1
|
Vocke CD, Ricketts CJ, Pack S, Raffeld M, Hewitt S, Lebensohn AP, O’Brien L, Gautam R, Reynolds K, Schmidt LS, Choo K, Kenigsberg A, Gurram S, Chew EY, Nilubol N, Chittaboina P, Merino MJ, Ball MW, Linehan WM. A novel pathogenic germline chromosome 3 inversion in von Hippel-Lindau disease. J Med Genet 2024; 61:1026-1030. [PMID: 39317422 PMCID: PMC11503160 DOI: 10.1136/jmg-2024-110202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/14/2024] [Indexed: 09/26/2024]
Abstract
von Hippel-Lindau (VHL) is an autosomal-dominant hereditary tumour susceptibility disease associated with pathogenic germline variants in the VHL tumour suppressor gene. VHL patients are at increased risk of developing multiple benign and malignant tumours. Current CLIA-based genetic tests demonstrate a very high detection rate of germline VHL variants in patients with clinical manifestations of VHL. In this report, we describe a large family with canonical VHL manifestations, for which no germline alteration had been detected by conventional germline testing. We identified a novel 291 kb chromosomal inversion involving chromosome 3p in affected family members. This inversion disrupts the VHL gene between exon 2 and exon 3 and is thereby responsible for the disease observed in this family.
Collapse
Affiliation(s)
- Cathy D Vocke
- Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Christopher J Ricketts
- Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Svetlana Pack
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Mark Raffeld
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Stephen Hewitt
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Lidenys O’Brien
- Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Rabindra Gautam
- Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Krista Reynolds
- Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Laura S Schmidt
- Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Kristin Choo
- Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Alex Kenigsberg
- Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Sandeep Gurram
- Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Emily Y Chew
- Division of Epidemiology and Clinical Applications, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Naris Nilubol
- Surgical Oncology Program, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Prashant Chittaboina
- Neurosurgery Unit for Pituitary and Inheritable Diseases, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Maria J Merino
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Mark W Ball
- Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - W Marston Linehan
- Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
2
|
Gómez-Virgilio L, Velazquez-Paniagua M, Cuazozon-Ferrer L, Silva-Lucero MDC, Gutierrez-Malacara AI, Padilla-Mendoza JR, Borbolla-Vázquez J, Díaz-Hernández JA, Jiménez-Orozco FA, Cardenas-Aguayo MDC. Genetics, Pathophysiology, and Current Challenges in Von Hippel-Lindau Disease Therapeutics. Diagnostics (Basel) 2024; 14:1909. [PMID: 39272694 PMCID: PMC11393980 DOI: 10.3390/diagnostics14171909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/12/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
This review article focuses on von Hippel-Lindau (VHL) disease, a rare genetic disorder characterized by the development of tumors and cysts throughout the body. It discusses the following aspects of the disease. GENETICS VHL disease is caused by mutations in the VHL tumor suppressor gene located on chromosome 3. These mutations can be inherited or occur spontaneously. This article details the different types of mutations and their associated clinical features. PATHOPHYSIOLOGY The underlying cause of VHL disease is the loss of function of the VHL protein (pVHL). This protein normally regulates hypoxia-inducible factors (HIFs), which are involved in cell growth and survival. When pVHL is dysfunctional, HIF levels become elevated, leading to uncontrolled cell growth and tumor formation. CLINICAL MANIFESTATIONS VHL disease can affect various organs, including the brain, spinal cord, retina, kidneys, pancreas, and adrenal glands. Symptoms depend on the location and size of the tumors. DIAGNOSIS Diagnosis of VHL disease involves a combination of clinical criteria, imaging studies, and genetic testing. TREATMENT Treatment options for VHL disease depend on the type and location of the tumors. Surgery is the mainstay of treatment, but other options like radiation therapy may also be used. CHALLENGES This article highlights the challenges in VHL disease management, including the lack of effective therapies for some tumor types and the need for better methods to monitor disease progression. In conclusion, we emphasize the importance of ongoing research to develop new and improved treatments for VHL disease.
