1
|
Choi W, Cha S, Kim K. Navigating the CRISPR/Cas Landscape for Enhanced Diagnosis and Treatment of Wilson's Disease. Cells 2024; 13:1214. [PMID: 39056796 PMCID: PMC11274827 DOI: 10.3390/cells13141214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) system continues to evolve, thereby enabling more precise detection and repair of mutagenesis. The development of CRISPR/Cas-based diagnosis holds promise for high-throughput, cost-effective, and portable nucleic acid screening and genetic disease diagnosis. In addition, advancements in transportation strategies such as adeno-associated virus (AAV), lentiviral vectors, nanoparticles, and virus-like vectors (VLPs) offer synergistic insights for gene therapeutics in vivo. Wilson's disease (WD), a copper metabolism disorder, is primarily caused by mutations in the ATPase copper transporting beta (ATP7B) gene. The condition is associated with the accumulation of copper in the body, leading to irreversible damage to various organs, including the liver, nervous system, kidneys, and eyes. However, the heterogeneous nature and individualized presentation of physical and neurological symptoms in WD patients pose significant challenges to accurate diagnosis. Furthermore, patients must consume copper-chelating medication throughout their lifetime. Herein, we provide a detailed description of WD and review the application of novel CRISPR-based strategies for its diagnosis and treatment, along with the challenges that need to be overcome.
Collapse
Affiliation(s)
- Woong Choi
- Department of Physiology, Korea University College of Medicine, Seoul 02841, Republic of Korea;
| | - Seongkwang Cha
- Department of Physiology, Korea University College of Medicine, Seoul 02841, Republic of Korea;
- Neuroscience Research Institute, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Kyoungmi Kim
- Department of Physiology, Korea University College of Medicine, Seoul 02841, Republic of Korea;
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Republic of Korea
| |
Collapse
|
2
|
Lafhal K, Sabir ES, Hakmaoui A, Hammoud M, Aimrane A, Najeh S, Assiri I, Berrachid A, Imad N, Boujemaa CA, Aziz F, El Hanafi FZ, Lalaoui A, Aamri H, Boyko I, Sánchez-Monteagudo A, Espinós C, Sab IA, Aboussair N, Bourrahouat A, Fdil N. Clinical, biochemical and molecular characterization of Wilson's disease in Moroccan patients. Mol Genet Metab Rep 2023; 36:100984. [PMID: 37323222 PMCID: PMC10267639 DOI: 10.1016/j.ymgmr.2023.100984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/23/2023] [Accepted: 05/30/2023] [Indexed: 06/17/2023] Open
Abstract
Background Wilson Disease (WD) is an autosomal recessive inherited metabolic disease caused by mutations in the ATP7B gene. WD is characterized by heterogeneous clinical presentations expressed by hepatic and neuropsychiatric phenotypes. The disease is difficult to diagnose, and misdiagnosed cases are commonly seen. Methods In this study, the presented symptoms of WD, the biochemical parameters as well as its natural history are described based on cases collected in Mohammed VI Hospital University of Marrakech (Morocco). We screened and sequenced 21 exons of ATP7B gene from 12 WD patients that confirmed through biochemical diagnosis. Results Mutational assessment of the ATP7B gene showed six homozygous mutations in 12 individuals however, 2 patients had no evidence of any mutation in promoter and exonic regions. All mutations are pathogenic and most were missense mutations. c.2507G > A (p.G836E), c.3694A > C (p.T1232P) and c.3310 T > C (p.C1104R) that were identified in 4 patients. The other mutations were a non-sense mutation (c.865C > T (p.C1104R)) detected in 2 patients, a splice mutation (c.51 + 4A > T) detected in 2 patients and a frameshift mutation (c.1746 dup (p.E583Rfs*25) detected in 2 patients. Conclusion Our study is the first molecular analysis in Moroccan patients with Wilson's disease, the ATP7B mutational spectrum in the Moroccan population is diverse and still unexplored.
Collapse
Affiliation(s)
- Karima Lafhal
- Metabolic Platform, Biochemistry Laboratory, Faculty of Medicine, Cadi Ayad University, Marrakech, Morocco
| | - Es-said Sabir
- Metabolic Platform, Biochemistry Laboratory, Faculty of Medicine, Cadi Ayad University, Marrakech, Morocco
| | - Abdelmalek Hakmaoui
- Center of Clinical Research, University Hospital Mohammed VI, Marrakech, Morocco
| | - Miloud Hammoud
- Metabolic Platform, Biochemistry Laboratory, Faculty of Medicine, Cadi Ayad University, Marrakech, Morocco
| | - Abdelmohcine Aimrane
- Metabolic Platform, Biochemistry Laboratory, Faculty of Medicine, Cadi Ayad University, Marrakech, Morocco
| | - Samira Najeh
- Metabolic Platform, Biochemistry Laboratory, Faculty of Medicine, Cadi Ayad University, Marrakech, Morocco
| | - Imane Assiri
- Metabolic Platform, Biochemistry Laboratory, Faculty of Medicine, Cadi Ayad University, Marrakech, Morocco
| | - Abdelaati Berrachid
- Metabolic Platform, Biochemistry Laboratory, Faculty of Medicine, Cadi Ayad University, Marrakech, Morocco
| | - Najwa Imad
- Mother-Child Hospital, Pediatric Department, Mohammed VI University Hospital, Cadi Ayad University, Marrakesh, Morocco
| | - Chaima Ait Boujemaa
- Center of Clinical Research, University Hospital Mohammed VI, Marrakech, Morocco
| | - Faissal Aziz
- National Center for Study and Research on Water and Energy, PO Box 511, Cadi Ayyad University, Marrakech., Morocco
| | - Fatima Zahra El Hanafi
- Mother-Child Hospital, Pediatric Department, Mohammed VI University Hospital, Cadi Ayad University, Marrakesh, Morocco
| | - Abdessamad Lalaoui
- Mother-Child Hospital, Pediatric Department, Mohammed VI University Hospital, Cadi Ayad University, Marrakesh, Morocco
| | - Hasna Aamri
- Mother-Child Hospital, Pediatric Department, Mohammed VI University Hospital, Cadi Ayad University, Marrakesh, Morocco
| | - Iryna Boyko
- Laboratory of Rare Neurodegenerative Diseases, Príncipe Felipe Research Center (CIPF), Valencia, Spain
| | - Ana Sánchez-Monteagudo
- Laboratory of Rare Neurodegenerative Diseases, Príncipe Felipe Research Center (CIPF), Valencia, Spain
- Joint Unit INCLIVA & IIS La Fe Rare Diseases, Valencia, Spain
| | - Carmen Espinós
- Laboratory of Rare Neurodegenerative Diseases, Príncipe Felipe Research Center (CIPF), Valencia, Spain
- Joint Unit INCLIVA & IIS La Fe Rare Diseases, Valencia, Spain
- Biotechnology Department, Faculty of Veterinary and Experimental Sciences, Catholic University of Valencia, Valencia, Spain
| | - Imane Ait Sab
- Mother-Child Hospital, Pediatric Department, Mohammed VI University Hospital, Cadi Ayad University, Marrakesh, Morocco
| | - Nisrine Aboussair
- Department of Medical Genetics, Mohammed VI University Hospital, Cadi Ayad University, Marrakesh, Morocco
| | - Aicha Bourrahouat
- Mother-Child Hospital, Pediatric Department, Mohammed VI University Hospital, Cadi Ayad University, Marrakesh, Morocco
| | - Naima Fdil
- Metabolic Platform, Biochemistry Laboratory, Faculty of Medicine, Cadi Ayad University, Marrakech, Morocco
| |
Collapse
|
3
|
Ramírez V, Salcedo-Bellido I, Rodrigo L, Gil Hernández F, Olmedo P, Martínez-González LJ, Álvarez-Cubero MJ, Rivas A. Association of genetic polymorphisms in detoxifying systems and urinary metal(loid) levels with excess body weight among Spanish children: A proof-of-concept study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 873:162333. [PMID: 36813201 DOI: 10.1016/j.scitotenv.2023.162333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Exposure to metal(loid)s during critical developmental windows could result in permanent damage to the target organ system, increasing susceptibility to disease later in life. In view of the fact that metals(loid)s have been shown to work as obesogens, the aim of the present case-control study was to evaluate the modification effect of exposure to metal(loid)s on the association between SNPs in genes involved in metal(loid) detoxification and excess body weight among children. A total of 134 Spanish children aged 6-12 years old were included (88 controls and 46 cases). Seven SNPs (GSTP1 rs1695 and rs1138272; GCLM rs3789453, ATP7B rs1061472, rs732774 and rs1801243; and ABCC2 rs1885301) were genotyped on GSA microchips, and ten metal(loid)s were analysed in urine samples through Inductively coupled plasma mass spectrometry (ICP-MS). Multivariable logistic regressions were conducted to assess the genetic and metal exposures' main association and interaction effects. GSTP1 rs1695 and ATP7B rs1061472 showed significant effects on excess weight increase in those children carrying two copies of the risk G allele and being highly exposed to chromium (ORa = 5.38, p = 0.042, p interaction = 0.028 for rs1695; and ORa = 4.20, p = 0.035, p interaction = 0.012 for rs1061472) and lead (ORa = 7.18, p = 0.027, p interaction = 0.031 for rs1695, and ORa = 3.42, p = 0.062, p interaction = 0.010 for rs1061472). Conversely, GCLM rs3789453 and ATP7B rs1801243 appeared to play a protective role against excess weight in those exposed to copper (ORa = 0.20, p = 0.025, p interaction = 0.074 for rs3789453) and lead (ORa = 0.22, p = 0.092, p interaction = 0.089 for rs1801243). Our findings provide the first proof that interaction effects could exist between genetic variants within GSH and metal transporting systems and exposure to metal(loid)s, on excess body weight among Spanish children.
Collapse
Affiliation(s)
- Viviana Ramírez
- Department of Nutrition and Food Science, Faculty of Pharmacy, University of Granada, Granada, Spain; GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government PTS Granada, Avenida de la Ilustración, 114, 18016 Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain.; Institute of Nutrition and Food Technology "Jose Mataix Verdú", Biomedical Research Center, University of Granada, Granada, Spain
| | - Inmaculada Salcedo-Bellido
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain.; Department of Preventive Medicine and Public Health, Faculty of Pharmacy, University of Granada, Granada, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública-CIBERESP), Monforte de Lemos 5, 2809 Madrid, Spain
| | - Lourdes Rodrigo
- Department of Legal Medicine, Toxicology and Physical Anthropology, Faculty of Medicine, University of Granada, Granada, Spain
| | - Fernando Gil Hernández
- Department of Legal Medicine, Toxicology and Physical Anthropology, Faculty of Medicine, University of Granada, Granada, Spain
| | - Pablo Olmedo
- Department of Legal Medicine, Toxicology and Physical Anthropology, Faculty of Medicine, University of Granada, Granada, Spain
| | - Luis Javier Martínez-González
- GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government PTS Granada, Avenida de la Ilustración, 114, 18016 Granada, Spain.
| | - María Jesús Álvarez-Cubero
- GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government PTS Granada, Avenida de la Ilustración, 114, 18016 Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain.; Department of Biochemistry and Molecular Biology III, Faculty of Medicine, University of Granada, Granada, Spain
| | - Ana Rivas
- Department of Nutrition and Food Science, Faculty of Pharmacy, University of Granada, Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain.; Institute of Nutrition and Food Technology "Jose Mataix Verdú", Biomedical Research Center, University of Granada, Granada, Spain
| |
Collapse
|
4
|
ATP7B Genotype and Chronic Liver Disease Treatment Outcomes in Wilson Disease: Worse Survival With Loss-of-Function Variants. Clin Gastroenterol Hepatol 2022; 21:1323-1329.e4. [PMID: 36096368 DOI: 10.1016/j.cgh.2022.08.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 08/22/2022] [Accepted: 08/27/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND AIMS Although a good genotype-phenotype correlation has not been established in Wilson disease (WD), patients with loss-of-function (LOF) ATP7B variants demonstrate different clinical and biochemical characteristics. We aim to describe long-term treatment outcomes in the chronic liver disease (CLD) phenotype and evaluate an association with LOF variants. METHODS This was a single-center retrospective review of WD patients with at least 1 variant in ATP7B. Demographic, biochemical, genetic, and clinical parameters were obtained. The composite clinical endpoint of liver transplantation or death was used for probands with CLD phenotype on chelators. RESULTS Of 117 patients with hepatic WD: 71 had CLD, 27 had fulminant hepatic failure requiring urgent liver transplantation, and 19 were diagnosed through family screening. Median age at diagnosis was 13.1 (interquartile range, 9.7-17.6) years. In total, 91 variants in ATP7B were identified in the study population. At least 1 LOF variant was present in 60 (51.3%) patients. During median follow-up of 10.7 (interquartile range, 6.7-18.9) years, 10 (14.1%) of the probands with CLD reached the composite endpoint. There was a worse transplant-free survival for patients prescribed chelation therapy in patients with at least 1 LOF variant (P = .03). CONCLUSIONS Patients with WD and CLD phenotype on chelators, who have at least 1 LOF variant in ATP7B, have a worse prognosis during long-term follow up. This subgroup of patients requires close monitoring for signs of progressive liver disease. Sequencing of ATP7B may be used in the diagnosis of WD, and in addition, it may provide useful prognostic information for patients with hepatic WD.
Collapse
|
5
|
Aaron R, Chapla A, Danda S, Zachariah U, Eapen CE, Goel A. Multiplex PCR-based Sequencing of ATP7B Gene in Wilson's Disease - A Preliminary Study. J Clin Exp Hepatol 2022; 12:711-713. [PMID: 35535059 PMCID: PMC9077194 DOI: 10.1016/j.jceh.2021.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 08/01/2021] [Indexed: 12/12/2022] Open
|
6
|
Balashova MS, Tuluzanovskaya IG, Glotov OS, Glotov AS, Barbitoff YA, Fedyakov MA, Alaverdian DA, Ivashchenko TE, Romanova OV, Sarana AM, Scherbak SG, Baranov VS, Filimonov MI, Skalny AV, Zhuchenko NA, Ignatova TM, Asanov AY. The spectrum of pathogenic variants of the ATP7B gene in Wilson disease in the Russian Federation. J Trace Elem Med Biol 2020; 59:126420. [PMID: 31708252 DOI: 10.1016/j.jtemb.2019.126420] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 10/21/2019] [Accepted: 10/22/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Wilson's disease (WD) is a rare inherited disorder caused by mutations in the ATP7B gene resulting in copper accumulation in different organs. However, data on ATP7B mutation spectrum in Russia and worldwide are insufficient and contradictory. The objective of the present study was estimation of the frequency of ATP7B gene mutations in the Russian population of WD patients. MATERIALS AND METHODS 75 WDpatients were examined by next-generation sequencing (NGS). A targeted panel NimbleGen SeqCap EZ Choice: 151012_HG38_CysFib_EZ_HX3 (ROCHE)was designed for analysis of ATP7B gene and possible modifier genes. Retrospective assessment of a diagnostic WD score (Leipzig, 2001) was also performed. RESULTS 31 mutations in ATP7B gene were detected. Two most frequent mutations were c.3207C > A (51,85% of alleles) and c.3190 G > A (8,64% of alleles). Single rare mutations were detected in 29% of cases. In 96% cases mutations of both copies of the ATP7B were revealed. We also observed 3 novel potentially pathogenic variants which were not previously described (c.1870-8A > G, c.3655A > T (p.Ile1219Phe), c.3036dupC (p.Lys1013fs). For 25% of patients at the time of the manifestation the diagnosis WD could not be established using the earlier proposed diagnostic score. There was a remarkable delay in diagnosis for the majority of patients. Only 33% of patients WD was diagnosed in three months after the first symptoms, 29%patients - in 3-12 months, 30% - in 1-10 years, in 8% - more than 10 years. Generally, clinical appearance of WD may be rather variable at manifestation and genetic profiling at this step is the only way to confirm the presence of WD.
Collapse
Affiliation(s)
- Mariya S Balashova
- Sechenov First Moscow State Medical University, Moscow, Russia; Center of Genetics and Reproductive Medicine «Genetico», Moscow, Russia.
| | | | - Oleg S Glotov
- D.O.Ott Research Institute of Obstetrics, Gynecology and Reproductology, St. Petersburg, Russia; St.Petersburg State Health Care Establishment the City Hospital №40, St. Petersburg, Russia; Saint Petersburg State University, St. Petersburg, Russia
| | - Andrey S Glotov
- D.O.Ott Research Institute of Obstetrics, Gynecology and Reproductology, St. Petersburg, Russia; St.Petersburg State Health Care Establishment the City Hospital №40, St. Petersburg, Russia; Saint Petersburg State University, St. Petersburg, Russia
| | - Yury A Barbitoff
- Saint Petersburg State University, St. Petersburg, Russia; Bioinformatics Institute, St. Petersburg, Russia
| | - Mikhail A Fedyakov
- St.Petersburg State Health Care Establishment the City Hospital №40, St. Petersburg, Russia; Saint Petersburg State University, St. Petersburg, Russia
| | - Diana A Alaverdian
- St.Petersburg State Health Care Establishment the City Hospital №40, St. Petersburg, Russia
| | - Tatiana E Ivashchenko
- D.O.Ott Research Institute of Obstetrics, Gynecology and Reproductology, St. Petersburg, Russia
| | - Olga V Romanova
- D.O.Ott Research Institute of Obstetrics, Gynecology and Reproductology, St. Petersburg, Russia; St.Petersburg State Health Care Establishment the City Hospital №40, St. Petersburg, Russia
| | - Andrey M Sarana
- St.Petersburg State Health Care Establishment the City Hospital №40, St. Petersburg, Russia; Saint Petersburg State University, St. Petersburg, Russia
| | - Sergey G Scherbak
- St.Petersburg State Health Care Establishment the City Hospital №40, St. Petersburg, Russia; Saint Petersburg State University, St. Petersburg, Russia
| | - Vladislav S Baranov
- D.O.Ott Research Institute of Obstetrics, Gynecology and Reproductology, St. Petersburg, Russia; Saint Petersburg State University, St. Petersburg, Russia
| | | | - Anatoly V Skalny
- Sechenov First Moscow State Medical University, Moscow, Russia; Taipei Medical University, Taipei, Taiwan
| | | | - Tatiana M Ignatova
- Center of Endosurgery and Lithotripsy (CELT), Moscow, Russia; Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, Moscow, Russia
| | - Aliy Y Asanov
- Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
7
|
Prasad R. New Horizons in Correction of Mutated ATP7B in Wilson Disease Using Pharmacological Agents: Precise Medicine. Indian J Clin Biochem 2019; 34:369-370. [PMID: 31686723 DOI: 10.1007/s12291-019-00855-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Rajendra Prasad
- Department of Biochemistry, MM Institute of Medical Sciences and Research, MM (Deemed to be University), Mullana, Ambala, Haryana 133207 India
| |
Collapse
|
8
|
An urgent need to assess safe levels of inorganic copper in nutritional supplements/parenteral nutrition for subset of Alzheimer’s disease patients. Neurotoxicology 2019; 73:168-174. [DOI: 10.1016/j.neuro.2019.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 04/01/2019] [Accepted: 04/01/2019] [Indexed: 02/07/2023]
|
9
|
In-silico analysis of novel p.(Gly14Ser) variant of ATOX1 gene: plausible role in modulating ATOX1-ATP7B interaction. Mol Biol Rep 2019; 46:3307-3313. [PMID: 30980273 DOI: 10.1007/s11033-019-04791-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 03/28/2019] [Indexed: 10/27/2022]
Abstract
Clinical heterogeneity is commonly observed in Wilson disease (WD), including cases with identical ATP7B mutations. It is thought to be an outcome of impairment in other genes involved in cellular copper homeostasis in addition to the mutations in the ATP7B gene. ATOX1, a copper chaperone that delivers copper to ATP7B, is a potential genetic modifier of WD. In the present study, we analyzed the genetic variations in the ATOX1 gene in 50 WD patients and 60 controls. We identified four novel variants, of which, the coding region variant c.40G > A, p.(Gly14Ser) was observed in 2% alleles. Interestingly, p.(Gly14Ser) was seen with an early onset age, reduced serum ceruloplasmin level and manifestations of liver and brain in a WD patient unlike the other having identical ATP7B mutation but normal ATOX1 alleles. Further, computational analysis predicted that p.(Gly14Ser) substitution, in the critical copper binding motif (MXCXG14C) of the protein, affects the protein-protein interaction involved in copper sharing and transfer between ATOX1 and ATP7B-MBD4. Our findings suggest that p.(Gly14Ser) variant of ATOX1 might play a role as a genetic modifier leading to phenotypic variation in WD.
Collapse
|
10
|
Medici V, LaSalle JM. Genetics and epigenetic factors of Wilson disease. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:S58. [PMID: 31179295 PMCID: PMC6531661 DOI: 10.21037/atm.2019.01.67] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 01/25/2019] [Indexed: 12/13/2022]
Abstract
Wilson disease (WD) is a complex condition due to copper accumulation mainly in the liver and brain. The genetic base of WD is represented by pathogenic mutations of the copper-transporting gene ATP7B with consequent lack of copper excretion through the biliary tract. ATP7B is the only gene so far identified and known to be responsible for the development of the disease. Our understanding of the disease has been evolving as functional studies have associated specific disease-causing mutations with specific copper-transporter impairments. The most frequent variant in patients of European descent is the H1069Q missense mutation and it has been associated with protein misfolding, aberrant phosphorylation of the P-domain, and altered ATP binding orientation and affinity. Conversely, there is much less understanding of the relation between the genotype and the clinical manifestations of WD. WD is characterized by a highly varied and unpredictable presentation with different combined hepatic, neurological, and psychiatric symptoms. Several studies have attempted to correlate genotype and phenotype but the most recent evidences on larger populations failed to identify a relation between genotype and clinical presentations. Given that so far also modifier genes have not shown convincing association with WD, there is growing interest to identify epigenetic mechanisms of gene expression regulation as underlying the onset and progression of WD phenotype. Evidence from animal models indicated changes in methionine metabolism regulation with possible effects on DNA methylation. Mouse models of WD have indicated transcript level changes of genes related to DNA methylation in fetal and adult livers. And finally, evidence is accumulating regarding DNA methylation changes in patients with WD. It is unexplored how ATP7B genetic mutations combine with epigenetic changes to affect the phenotype. In conclusion, WD is a genetic disease with a complex regulation of its phenotype that includes molecular genetics and epigenetic mechanisms.
Collapse
Affiliation(s)
- Valentina Medici
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of California Davis, Sacramento, California, USA
| | - Janine M. LaSalle
- Department of Medical Microbiology and Immunology, University of California Davis, Sacramento, California, USA
| |
Collapse
|