1
|
Majtan T, Olsen T, Sokolova J, Krijt J, Křížková M, Ida T, Ditrói T, Hansikova H, Vit O, Petrak J, Kuchař L, Kruger WD, Nagy P, Akaike T, Kožich V. Deciphering pathophysiological mechanisms underlying cystathionine beta-synthase-deficient homocystinuria using targeted metabolomics, liver proteomics, sphingolipidomics and analysis of mitochondrial function. Redox Biol 2024; 73:103222. [PMID: 38843767 PMCID: PMC11190558 DOI: 10.1016/j.redox.2024.103222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/17/2024] [Accepted: 06/02/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND Cystathionine β-synthase (CBS)-deficient homocystinuria (HCU) is an inherited disorder of sulfur amino acid metabolism with varying severity and organ complications, and a limited knowledge about underlying pathophysiological processes. Here we aimed at getting an in-depth insight into disease mechanisms using a transgenic mouse model of HCU (I278T). METHODS We assessed metabolic, proteomic and sphingolipidomic changes, and mitochondrial function in tissues and body fluids of I278T mice and WT controls. Furthermore, we evaluated the efficacy of methionine-restricted diet (MRD) in I278T mice. RESULTS In WT mice, we observed a distinct tissue/body fluid compartmentalization of metabolites with up to six-orders of magnitude differences in concentrations among various organs. The I278T mice exhibited the anticipated metabolic imbalance with signs of an increased production of hydrogen sulfide and disturbed persulfidation of free aminothiols. HCU resulted in a significant dysregulation of liver proteome affecting biological oxidations, conjugation of compounds, and metabolism of amino acids, vitamins, cofactors and lipids. Liver sphingolipidomics indicated upregulation of the pro-proliferative sphingosine-1-phosphate signaling pathway. Liver mitochondrial function of HCU mice did not seem to be impaired compared to controls. MRD in I278T mice improved metabolic balance in all tissues and substantially reduced dysregulation of liver proteome. CONCLUSION The study highlights distinct tissue compartmentalization of sulfur-related metabolites in normal mice, extensive metabolome, proteome and sphingolipidome disruptions in I278T mice, and the efficacy of MRD to alleviate some of the HCU-related biochemical abnormalities.
Collapse
Affiliation(s)
- Tomas Majtan
- Department of Pharmacology, University of Fribourg, Faculty of Science and Medicine, Fribourg, 1700, Switzerland.
| | - Thomas Olsen
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Jitka Sokolova
- Department of Pediatrics and Inherited Metabolic Disorders, Charles University-First Faculty of Medicine, Prague, 12808, Czech Republic; Department of Pediatrics and Inherited Metabolic Disorders, General University Hospital in Prague, Prague, 12808, Czech Republic
| | - Jakub Krijt
- Department of Pediatrics and Inherited Metabolic Disorders, Charles University-First Faculty of Medicine, Prague, 12808, Czech Republic; Department of Pediatrics and Inherited Metabolic Disorders, General University Hospital in Prague, Prague, 12808, Czech Republic
| | - Michaela Křížková
- Department of Pediatrics and Inherited Metabolic Disorders, Charles University-First Faculty of Medicine, Prague, 12808, Czech Republic; Department of Pediatrics and Inherited Metabolic Disorders, General University Hospital in Prague, Prague, 12808, Czech Republic
| | - Tomoaki Ida
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Tamás Ditrói
- Department of Molecular Immunology and Toxicology and the National Tumor Biology Laboratory, National Institute of Oncology, Budapest, 1122, Hungary
| | - Hana Hansikova
- Department of Pediatrics and Inherited Metabolic Disorders, Charles University-First Faculty of Medicine, Prague, 12808, Czech Republic; Department of Pediatrics and Inherited Metabolic Disorders, General University Hospital in Prague, Prague, 12808, Czech Republic
| | - Ondrej Vit
- BIOCEV, First Faculty of Medicine, Charles University, 252 50, Vestec, Czech Republic
| | - Jiri Petrak
- BIOCEV, First Faculty of Medicine, Charles University, 252 50, Vestec, Czech Republic
| | - Ladislav Kuchař
- Department of Pediatrics and Inherited Metabolic Disorders, Charles University-First Faculty of Medicine, Prague, 12808, Czech Republic; Department of Pediatrics and Inherited Metabolic Disorders, General University Hospital in Prague, Prague, 12808, Czech Republic
| | - Warren D Kruger
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Péter Nagy
- Department of Molecular Immunology and Toxicology and the National Tumor Biology Laboratory, National Institute of Oncology, Budapest, 1122, Hungary; Department of Anatomy and Histology, HUN-REN-UVMB Laboratory of Redox Biology Research Group, University of Veterinary Medicine, 1078, Budapest, Hungary; Chemistry Institute, University of Debrecen, 4012, Debrecen, Hungary
| | - Takaaki Akaike
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Viktor Kožich
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway; Department of Pediatrics and Inherited Metabolic Disorders, Charles University-First Faculty of Medicine, Prague, 12808, Czech Republic.
| |
Collapse
|
2
|
Majtan T, Kožich V, Kruger WD. Recent therapeutic approaches to cystathionine beta-synthase-deficient homocystinuria. Br J Pharmacol 2023; 180:264-278. [PMID: 36417581 PMCID: PMC9822868 DOI: 10.1111/bph.15991] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/09/2022] [Accepted: 11/14/2022] [Indexed: 11/27/2022] Open
Abstract
Cystathionine beta-synthase (CBS)-deficient homocystinuria (HCU) is the most common inborn error of sulfur amino acid metabolism. The pyridoxine non-responsive form of the disease manifests itself by massively increasing plasma and tissue concentrations of homocysteine, a toxic intermediate of methionine metabolism that is thought to be the major cause of clinical complications including skeletal deformities, connective tissue defects, thromboembolism and cognitive impairment. The current standard of care involves significant dietary interventions that, despite being effective, often adversely affect quality of life of HCU patients, leading to poor adherence to therapy and inadequate biochemical control with clinical complications. In recent years, the unmet need for better therapeutic options has resulted in development of novel enzyme and gene therapies and exploration of pharmacological approaches to rescue CBS folding defects caused by missense pathogenic mutations. Here, we review scientific evidence and current state of affairs in development of recent approaches to treat HCU.
Collapse
Affiliation(s)
- Tomas Majtan
- Department of Pharmacology, University of Fribourg, Faculty of Science and Medicine, Fribourg, 1700, Switzerland
| | - Viktor Kožich
- Department of Pediatrics and Inherited Metabolic Disorders, Charles University-First Faculty of Medicine, Prague, 12808, Czech Republic
- Department of Pediatrics and Inherited Metabolic Disorders, General University Hospital in Prague, Prague, 12808, Czech Republic
| | - Warren D. Kruger
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| |
Collapse
|
3
|
Bittmann S, Villalon G, Moschuring-Alieva E, Luchter E, Bittmann L. Current and Novel Therapeutical Approaches of Classical Homocystinuria in Childhood With Special Focus on Enzyme Replacement Therapy, Liver-Directed Therapy and Gene Therapy. J Clin Med Res 2023; 15:76-83. [PMID: 36895619 PMCID: PMC9990725 DOI: 10.14740/jocmr4843] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 01/09/2023] [Indexed: 03/05/2023] Open
Abstract
Classical homocystinuria is a hereditary defect of the enzyme cystathionine beta synthase, which is produced in the liver. If this enzyme fails, the synthesis pathway of cysteine from methionine is interrupted, leading to the accumulation of homocysteine in the blood plasma and homocysteine in the urine. After birth, the children are unremarkable except for the characteristic laboratory findings. Symptoms rarely appear before the second year of life. The most common symptom is a prolapse of the crystalline lens. This finding is seen in 70% of untreated 10-year-old affected individuals. As the earliest symptom, psychomotor retardation occurs in the majority of patients already during the first two years of life. Limiting factors in terms of life expectancy are thromboembolism, peripheral arterial disease, myocardial infarction, and stroke. These symptoms are due to the damage to the vessels caused by the elevated amino acid levels. About 30% suffer a thromboembolic event by the age of 20, about half by the age of 30. This review focus on present and new therapeutical approaches like the role of enzyme replacement with presentation of different novel targets in research like pegtibatinase, pegtarviliase, CDX-6512, erymethionase, chaperones, proteasome inhibitors and probiotic treatment with SYNB 1353. Furthermore, we analyze the role of liver-directed therapy with three dimensional (3D) bioprinting, liver bioengineering of liver organoids in vitro and liver transplantation. The role of different gene therapy options to treat and cure this extremely rare disease in childhood will be discussed.
Collapse
Affiliation(s)
- Stefan Bittmann
- Ped Mind Institute, Department of Pediatrics, Medical and Finance Center Epe, D-48599 Gronau, Germany
| | - Gloria Villalon
- Ped Mind Institute, Department of Pediatrics, Medical and Finance Center Epe, D-48599 Gronau, Germany
| | - Elena Moschuring-Alieva
- Ped Mind Institute, Department of Pediatrics, Medical and Finance Center Epe, D-48599 Gronau, Germany
| | - Elisabeth Luchter
- Ped Mind Institute, Department of Pediatrics, Medical and Finance Center Epe, D-48599 Gronau, Germany
| | - Lara Bittmann
- Ped Mind Institute, Department of Pediatrics, Medical and Finance Center Epe, D-48599 Gronau, Germany
| |
Collapse
|
4
|
Matye D, Gunewardena S, Chen J, Wang H, Wang Y, Hasan MN, Gu L, Clayton YD, Du Y, Chen C, Friedman JE, Lu SC, Ding WX, Li T. TFEB regulates sulfur amino acid and coenzyme A metabolism to support hepatic metabolic adaptation and redox homeostasis. Nat Commun 2022; 13:5696. [PMID: 36171419 PMCID: PMC9519740 DOI: 10.1038/s41467-022-33465-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 09/15/2022] [Indexed: 11/15/2022] Open
Abstract
Fatty liver is a highly heterogenous condition driven by various pathogenic factors in addition to the severity of steatosis. Protein insufficiency has been causally linked to fatty liver with incompletely defined mechanisms. Here we report that fatty liver is a sulfur amino acid insufficient state that promotes metabolic inflexibility via limiting coenzyme A availability. We demonstrate that the nutrient-sensing transcriptional factor EB synergistically stimulates lysosome proteolysis and methionine adenosyltransferase to increase cysteine pool that drives the production of coenzyme A and glutathione, which support metabolic adaptation and antioxidant defense during increased lipid influx. Intriguingly, mice consuming an isocaloric protein-deficient Western diet exhibit selective hepatic cysteine, coenzyme A and glutathione deficiency and acylcarnitine accumulation, which are reversed by cystine supplementation without normalizing dietary protein intake. These findings support a pathogenic link of dysregulated sulfur amino acid metabolism to metabolic inflexibility that underlies both overnutrition and protein malnutrition-associated fatty liver development.
Collapse
Affiliation(s)
- David Matye
- Harold Hamm Diabetes Center, Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Sumedha Gunewardena
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Jianglei Chen
- Harold Hamm Diabetes Center, Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Huaiwen Wang
- Laboratory for Molecular Biology and Cytometry Research, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Yifeng Wang
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Mohammad Nazmul Hasan
- Harold Hamm Diabetes Center, Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Lijie Gu
- Harold Hamm Diabetes Center, Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Yung Dai Clayton
- Harold Hamm Diabetes Center, Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Yanhong Du
- Harold Hamm Diabetes Center, Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Cheng Chen
- Harold Hamm Diabetes Center, Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Jacob E Friedman
- Harold Hamm Diabetes Center, Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Shelly C Lu
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Wen-Xing Ding
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Tiangang Li
- Harold Hamm Diabetes Center, Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
5
|
Homocysteine Metabolism Pathway Is Involved in the Control of Glucose Homeostasis: A Cystathionine Beta Synthase Deficiency Study in Mouse. Cells 2022; 11:cells11111737. [PMID: 35681432 PMCID: PMC9179272 DOI: 10.3390/cells11111737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/16/2022] [Accepted: 05/20/2022] [Indexed: 12/13/2022] Open
Abstract
Cystathionine beta synthase (CBS) catalyzes the first step of the transsulfuration pathway from homocysteine to cystathionine, and its deficiency leads to hyperhomocysteinemia (HHcy) in humans and rodents. To date, scarce information is available about the HHcy effect on insulin secretion, and the link between CBS activity and the setting of type 2 diabetes is still unknown. We aimed to decipher the consequences of an inborn defect in CBS on glucose homeostasis in mice. We used a mouse model heterozygous for CBS (CBS+/−) that presented a mild HHcy. Other groups were supplemented with methionine in drinking water to increase the mild to intermediate HHcy, and were submitted to a high-fat diet (HFD). We measured the food intake, body weight gain, body composition, glucose homeostasis, plasma homocysteine level, and CBS activity. We evidenced a defect in the stimulated insulin secretion in CBS+/− mice with mild and intermediate HHcy, while mice with intermediate HHcy under HFD presented an improvement in insulin sensitivity that compensated for the decreased insulin secretion and permitted them to maintain a glucose tolerance similar to the CBS+/+ mice. Islets isolated from CBS+/− mice maintained their ability to respond to the elevated glucose levels, and we showed that a lower parasympathetic tone could, at least in part, be responsible for the insulin secretion defect. Our results emphasize the important role of Hcy metabolic enzymes in insulin secretion and overall glucose homeostasis.
Collapse
|
6
|
Wang H, Wu Y, Tang W. Methionine cycle in nonalcoholic fatty liver disease and its potential applications. Biochem Pharmacol 2022; 200:115033. [PMID: 35395242 DOI: 10.1016/j.bcp.2022.115033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/31/2022] [Accepted: 03/31/2022] [Indexed: 11/25/2022]
Abstract
As a chronic metabolic disease affecting epidemic proportions worldwide, the pathogenesis of Nonalcoholic Fatty Liver Disease (NAFLD) is not clear yet. There is also a lack of precise biomarkers and specific medicine for the diagnosis and treatment of NAFLD. Methionine metabolic cycle, which is critical for the maintaining of cellular methylation and redox state, is involved in the pathophysiology of NAFLD. However, the molecular basis and mechanism of methionine metabolism in NAFLD are not completely understood. Here, we mainly focus on specific enzymes that participates in methionine cycle, to reveal their interconnections with NAFLD, in order to recognize the pathogenesis of NAFLD from a new angle and at the same time, explore the clinical characteristics and therapeutic strategies.
Collapse
Affiliation(s)
- Haoyu Wang
- University of Chinese Academy of Sciences, Beijing, 100049, PR China; Laboratory of Anti-inflammation, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, PR China
| | - Yanwei Wu
- Laboratory of Anti-inflammation, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, PR China
| | - Wei Tang
- University of Chinese Academy of Sciences, Beijing, 100049, PR China; Laboratory of Anti-inflammation, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, PR China.
| |
Collapse
|
7
|
Nakladal D, Lambooy SPH, Mišúth S, Čepcová D, Joschko CP, Buiten A, Goris M, Hoogstra‐Berends F, Kloosterhuis NJ, Huijkman N, Sluis B, Diercks GF, Buikema JH, Henning RH, Deelman LE. Homozygous whole body
Cbs
knockout in adult mice features minimal pathology during ageing despite severe homocysteinemia. FASEB J 2022; 36:e22260. [DOI: 10.1096/fj.202101550r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 02/17/2022] [Accepted: 03/07/2022] [Indexed: 11/11/2022]
Affiliation(s)
- D. Nakladal
- Department of Clinical Pharmacy and Pharmacology University of Groningen University Medical Center Groningen Groningen The Netherlands
| | - S. P. H. Lambooy
- Department of Clinical Pharmacy and Pharmacology University of Groningen University Medical Center Groningen Groningen The Netherlands
| | - S. Mišúth
- Department of Clinical Pharmacy and Pharmacology University of Groningen University Medical Center Groningen Groningen The Netherlands
- Department of Pharmacology & Toxicology Faculty of Pharmacy Comenius University in Bratislava Bratislava Slovakia
| | - D. Čepcová
- Department of Clinical Pharmacy and Pharmacology University of Groningen University Medical Center Groningen Groningen The Netherlands
- Department of Pharmacology & Toxicology Faculty of Pharmacy Comenius University in Bratislava Bratislava Slovakia
| | - C. P. Joschko
- Department of Clinical Pharmacy and Pharmacology University of Groningen University Medical Center Groningen Groningen The Netherlands
| | - A. Buiten
- Department of Clinical Pharmacy and Pharmacology University of Groningen University Medical Center Groningen Groningen The Netherlands
| | - M. Goris
- Department of Clinical Pharmacy and Pharmacology University of Groningen University Medical Center Groningen Groningen The Netherlands
| | - F. Hoogstra‐Berends
- Department of Clinical Pharmacy and Pharmacology University of Groningen University Medical Center Groningen Groningen The Netherlands
| | - N. J. Kloosterhuis
- Department of Pediatrics University of Groningen University Medical Center Groningen Groningen The Netherlands
| | - N. Huijkman
- iPSC/CRISPR Center Groningen University of Groningen University Medical Center Groningen Groningen The Netherlands
| | - B. Sluis
- Department of Pediatrics University of Groningen University Medical Center Groningen Groningen The Netherlands
- iPSC/CRISPR Center Groningen University of Groningen University Medical Center Groningen Groningen The Netherlands
| | - G. F. Diercks
- Department of Dermatology Center for Blistering Diseases University of Groningen University Medical Center Groningen Groningen The Netherlands
| | - J. H. Buikema
- Department of Clinical Pharmacy and Pharmacology University of Groningen University Medical Center Groningen Groningen The Netherlands
| | - R. H. Henning
- Department of Clinical Pharmacy and Pharmacology University of Groningen University Medical Center Groningen Groningen The Netherlands
| | - L. E. Deelman
- Department of Clinical Pharmacy and Pharmacology University of Groningen University Medical Center Groningen Groningen The Netherlands
| |
Collapse
|
8
|
Kožich V, Majtan T. Inherited disorders of sulfur amino acid metabolism: recent advances in therapy. Curr Opin Clin Nutr Metab Care 2021; 24:62-70. [PMID: 33060459 DOI: 10.1097/mco.0000000000000705] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
PURPOSE OF REVIEW Metabolism of sulfur amino acids (SAA) provides compounds important for many cellular functions. Inherited disorders of SAA metabolism are typically severe multisystemic diseases affecting brain, liver, connective tissue, or vasculature. The review summarizes the present therapeutic approaches and advances in identifying novel treatment targets, and provides an overview of new therapies. RECENT FINDINGS Current treatments of genetic disorders of SAA metabolism are primarily based on modulation of affected pathways by dietary measures and provision of lacking products or scavenging of toxic molecules. Recent studies identified additional therapeutic targets distant from the primary defects and explored ideas envisioning novel treatments, such as chaperone and gene therapy. Recombinant protein production and engineering resulted in development and clinical testing of enzyme therapies for cystathionine β-synthase deficiency, the most common inborn error of SAA metabolism. SUMMARY Complex regulation of pathways involved in SAA metabolism and cellular consequences of genetic defects in SAA metabolism are only partially understood. There is a pressing need to increase substantially our knowledge of the disease mechanisms to develop more effective therapies for patients suffering from these rare disorders.
Collapse
Affiliation(s)
- Viktor Kožich
- Department of Pediatrics and Inherited Metabolic Disorders, Charles University-First Faculty of Medicine and General University Hospital, Czech Republic
| | - Tomas Majtan
- Section of Genetics and Metabolism, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|