Collapse
Affiliation(s)
- Laura Gómez-Virgilio
- Laboratory of Cellular Reprogramming, Department of Physiology, Facultad de Medicina, Universidad Nacional Autónoma de México, Av. Universidad No. 3000, Coyoacan CDMX 04510, Mexico
| | - Mireya Velazquez-Paniagua
- Laboratory of Cellular Reprogramming, Department of Physiology, Facultad de Medicina, Universidad Nacional Autónoma de México, Av. Universidad No. 3000, Coyoacan CDMX 04510, Mexico
| | - Lucero Cuazozon-Ferrer
- Laboratory of Cellular Reprogramming, Department of Physiology, Facultad de Medicina, Universidad Nacional Autónoma de México, Av. Universidad No. 3000, Coyoacan CDMX 04510, Mexico
- Ingenieria en Biotecnología, Universidad Politécnica de Quintana Roo, Av. Arco Bicentenario, MZ. 11, Lote 1119-33 SM 255, Cancún Quintana Roo 77500, Mexico
| | - Maria-Del-Carmen Silva-Lucero
- Laboratory of Cellular Reprogramming, Department of Physiology, Facultad de Medicina, Universidad Nacional Autónoma de México, Av. Universidad No. 3000, Coyoacan CDMX 04510, Mexico
| | - Andres-Ivan Gutierrez-Malacara
- Laboratory of Cellular Reprogramming, Department of Physiology, Facultad de Medicina, Universidad Nacional Autónoma de México, Av. Universidad No. 3000, Coyoacan CDMX 04510, Mexico
| | - Juan-Ramón Padilla-Mendoza
- Laboratory of Cellular Reprogramming, Department of Physiology, Facultad de Medicina, Universidad Nacional Autónoma de México, Av. Universidad No. 3000, Coyoacan CDMX 04510, Mexico
| | - Jessica Borbolla-Vázquez
- Ingenieria en Biotecnología, Universidad Politécnica de Quintana Roo, Av. Arco Bicentenario, MZ. 11, Lote 1119-33 SM 255, Cancún Quintana Roo 77500, Mexico
| | - Job-Alí Díaz-Hernández
- Ingenieria en Biotecnología, Universidad Politécnica de Quintana Roo, Av. Arco Bicentenario, MZ. 11, Lote 1119-33 SM 255, Cancún Quintana Roo 77500, Mexico
| | | | - Maria-Del-Carmen Cardenas-Aguayo
- Laboratory of Cellular Reprogramming, Department of Physiology, Facultad de Medicina, Universidad Nacional Autónoma de México, Av. Universidad No. 3000, Coyoacan CDMX 04510, Mexico
| |
Collapse
|
3
|
Yanus GA, Kuligina ES, Imyanitov EN. Hereditary Renal Cancer Syndromes. Med Sci (Basel) 2024; 12:12. [PMID: 38390862 PMCID: PMC10885096 DOI: 10.3390/medsci12010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/26/2024] [Accepted: 02/06/2024] [Indexed: 02/24/2024] Open
Abstract
Familial kidney tumors represent a rare variety of hereditary cancer syndromes, although systematic gene sequencing studies revealed that as many as 5% of renal cell carcinomas (RCCs) are associated with germline pathogenic variants (PVs). Most instances of RCC predisposition are attributed to the loss-of-function mutations in tumor suppressor genes, which drive the malignant progression via somatic inactivation of the remaining allele. These syndromes almost always have extrarenal manifestations, for example, von Hippel-Lindau (VHL) disease, fumarate hydratase tumor predisposition syndrome (FHTPS), Birt-Hogg-Dubé (BHD) syndrome, tuberous sclerosis (TS), etc. In contrast to the above conditions, hereditary papillary renal cell carcinoma syndrome (HPRCC) is caused by activating mutations in the MET oncogene and affects only the kidneys. Recent years have been characterized by remarkable progress in the development of targeted therapies for hereditary RCCs. The HIF2aplha inhibitor belzutifan demonstrated high clinical efficacy towards VHL-associated RCCs. mTOR downregulation provides significant benefits to patients with tuberous sclerosis. MET inhibitors hold promise for the treatment of HPRCC. Systematic gene sequencing studies have the potential to identify novel RCC-predisposing genes, especially when applied to yet unstudied populations.
Collapse
Affiliation(s)
- Grigory A. Yanus
- Department of Medical Genetics, Saint-Petersburg State Pediatric Medical University, 194100 Saint-Petersburg, Russia;
- Department of Tumor Growth Biology, N.N. Petrov National Medical Research Center of Oncology, 197758 Saint-Petersburg, Russia;
| | - Ekaterina Sh. Kuligina
- Department of Tumor Growth Biology, N.N. Petrov National Medical Research Center of Oncology, 197758 Saint-Petersburg, Russia;
| | - Evgeny N. Imyanitov
- Department of Medical Genetics, Saint-Petersburg State Pediatric Medical University, 194100 Saint-Petersburg, Russia;
- Department of Tumor Growth Biology, N.N. Petrov National Medical Research Center of Oncology, 197758 Saint-Petersburg, Russia;
- Laboratory of Molecular Biology, Kurchatov Complex for Medical Primatology, National Research Centre “Kurchatov Institute”, 354376 Sochi, Russia
| |
Collapse
|
4
|
Chen Z, Chen J, Gao M, Liu Y, Wu Y, Wang Y, Gong Y, Yu S, Liu W, Wan X, Sun X. Comprehensive analysis of the PRPF31 gene in retinitis pigmentosa patients: Four novel Alu-mediated copy number variations at the PRPF31 locus. Hum Mutat 2022; 43:2279-2294. [PMID: 36317469 DOI: 10.1002/humu.24494] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 10/10/2022] [Accepted: 10/24/2022] [Indexed: 11/11/2022]
Abstract
Retinitis pigmentosa (RP) is a monogenic disease characterized by irreversible degeneration of the retina. PRPF31, the second most common causative gene of autosomal dominant RP, frequently harbors copy number variations (CNVs), but the underlying mechanism is unclear. In this study, we summarized the phenotypic and genotypic characteristics of 18 RP families (F01-F18) with variants in PRPF31. The prevalence of PRPF31 variants in our cohort of Chinese RP families was 1.7% (18/1024). Seventeen different variants in PRPF31 were detected, including eight novel variants. Notably, four novel CNVs encompassing PRPF31, with a proportion of 22.2% (4/18), were validated to harbor gross deletions involving Alu/Alu-mediated rearrangements (AAMRs) in the same orientation. Among a total of 12 CNVs of PRPF31 with breakpoints mapped on nucleotide-resolution, 10 variants (83.3%) were presumably mediated by Alu elements. Furthermore, we described the correlation between the genotypes and phenotypes in PRPF31-related RP. Our findings expand the mutational spectrum of the PRPF31 gene and provide strong evidence that Alu elements of PRPF31 probably contribute to the susceptibility to genomic rearrangement in this locus.
Collapse
Affiliation(s)
- Zhixuan Chen
- Department of Ophthalmology, School of Medicine, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, Shanghai, China.,Department of Ophthalmology, National Clinical Research Center for Eye Diseases, Shanghai, China.,Department of Ophthalmology, Shanghai Key Laboratory of Fundus Diseases, Shanghai, China.,Department of Ophthalmology, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Jieqiong Chen
- Department of Ophthalmology, School of Medicine, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, Shanghai, China.,Department of Ophthalmology, National Clinical Research Center for Eye Diseases, Shanghai, China.,Department of Ophthalmology, Shanghai Key Laboratory of Fundus Diseases, Shanghai, China.,Department of Ophthalmology, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Min Gao
- Department of Ophthalmology, School of Medicine, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, Shanghai, China.,Department of Ophthalmology, National Clinical Research Center for Eye Diseases, Shanghai, China.,Department of Ophthalmology, Shanghai Key Laboratory of Fundus Diseases, Shanghai, China.,Department of Ophthalmology, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Yang Liu
- Department of Ophthalmology, School of Medicine, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, Shanghai, China.,Department of Ophthalmology, National Clinical Research Center for Eye Diseases, Shanghai, China.,Department of Ophthalmology, Shanghai Key Laboratory of Fundus Diseases, Shanghai, China.,Department of Ophthalmology, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Yidong Wu
- Department of Ophthalmology, School of Medicine, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, Shanghai, China.,Department of Ophthalmology, National Clinical Research Center for Eye Diseases, Shanghai, China.,Department of Ophthalmology, Shanghai Key Laboratory of Fundus Diseases, Shanghai, China.,Department of Ophthalmology, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Yafang Wang
- Department of Ophthalmology, School of Medicine, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, Shanghai, China.,Department of Ophthalmology, National Clinical Research Center for Eye Diseases, Shanghai, China.,Department of Ophthalmology, Shanghai Key Laboratory of Fundus Diseases, Shanghai, China.,Department of Ophthalmology, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Yuanyuan Gong
- Department of Ophthalmology, School of Medicine, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, Shanghai, China.,Department of Ophthalmology, National Clinical Research Center for Eye Diseases, Shanghai, China.,Department of Ophthalmology, Shanghai Key Laboratory of Fundus Diseases, Shanghai, China.,Department of Ophthalmology, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Suqin Yu
- Department of Ophthalmology, School of Medicine, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, Shanghai, China.,Department of Ophthalmology, National Clinical Research Center for Eye Diseases, Shanghai, China.,Department of Ophthalmology, Shanghai Key Laboratory of Fundus Diseases, Shanghai, China.,Department of Ophthalmology, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Wenjia Liu
- Department of Ophthalmology, School of Medicine, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, Shanghai, China.,Department of Ophthalmology, National Clinical Research Center for Eye Diseases, Shanghai, China.,Department of Ophthalmology, Shanghai Key Laboratory of Fundus Diseases, Shanghai, China.,Department of Ophthalmology, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Xiaoling Wan
- Department of Ophthalmology, School of Medicine, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, Shanghai, China.,Department of Ophthalmology, National Clinical Research Center for Eye Diseases, Shanghai, China.,Department of Ophthalmology, Shanghai Key Laboratory of Fundus Diseases, Shanghai, China.,Department of Ophthalmology, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Xiaodong Sun
- Department of Ophthalmology, School of Medicine, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, Shanghai, China.,Department of Ophthalmology, National Clinical Research Center for Eye Diseases, Shanghai, China.,Department of Ophthalmology, Shanghai Key Laboratory of Fundus Diseases, Shanghai, China.,Department of Ophthalmology, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| |
Collapse
|
5
|
Webster BR, Gopal N, Ball MW. Tumorigenesis Mechanisms Found in Hereditary Renal Cell Carcinoma: A Review. Genes (Basel) 2022; 13:2122. [PMID: 36421797 PMCID: PMC9690265 DOI: 10.3390/genes13112122] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/07/2022] [Accepted: 11/11/2022] [Indexed: 09/29/2023] Open
Abstract
Renal cell carcinoma is a heterogenous cancer composed of an increasing number of unique subtypes each with their own cellular and tumor behavior. The study of hereditary renal cell carcinoma, which composes just 5% of all types of tumor cases, has allowed for the elucidation of subtype-specific tumorigenesis mechanisms that can also be applied to their sporadic counterparts. This review will focus on the major forms of hereditary renal cell carcinoma and the genetic alterations contributing to their tumorigenesis, including von Hippel Lindau syndrome, Hereditary Papillary Renal Cell Carcinoma, Succinate Dehydrogenase-Deficient Renal Cell Carcinoma, Hereditary Leiomyomatosis and Renal Cell Carcinoma, BRCA Associated Protein 1 Tumor Predisposition Syndrome, Tuberous Sclerosis, Birt-Hogg-Dubé Syndrome and Translocation RCC. The mechanisms for tumorigenesis described in this review are beginning to be exploited via the utilization of novel targets to treat renal cell carcinoma in a subtype-specific fashion.
Collapse
Affiliation(s)
| | | | - Mark W. Ball
- Center for Cancer Research, Urologic Oncology Branch, National Cancer Institute/NIH, 10 Center Drive, CRC Room 2W-5940, Bethesda, MD 20892, USA
| |
Collapse
|
6
|
Jourdy Y, