1
|
Goliusova DV, Sharikova MY, Lavrenteva KA, Lebedeva OS, Muranova LK, Gusev NB, Bogomazova AN, Lagarkova MA. Role of Filamin C in Muscle Cells. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1546-1557. [PMID: 39418514 DOI: 10.1134/s0006297924090025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/02/2024] [Accepted: 08/14/2024] [Indexed: 10/19/2024]
Abstract
Filamin C (FLNC) is a member of a high-molecular weight protein family, which bind actin filaments in the cytoskeleton of various cells. In human genome FLNC is encoded by the FLNC gene located on chromosome 7 and is expressed predominantly in striated skeletal and cardiac muscle cells. Filamin C is involved in organization and stabilization of thin actin filaments three-dimensional network in sarcomeres, and is supposed to play a role of mechanosensor transferring mechanical signals to different protein targets. Under mechanical stress FLNC can undergo unfolding that increases the risk of its aggregation. FLNC molecules with an impaired native structure could be eliminated by the BAG3-mediated chaperone-assisted selective autophagy. Mutations in the FLNC gene could be accompanied by the changes in FLNC interaction with its protein partners and could lead to formation of aggregates, which overload the autophagy and proteasome protein degradation systems, thus facilitating development of various pathological processes. Molecular mechanisms of the FLNC-associated congenital disorders, called filaminopathies, remain poorly understood. This review is devoted to analysis of the structure and mechanisms of filamin C function in muscle and heart cells in normal state and in the FLNC-associated pathologies. The presented data summarize the results of research at the molecular, cellular, and tissue levels and allow us to outline promising ways for further investigation of pathogenetic mechanisms in filaminopathies.
Collapse
Affiliation(s)
- Daria V Goliusova
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, 119435, Russia.
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Margarita Y Sharikova
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, 119435, Russia
| | - Kristina A Lavrenteva
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, 119435, Russia
| | - Olga S Lebedeva
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, 119435, Russia
| | - Lidia K Muranova
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Nikolai B Gusev
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Alexandra N Bogomazova
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, 119435, Russia
| | - Maria A Lagarkova
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, 119435, Russia
| |
Collapse
|
2
|
Roos A, van der Ven PFM, Alrohaif H, Kölbel H, Heil L, Della Marina A, Weis J, Aßent M, Beck-Wödl S, Barresi R, Töpf A, O’Connor K, Sickmann A, Kohlschmidt N, El Gizouli M, Meyer N, Daya N, Grande V, Bois K, Kaiser FJ, Vorgerd M, Schröder C, Schara-Schmidt U, Gangfuss A, Evangelista T, Röbisch L, Hentschel A, Grüneboom A, Fuerst DO, Kuechler A, Tzschach A, Depienne C, Lochmüller H. Bi-allelic variants of FILIP1 cause congenital myopathy, dysmorphism and neurological defects. Brain 2023; 146:4200-4216. [PMID: 37163662 PMCID: PMC10545528 DOI: 10.1093/brain/awad152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 03/16/2023] [Accepted: 04/11/2023] [Indexed: 05/12/2023] Open
Abstract
Filamin-A-interacting protein 1 (FILIP1) is a structural protein that is involved in neuronal and muscle function and integrity and interacts with FLNa and FLNc. Pathogenic variants in filamin-encoding genes have been linked to neurological disorders (FLNA) and muscle diseases characterized by myofibrillar perturbations (FLNC), but human diseases associated with FILIP1 variants have not yet been described. Here, we report on five patients from four unrelated consanguineous families with homozygous FILIP1 variants (two nonsense and two missense). Functional studies indicated altered stability of the FILIP1 protein carrying the p.[Pro1133Leu] variant. Patients exhibit a broad spectrum of neurological symptoms including brain malformations, neurodevelopmental delay, muscle weakness and pathology and dysmorphic features. Electron and immunofluorescence microscopy on the muscle biopsy derived from the patient harbouring the homozygous p.[Pro1133Leu] missense variant revealed core-like zones of myofibrillar disintegration, autophagic vacuoles and accumulation of FLNc. Proteomic studies on the fibroblasts derived from the same patient showed dysregulation of a variety of proteins including FLNc and alpha-B-crystallin, a finding (confirmed by immunofluorescence) which is in line with the manifestation of symptoms associated with the syndromic phenotype of FILIP1opathy. The combined findings of this study show that the loss of functional FILIP1 leads to a recessive disorder characterized by neurological and muscular manifestations as well as dysmorphic features accompanied by perturbed proteostasis and myopathology.
Collapse
Affiliation(s)
- Andreas Roos
- Department of Pediatric Neurology, Center for Neuromuscular Disorders, Center for Translational Neuro- and Behavioral Sciences, University Duisburg-Essen, 45147 Essen, Germany
- Brain and Mind Research Institute, Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON, K1H 8L1, Canada
- Department of Neurology, University Hospital Bergmannsheil, Heimer Institute for Muscle Research, 44789 Bochum, Germany
| | - Peter F M van der Ven
- Department of Molecular Cell Biology, Institute for Cell Biology, University of Bonn, 53121 Bonn, Germany
| | - Hadil Alrohaif
- John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE1 3BZ, UK
- Kuwait Medical Genetics Center, Sabah Hospital, Kuwait City, Kuwait
| | - Heike Kölbel
- Department of Pediatric Neurology, Center for Neuromuscular Disorders, Center for Translational Neuro- and Behavioral Sciences, University Duisburg-Essen, 45147 Essen, Germany
| | - Lorena Heil
- Department of Molecular Cell Biology, Institute for Cell Biology, University of Bonn, 53121 Bonn, Germany
| | - Adela Della Marina
- Department of Pediatric Neurology, Center for Neuromuscular Disorders, Center for Translational Neuro- and Behavioral Sciences, University Duisburg-Essen, 45147 Essen, Germany
| | - Joachim Weis
- Institute of Neuropathology, RWTH Aachen University Hospital, 52074 Aachen, Germany
| | - Marvin Aßent
- Department of Molecular Cell Biology, Institute for Cell Biology, University of Bonn, 53121 Bonn, Germany
| | - Stefanie Beck-Wödl
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany
| | | | - Ana Töpf
- John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE1 3BZ, UK
| | - Kaela O’Connor
- Brain and Mind Research Institute, Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON, K1H 8L1, Canada
| | - Albert Sickmann
- Department of Bioanalytics, Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., 44227 Dortmund, Germany
| | | | - Magdeldin El Gizouli
- Institute of Human Genetics, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Nancy Meyer
- Department of Pediatric Neurology, Center for Neuromuscular Disorders, Center for Translational Neuro- and Behavioral Sciences, University Duisburg-Essen, 45147 Essen, Germany
| | - Nassam Daya
- Department of Neurology, University Hospital Bergmannsheil, Heimer Institute for Muscle Research, 44789 Bochum, Germany
| | - Valentina Grande
- Department of Molecular Cell Biology, Institute for Cell Biology, University of Bonn, 53121 Bonn, Germany
| | - Karin Bois
- Department of Molecular Cell Biology, Institute for Cell Biology, University of Bonn, 53121 Bonn, Germany
| | - Frank J Kaiser
- Institute of Human Genetics, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Matthias Vorgerd
- Department of Neurology, University Hospital Bergmannsheil, Heimer Institute for Muscle Research, 44789 Bochum, Germany
| | - Christopher Schröder
- Institute of Human Genetics, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Ulrike Schara-Schmidt
- Department of Pediatric Neurology, Center for Neuromuscular Disorders, Center for Translational Neuro- and Behavioral Sciences, University Duisburg-Essen, 45147 Essen, Germany
| | - Andrea Gangfuss
- Department of Pediatric Neurology, Center for Neuromuscular Disorders, Center for Translational Neuro- and Behavioral Sciences, University Duisburg-Essen, 45147 Essen, Germany
| | - Teresinha Evangelista
- John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE1 3BZ, UK
- Nord/Est/Ile-de-France Neuromuscular Reference Center, Institute of Myology, Pitié-Salpêtrière Hospital, APHP, Sorbonne University, 75013 Paris, France
| | - Luisa Röbisch
- Department of Bioanalytics, Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., 44227 Dortmund, Germany
| | - Andreas Hentschel
- Department of Bioanalytics, Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., 44227 Dortmund, Germany
| | - Anika Grüneboom
- Department of Bioanalytics, Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., 44227 Dortmund, Germany
| | - Dieter O Fuerst
- Department of Molecular Cell Biology, Institute for Cell Biology, University of Bonn, 53121 Bonn, Germany
| | - Alma Kuechler
- Institute of Human Genetics, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Andreas Tzschach
- Medical Center, Faculty of Medicine, Institute of Human Genetics, University of Freiburg, 79106 Freiburg, Germany
| | - Christel Depienne
- Institute of Human Genetics, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Hanns Lochmüller
- Brain and Mind Research Institute, Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON, K1H 8L1, Canada
- Division of Neurology, Department of Medicine, The Ottawa Hospital, Ottawa, ON, K1H 8L1, Canada
| |
Collapse
|
3
|
Sellung D, Heil L, Daya N, Jacobsen F, Mertens-Rill J, Zhuge H, Döring K, Piran M, Milting H, Unger A, Linke WA, Kley R, Preusse C, Roos A, Fürst DO, Ven PFMVD, Vorgerd M. Novel Filamin C Myofibrillar Myopathy Variants Cause Different Pathomechanisms and Alterations in Protein Quality Systems. Cells 2023; 12:cells12091321. [PMID: 37174721 PMCID: PMC10177260 DOI: 10.3390/cells12091321] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/28/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
Myofibrillar myopathies (MFM) are a group of chronic muscle diseases pathophysiologically characterized by accumulation of protein aggregates and structural failure of muscle fibers. A subtype of MFM is caused by heterozygous mutations in the filamin C (FLNC) gene, exhibiting progressive muscle weakness, muscle structural alterations and intracellular protein accumulations. Here, we characterize in depth the pathogenicity of two novel truncating FLNc variants (p.Q1662X and p.Y2704X) and assess their distinct effect on FLNc stability and distribution as well as their impact on protein quality system (PQS) pathways. Both variants cause a slowly progressive myopathy with disease onset in adulthood, chronic myopathic alterations in muscle biopsy including the presence of intracellular protein aggregates. Our analyses revealed that p.Q1662X results in FLNc haploinsufficiency and p.Y2704X in a dominant-negative FLNc accumulation. Moreover, both protein-truncating variants cause different PQS alterations: p.Q1662X leads to an increase in expression of several genes involved in the ubiquitin-proteasome system (UPS) and the chaperone-assisted selective autophagy (CASA) system, whereas p.Y2704X results in increased abundance of proteins involved in UPS activation and autophagic buildup. We conclude that truncating FLNC variants might have different pathogenetic consequences and impair PQS function by diverse mechanisms and to varying extents. Further studies on a larger number of patients are necessary to confirm our observations.
Collapse
Affiliation(s)
- Dominik Sellung
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr-University Bochum, 44789 Bochum, Germany
| | - Lorena Heil
- Department of Molecular Cell Biology, Institute for Cell Biology, University of Bonn, 53121 Bonn, Germany
| | - Nassam Daya
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr-University Bochum, 44789 Bochum, Germany
| | - Frank Jacobsen
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr-University Bochum, 44789 Bochum, Germany
| | - Janine Mertens-Rill
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr-University Bochum, 44789 Bochum, Germany
| | - Heidi Zhuge
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr-University Bochum, 44789 Bochum, Germany
| | - Kristina Döring
- Department of Human Genetics, Ruhr-University Bochum, 44801 Bochum, Germany
| | - Misagh Piran
- Erich and Hanna Klessmann Institute, Heart and Diabetes Centre NRW, University Hospital of the Ruhr-University Bochum, 32545 Bad Oeynhausen, Germany
| | - Hendrik Milting
- Erich and Hanna Klessmann Institute, Heart and Diabetes Centre NRW, University Hospital of the Ruhr-University Bochum, 32545 Bad Oeynhausen, Germany
| | - Andreas Unger
- Institute of Physiology II, University of Münster, 48149 Münster, Germany
| | - Wolfgang A Linke
- Institute of Physiology II, University of Münster, 48149 Münster, Germany
| | - Rudi Kley
- Department of Neurology and Clinical Neurophysiology, St. Marien-Hospital Borken, 46325 Borken, Germany
| | - Corinna Preusse
- Department of Neuropathology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Andreas Roos
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr-University Bochum, 44789 Bochum, Germany
| | - Dieter O Fürst
- Department of Molecular Cell Biology, Institute for Cell Biology, University of Bonn, 53121 Bonn, Germany
| | - Peter F M van der Ven
- Department of Molecular Cell Biology, Institute for Cell Biology, University of Bonn, 53121 Bonn, Germany
| | - Matthias Vorgerd
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr-University Bochum, 44789 Bochum, Germany
| |
Collapse
|
4
|
Krause K, Eggers B, Uszkoreit J, Eulitz S, Rehmann R, Güttsches AK, Schreiner A, van der Ven PFM, Fürst DO, Marcus K, Vorgerd M, Kley RA. Target formation in muscle fibres indicates reinnervation - A proteomic study in muscle samples from peripheral neuropathies. Neuropathol Appl Neurobiol 2023; 49:e12853. [PMID: 36180966 DOI: 10.1111/nan.12853] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/20/2022] [Accepted: 07/23/2022] [Indexed: 11/30/2022]
Abstract
AIMS Target skeletal muscle fibres - defined by different concentric areas in oxidative enzyme staining - can occur in patients with neurogenic muscular atrophy. Here, we used our established hypothesis-free proteomic approach with the aim of deciphering the protein composition of targets. We also searched for potential novel interactions between target proteins. METHODS Targets and control areas were laser microdissected from skeletal muscle sections of 20 patients with neurogenic muscular atrophy. Samples were analysed by a highly sensitive mass spectrometry approach, enabling relative protein quantification. The results were validated by immunofluorescence studies. Protein interactions were investigated by yeast two-hybrid assays, coimmunoprecipitation experiments and bimolecular fluorescence complementation. RESULTS More than 1000 proteins were identified. Among these, 55 proteins were significantly over-represented and 40 proteins were significantly under-represented in targets compared to intraindividual control samples. The majority of over-represented proteins were associated with the myofibrillar Z-disc and actin dynamics, followed by myosin and myosin-associated proteins, proteins involved in protein biosynthesis and chaperones. Under-represented proteins were mainly mitochondrial proteins. Functional studies revealed that the LIM domain of the over-represented protein LIMCH1 interacts with isoform A of Xin actin-binding repeat-containing protein 1 (XinA). CONCLUSIONS In particular, proteins involved in myofibrillogenesis are over-represented in target structures, which indicate an ongoing process of sarcomere assembly and/or remodelling within this specific area of the muscle fibres. We speculate that target structures are the result of reinnervation processes in which filamin C-associated myofibrillogenesis is tightly regulated by the BAG3-associated protein quality system.
Collapse
Affiliation(s)
- Karsten Krause
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Britta Eggers
- Medizinisches Proteom-Center, Ruhr-University Bochum, Bochum, Germany.,Medical Proteome Analysis, Center for Protein Diagnostics (PRODI), Ruhr-University Bochum, Bochum, Germany
| | - Julian Uszkoreit
- Medizinisches Proteom-Center, Ruhr-University Bochum, Bochum, Germany.,Medical Proteome Analysis, Center for Protein Diagnostics (PRODI), Ruhr-University Bochum, Bochum, Germany
| | - Stefan Eulitz
- Institute for Cell Biology, University of Bonn, Bonn, Germany
| | - Robert Rehmann
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Anne K Güttsches
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Anja Schreiner
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | | | - Dieter O Fürst
- Institute for Cell Biology, University of Bonn, Bonn, Germany
| | - Katrin Marcus
- Medizinisches Proteom-Center, Ruhr-University Bochum, Bochum, Germany.,Medical Proteome Analysis, Center for Protein Diagnostics (PRODI), Ruhr-University Bochum, Bochum, Germany
| | - Matthias Vorgerd
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Rudolf A Kley
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany.,Department of Neurology and Clinical Neurophysiology, St. Marien-Hospital Borken, Borken, Germany
| |
Collapse
|
5
|
Muravyev A, Vershinina T, Tesner P, Sjoberg G, Fomicheva Y, Čajbiková NN, Kozyreva A, Zhuk S, Mamaeva E, Tarnovskaya S, Jornholt J, Sokolnikova P, Pervunina T, Vasichkina E, Sejersen T, Kostareva A. Rare clinical phenotype of filaminopathy presenting as restrictive cardiomyopathy and myopathy in childhood. Orphanet J Rare Dis 2022; 17:358. [PMID: 36104822 PMCID: PMC9476594 DOI: 10.1186/s13023-022-02477-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 08/13/2022] [Indexed: 11/10/2022] Open
Abstract
Background FLNC is one of the few genes associated with all types of cardiomyopathies, but it also underlies neuromuscular phenotype. The combination of concomitant neuromuscular and cardiac involvement is not often observed in filaminopathies and the impact of this on the disease prognosis has hitherto not been analyzed. Results Here we provide a detailed clinical, genetic, and structural prediction analysis of distinct FLNC-associated phenotypes based on twelve pediatric cases. They include early-onset restrictive cardiomyopathy (RCM) in association with congenital myopathy. In all patients the initial diagnosis was established during the first year of life and in five out of twelve (41.7%) patients the first symptoms were observed at birth. RCM was present in all patients, often in combination with septal defects. No ventricular arrhythmias were noted in any of the patients presented here. Myopathy was confirmed by neurological examination, electromyography, and morphological studies. Arthrogryposes was diagnosed in six patients and remained clinically meaningful with increasing age in three of them. One patient underwent successful heart transplantation at the age of 18 years and two patients are currently included in the waiting list for heart transplantation. Two died due to congestive heart failure. One patient had ICD instally as primary prevention of SCD. In ten out of twelve patients the disease was associated with missense variants and only in two cases loss of function variants were detected. In half of the described cases, an amino acid substitution A1186V, altering the structure of IgFLNc10, was found. Conclusions The present description of twelve cases of early-onset restrictive cardiomyopathy with congenital myopathy and FLNC mutation, underlines a distinct unique phenotype that can be suggested as a separate clinical form of filaminopathies. Amino acid substitution A1186V, which was observed in half of the cases, defines a mutational hotspot for the reported combination of myopathy and cardiomyopathy. Several independent molecular mechanisms of FLNC mutations linked to filamin structure and function can explain the broad spectrum of FLNC-associated phenotypes. Early disease presentation and unfavorable prognosis of heart failure demanding heart transplantation make awareness of this clinical form of filaminopathy of great clinical importance. Supplementary Information The online version contains supplementary material available at 10.1186/s13023-022-02477-5.
Collapse
|
6
|
Methylome analysis of ALS patients and presymptomatic mutation carriers in blood cells. Neurobiol Aging 2022; 116:16-24. [DOI: 10.1016/j.neurobiolaging.2022.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 02/25/2022] [Accepted: 04/02/2022] [Indexed: 12/13/2022]
|
7
|
Gangfuß A, Schara-Schmidt U, Roos A. [Genomics and proteomics in the research of neuromuscular diseases]. DER NERVENARZT 2021; 93:114-121. [PMID: 34622318 DOI: 10.1007/s00115-021-01201-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/04/2021] [Indexed: 11/30/2022]
Abstract
Neurological diseases affect 3-5% of children and, apart from cardiovascular diseases and cancer, represent the most prominent cause of morbidity and mortality in adults and particularly in the aged population of western Europe. Neuromuscular disorders are a subgroup of neurological diseases and often have a genetic origin, which leads to familial clustering. Despite the enormous progress in the analysis of the genome, such as by sequence analysis of coding regions of deoxyribonucleic acid or even the entire deoxyribonucleic acid sequence, in approximately 50% of the patients suffering from rare forms of neurological diseases the genetic cause remains unsolved. The reasons for this limited detection rate are presented in this article. If a treatment concept is available, under certain conditions this can have an impact on the adequate and early treatment of these patients. Considering neuromuscular disorders as a paradigm, this article reports on the advantages of the inclusion of next generation sequencing analysis-based DNA investigations as an omics technology (genomics) and the advantage of the integration with protein analyses (proteomics). A special focus is on the combination of genomics and proteomics in the sense of a proteogenomic approach in the diagnostics and research of these diseases. Along this line, this article presents a proteogenomic approach in the context of a multidisciplinary project aiming towards improved diagnostic work-up and future treatment of patients with neuromuscular diseases; "NMD-GPS: gene and protein signatures as a global positioning system in patients suffering from neuromuscular diseases".
Collapse
Affiliation(s)
- Andrea Gangfuß
- Abteilung für Neuropädiatrie, Universitätsmedizin Essen, Hufelandstrasse 55, 45147, Essen, Deutschland
| | - Ulrike Schara-Schmidt
- Abteilung für Neuropädiatrie, Universitätsmedizin Essen, Hufelandstrasse 55, 45147, Essen, Deutschland
| | - Andreas Roos
- Abteilung für Neuropädiatrie, Universitätsmedizin Essen, Hufelandstrasse 55, 45147, Essen, Deutschland. .,Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Kanada.
| |
Collapse
|
8
|
Vogt G, El Choubassi N, Herczegfalvi Á, Kölbel H, Lekaj A, Schara U, Holtgrewe M, Krause S, Horvath R, Schuelke M, Hübner C, Mundlos S, Roos A, Lochmüller H, Karcagi V, Kornak U, Fischer‐Zirnsak B. Expanding the clinical and molecular spectrum of ATP6V1A related metabolic cutis laxa. J Inherit Metab Dis 2021; 44:972-986. [PMID: 33320377 PMCID: PMC8638669 DOI: 10.1002/jimd.12341] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 12/08/2020] [Accepted: 12/14/2020] [Indexed: 12/14/2022]
Abstract
Several inborn errors of metabolism show cutis laxa as a highly recognizable feature. One group of these metabolic cutis laxa conditions is autosomal recessive cutis laxa type 2 caused by defects in v-ATPase components or the mitochondrial proline cycle. Besides cutis laxa, muscular hypotonia and cardiac abnormalities are hallmarks of autosomal recessive cutis laxa type 2D (ARCL2D) due to pathogenic variants in ATP6V1A encoding subunit A of the v-ATPase. Here, we report on three affected individuals from two families with ARCL2D in whom we performed whole exome and Sanger sequencing. We performed functional studies in fibroblasts from one individual, summarized all known probands' clinical, molecular, and biochemical features and compared them, also to other metabolic forms of cutis laxa. We identified novel missense and the first nonsense variant strongly affecting ATP6V1A expression. All six ARCL2D affected individuals show equally severe cutis laxa and dysmorphism at birth. While for one no information was available, two died in infancy and three are now adolescents with mild or absent intellectual disability. Muscular weakness, ptosis, contractures, and elevated muscle enzymes indicated a persistent myopathy. In cellular studies, a fragmented Golgi compartment, a delayed Brefeldin A-induced retrograde transport and glycosylation abnormalities were present in fibroblasts from two individuals. This is the second and confirmatory report on pathogenic variants in ATP6V1A as the cause of this extremely rare condition and the first to describe a nonsense allele. Our data highlight the tremendous clinical variability of ATP6V1A related phenotypes even within the same family.
Collapse
Affiliation(s)
- Guido Vogt
- Institut für Medizinische Genetik und Humangenetik, Charité ‐ Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
- Max Planck Institute for Molecular Genetics, RG Development & DiseaseBerlinGermany
| | - Naji El Choubassi
- Institut für Medizinische Genetik und Humangenetik, Charité ‐ Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
- Max Planck Institute for Molecular Genetics, RG Development & DiseaseBerlinGermany
| | - Ágnes Herczegfalvi
- Department of Pediatric NeurologySemmelweis Medical University, II. Pediatric ClinicBudapestHungary
| | - Heike Kölbel
- Department of Pediatric NeurologyUniversity Hospital Essen, University Duisburg‐EssenEssenGermany
| | - Anja Lekaj
- Institut für Medizinische Genetik und Humangenetik, Charité ‐ Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
| | - Ulrike Schara
- Department of Pediatric NeurologyUniversity Hospital Essen, University Duisburg‐EssenEssenGermany
| | - Manuel Holtgrewe
- CUBI – Core Unit BioinformaticsBerlin Institute of HealthBerlinGermany
| | - Sabine Krause
- Friedrich‐Baur‐Institute, Department of NeurologyLudwig‐Maximilians‐University of MunichMunichGermany
| | - Rita Horvath
- Department of Clinical NeurosciencesUniversity of Cambridge, Cambridge Biomedical CampusCambridgeUK
| | - Markus Schuelke
- Department of Neuropediatrics, Charité‐Universitätsmedizin Berlincorporate member of Freie Universität Berlin, Humboldt‐Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
| | - Christoph Hübner
- Department of Neuropediatrics, Charité‐Universitätsmedizin Berlincorporate member of Freie Universität Berlin, Humboldt‐Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
| | - Stefan Mundlos
- Institut für Medizinische Genetik und Humangenetik, Charité ‐ Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
- Max Planck Institute for Molecular Genetics, RG Development & DiseaseBerlinGermany
| | - Andreas Roos
- Department of Pediatric NeurologyUniversity Hospital Essen, University Duisburg‐EssenEssenGermany
- Children's Hospital of Eastern Ontario Research InstituteUniversity of OttawaOttawaOntarioCanada
| | - Hanns Lochmüller
- Children's Hospital of Eastern Ontario Research InstituteUniversity of OttawaOttawaOntarioCanada
- Division of Neurology, Department of Medicine, The Ottawa HospitalOttawaCanada
- Brain and Mind Research InstituteUniversity of OttawaOttawaCanada
| | - Veronika Karcagi
- NIEH, Department of Molecular Genetics and DiagnosticsBudapestHungary
- Istenhegyi Genetic Diagnostic CentreBudapestHungary
| | - Uwe Kornak
- Institut für Medizinische Genetik und Humangenetik, Charité ‐ Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
- Max Planck Institute for Molecular Genetics, RG Development & DiseaseBerlinGermany
- Institute of Human GeneticsUniversity Medical Center GöttingenGöttingenGermany
| | - Björn Fischer‐Zirnsak
- Institut für Medizinische Genetik und Humangenetik, Charité ‐ Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
- Max Planck Institute for Molecular Genetics, RG Development & DiseaseBerlinGermany
| |
Collapse
|
9
|
The Role of Z-disc Proteins in Myopathy and Cardiomyopathy. Int J Mol Sci 2021; 22:ijms22063058. [PMID: 33802723 PMCID: PMC8002584 DOI: 10.3390/ijms22063058] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/07/2021] [Accepted: 03/11/2021] [Indexed: 12/11/2022] Open
Abstract
The Z-disc acts as a protein-rich structure to tether thin filament in the contractile units, the sarcomeres, of striated muscle cells. Proteins found in the Z-disc are integral for maintaining the architecture of the sarcomere. They also enable it to function as a (bio-mechanical) signalling hub. Numerous proteins interact in the Z-disc to facilitate force transduction and intracellular signalling in both cardiac and skeletal muscle. This review will focus on six key Z-disc proteins: α-actinin 2, filamin C, myopalladin, myotilin, telethonin and Z-disc alternatively spliced PDZ-motif (ZASP), which have all been linked to myopathies and cardiomyopathies. We will summarise pathogenic variants identified in the six genes coding for these proteins and look at their involvement in myopathy and cardiomyopathy. Listing the Minor Allele Frequency (MAF) of these variants in the Genome Aggregation Database (GnomAD) version 3.1 will help to critically re-evaluate pathogenicity based on variant frequency in normal population cohorts.
Collapse
|
10
|
Schuld J, Orfanos Z, Chevessier F, Eggers B, Heil L, Uszkoreit J, Unger A, Kirfel G, van der Ven PFM, Marcus K, Linke WA, Clemen CS, Schröder R, Fürst DO. Homozygous expression of the myofibrillar myopathy-associated p.W2710X filamin C variant reveals major pathomechanisms of sarcomeric lesion formation. Acta Neuropathol Commun 2020; 8:154. [PMID: 32887649 PMCID: PMC7650280 DOI: 10.1186/s40478-020-01001-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/22/2020] [Indexed: 01/06/2023] Open
Abstract
Filamin C (FLNc) is mainly expressed in striated muscle cells where it localizes to Z-discs, myotendinous junctions and intercalated discs. Recent studies have revealed numerous mutations in the FLNC gene causing familial and sporadic myopathies and cardiomyopathies with marked clinical variability. The most frequent myopathic mutation, p.W2710X, which is associated with myofibrillar myopathy, deletes the carboxy-terminal 16 amino acids from FLNc and abolishes the dimerization property of Ig-like domain 24. We previously characterized "knock-in" mice heterozygous for this mutation (p.W2711X), and have now investigated homozygous mice using protein and mRNA expression analyses, mass spectrometry, and extensive immunolocalization and ultrastructural studies. Although the latter mice display a relatively mild myopathy under normal conditions, our analyses identified major mechanisms causing the pathophysiology of this disease: in comparison to wildtype animals (i) the expression level of FLNc protein is drastically reduced; (ii) mutant FLNc is relocalized from Z-discs to particularly mechanically strained parts of muscle cells, i.e. myotendinous junctions and myofibrillar lesions; (iii) the number of lesions is greatly increased and these lesions lack Bcl2-associated athanogene 3 (BAG3) protein; (iv) the expression of heat shock protein beta-7 (HSPB7) is almost completely abolished. These findings indicate grave disturbances of BAG3-dependent and -independent autophagy pathways that are required for efficient lesion repair. In addition, our studies reveal general mechanisms of lesion formation and demonstrate that defective FLNc dimerization via its carboxy-terminal domain does not disturb assembly and basic function of myofibrils. An alternative, more amino-terminally located dimerization site might compensate for that loss. Since filamins function as stress sensors, our data further substantiate that FLNc is important for mechanosensing in the context of Z-disc stabilization and maintenance.
Collapse
|