolated ADPLD is rare (<1:10,000 population), but the overall prevalence is likely much higher.
Collapse
Affiliation(s)
- Tatsuya Suwabe
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | | | - Jill M Killian
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Bernard F King
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Adriana V Gregory
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Charles D Madsen
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Xiaofang Wang
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | | | - Fouad T Chebib
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Marie C Hogan
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Patrick S Kamath
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Peter C Harris
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Vicente E Torres
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
14
|
Peces R, Mena R, Martín Y, Hernández C, Peces C, Tellería D, Cuesta E, Selgas R, Lapunzina P, Nevado J. Co-occurrence of neurofibromatosis type 1 and optic nerve gliomas with autosomal dominant polycystic kidney disease type 2. Mol Genet Genomic Med 2020; 8:e1321. [PMID: 32533764 PMCID: PMC7434601 DOI: 10.1002/mgg3.1321] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 04/25/2020] [Accepted: 04/27/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Autosomal dominant polycystic kidney disease (ADPKD) and neurofibromatosis type 1 (NF1) are both autosomal dominant disorders with a high rate of novel mutations. However, the two disorders have distinct and well-delineated genetic, biochemical, and clinical findings. Only a few cases of coexistence of ADPKD and NF1 in a single individual have been reported, but the possible implications of this association are unknown. METHODS We report an ADPKD male belonging to a family of several affected members in three generations associated with NF1 and optic pathway gliomas. The clinical diagnosis of ADPKD and NF1 was performed by several image techniques. RESULTS Linkage analysis of ADPKD family was consistent to the PKD2 locus by a nonsense mutation, yielding a truncated polycystin-2 by means of next-generation sequencing. The diagnosis of NF1 was confirmed by mutational analysis of this gene showing a 4-bp deletion, resulting in a truncated neurofibromin, as well. The impact of this association was investigated by analyzing putative genetic interactions and by comparing the evolution of renal size and function in the proband with his older brother with ADPKD without NF1 and with ADPKD cohorts. CONCLUSION Despite the presence of both conditions there was not additive effect of NF1 and PKD2 in terms of the severity of tumor development and/or ADPKD progression.
Collapse
Affiliation(s)
- Ramón Peces
- Servicio de Nefrología, Hospital Universitario La Paz, IdiPAZ, Universidad Autónoma, Madrid, Spain
| | - Rocío Mena
- Instituto de Genética Médica y Molecular (INGEMM)-IdiPAZ, Hospital Universitario La Paz, Universidad Autónoma, Madrid, Spain.,CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain
| | - Yolanda Martín
- Servicio de Genética, Hospital Universitario Ramón y Cajal, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Concepción Hernández
- Servicio de Genética, Hospital Universitario Ramón y Cajal, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Carlos Peces
- Area de Tecnologías de la Información, SESCAM, Toledo, Spain
| | - Dolores Tellería
- Servicio de Genética, Hospital Universitario Ramón y Cajal, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Emilio Cuesta
- Servicio de Radiología, Hospital Universitario La Paz, IdiPAZ, Universidad Autónoma, Madrid, Spain
| | - Rafael Selgas
- Servicio de Nefrología, Hospital Universitario La Paz, IdiPAZ, Universidad Autónoma, Madrid, Spain
| | - Pablo Lapunzina
- Instituto de Genética Médica y Molecular (INGEMM)-IdiPAZ, Hospital Universitario La Paz, Universidad Autónoma, Madrid, Spain.,CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain
| | - Julián Nevado
- Instituto de Genética Médica y Molecular (INGEMM)-IdiPAZ, Hospital Universitario La Paz, Universidad Autónoma, Madrid, Spain.,CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain
| |
Collapse
|
15
|
Zhang ZY, Wang ZM, Huang Y. Polycystic liver disease: Classification, diagnosis, treatment process, and clinical management. World J Hepatol 2020; 12:72-83. [PMID: 32231761 PMCID: PMC7097502 DOI: 10.4254/wjh.v12.i3.72] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 02/06/2020] [Accepted: 03/01/2020] [Indexed: 02/06/2023] Open
Abstract
Polycystic liver disease (PLD) is a rare hereditary disease that independently exists in isolated PLD, or as an accompanying symptom of autosomal dominant polycystic kidney disease and autosomal recessive polycystic kidney disease with complicated mechanisms. PLD currently lacks a unified diagnostic standard. The diagnosis of PLD is usually made when the number of hepatic cysts is more than 20. Gigot classification and Schnelldorfer classification are now commonly used to define severity in PLD. Most PLD patients have no clinical symptoms, and minority with severe complications need treatments. Somatostatin analogues, mammalian target of rapamycin inhibitor, ursodeoxycholic acid and vasopressin-2 receptor antagonist are the potentially effective medical therapies, while cyst aspiration and sclerosis, transcatheter arterial embolization, fenestration, hepatic resection and liver transplantation are the options of invasion therapies. However, the effectiveness of these therapies except liver transplantation are still uncertain. Furthermore, there is no unified strategy to treat PLD between medical centers at present. In order to better understand recent study progresses on PLD for clinical practice and obtain potential directions for future researches, this review mainly focuses on the recent progress in PLD classification, clinical manifestation, diagnosis and treatment. For information, we also provided medical treatment processes of PLD in our medical center.
Collapse
Affiliation(s)
- Ze-Yu Zhang
- Department of Hepatobiliary Surgery, Xiangya Hospital, Central South University, Changsha 410000, Hunan Province, China
| | - Zhi-Ming Wang
- Department of Hepatobiliary Surgery, Xiangya Hospital, Central South University, Changsha 410000, Hunan Province, China
| | - Yun Huang
- Department of Hepatobiliary Surgery, Xiangya Hospital, Central South University, Changsha 410000, Hunan Province, China
| |
Collapse
|
16
|
Foo JN, Xia Y. Polycystic kidney disease: new knowledge and future promises. Curr Opin Genet Dev 2019; 56:69-75. [PMID: 31476629 DOI: 10.1016/j.gde.2019.06.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 05/27/2019] [Accepted: 06/11/2019] [Indexed: 02/06/2023]
Abstract
Polycystic kidney disease (PKD) is one of the most common genetic kidney diseases, characterized by the formation of fluid-filled renal cysts, which eventually lead to end-stage renal disease. Despite several decades of investigation, explicit molecular and cellular mechanisms underpinning renal cyst formation have been unresolved until recently, severely hampering the development of effective therapeutic approaches. Currently, most PKD therapies have been developed for limiting disease complications, such as hypertension. Although Tolvaptan has been approved for treating PKD in few countries, the associated hepatic toxicity remains a major concern. In this Review, we will discuss recent advances in PKD research, covering aspects ranging from newly identified genetic/epigenetic causes, increment in mechanistic interpretation, novel therapeutic targets, to the promises offered by emerging stem cell technologies.
Collapse
Affiliation(s)
- Jia Nee Foo
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, 308232, Singapore; Human Genetics, Genome Institute of Singapore, A(⁎)STAR, 138672, Singapore.
| | - Yun Xia
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, 308232, Singapore.
| |
Collapse
|
17
|
Renal ciliopathies. Curr Opin Genet Dev 2019; 56:49-60. [DOI: 10.1016/j.gde.2019.07.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 07/09/2019] [Accepted: 07/14/2019] [Indexed: 12/19/2022]
|
18
|
Cornec-Le Gall E, Olson RJ, Besse W, Heyer CM, Gainullin VG, Smith JM, Audrézet MP, Hopp K, Porath B, Shi B, Baheti S, Senum SR, Arroyo J, Madsen CD, Férec C, Joly D, Jouret F, Fikri-Benbrahim O, Charasse C, Coulibaly JM, Yu AS, Khalili K, Pei Y, Somlo S, Le Meur Y, Torres VE, Harris PC. Monoallelic Mutations to DNAJB11 Cause Atypical Autosomal-Dominant Polycystic Kidney Disease. Am J Hum Genet 2018; 102:832-844. [PMID: 29706351 PMCID: PMC5986722 DOI: 10.1016/j.ajhg.2018.03.013] [Citation(s) in RCA: 204] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 03/08/2018] [Indexed: 01/05/2023] Open
Abstract
Autosomal-dominant polycystic kidney disease (ADPKD) is characterized by the progressive development of kidney cysts, often resulting in end-stage renal disease (ESRD). This disorder is genetically heterogeneous with ∼7% of families genetically unresolved. We performed whole-exome sequencing (WES) in two multiplex ADPKD-like pedigrees, and we analyzed a further 591 genetically unresolved, phenotypically similar families by targeted next-generation sequencing of 65 candidate genes. WES identified a DNAJB11 missense variant (p.Pro54Arg) in two family members presenting with non-enlarged polycystic kidneys and a frameshifting change (c.166_167insTT) in a second family with small renal and liver cysts. DNAJB11 is a co-factor of BiP, a key chaperone in the endoplasmic reticulum controlling folding, trafficking, and degradation of secreted and membrane proteins. Five additional multigenerational families carrying DNAJB11 mutations were identified by the targeted analysis. The clinical phenotype was consistent in the 23 affected members, with non-enlarged cystic kidneys that often evolved to kidney atrophy; 7 subjects reached ESRD from 59 to 89 years. The lack of kidney enlargement, histologically evident interstitial fibrosis in non-cystic parenchyma, and recurring episodes of gout (one family) suggested partial phenotypic overlap with autosomal-dominant tubulointerstitial diseases (ADTKD). Characterization of DNAJB11-null cells and kidney samples from affected individuals revealed a pathogenesis associated with maturation and trafficking defects involving the ADPKD protein, PC1, and ADTKD proteins, such as UMOD. DNAJB11-associated disease is a phenotypic hybrid of ADPKD and ADTKD, characterized by normal-sized cystic kidneys and progressive interstitial fibrosis resulting in late-onset ESRD.
Collapse
Affiliation(s)
- Emilie Cornec-Le Gall
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN 55905, USA; Department of Nephrology, University Hospital, European University of Brittany, Brest, Brittany 29200, France; Department of Molecular Genetics, National Institute of Health and Medical Sciences, INSERM U1078, Brest 29200, France
| | - Rory J Olson
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Whitney Besse
- Section of Nephrology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Christina M Heyer
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Jessica M Smith
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN 55905, USA
| | - Marie-Pierre Audrézet
- Department of Molecular Genetics, National Institute of Health and Medical Sciences, INSERM U1078, Brest 29200, France
| | - Katharina Hopp
- Division of Renal Diseases and Hypertension, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80202, USA
| | - Binu Porath
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN 55905, USA
| | - Beili Shi
- Division of Nephrology, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Saurabh Baheti
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN 55905, USA
| | - Sarah R Senum
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN 55905, USA
| | - Jennifer Arroyo
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN 55905, USA
| | - Charles D Madsen
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN 55905, USA
| | - Claude Férec
- Department of Molecular Genetics, National Institute of Health and Medical Sciences, INSERM U1078, Brest 29200, France
| | - Dominique Joly
- Service of Nephrology, Necker Hospital, Paris 75231, France
| | - François Jouret
- Division of Nephrology, University of Liège, Liège 4000, Belgium
| | | | | | | | - Alan S Yu
- Kidney Institute, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Korosh Khalili
- Department of Medical Imaging, University Health Network, Toronto, ON M5G 2C4, Canada
| | - York Pei
- Division of Nephrology, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Stefan Somlo
- Section of Nephrology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Yannick Le Meur
- Department of Nephrology, University Hospital, European University of Brittany, Brest, Brittany 29200, France
| | - Vicente E Torres
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN 55905, USA
| | - Peter C Harris
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN 55905, USA; Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|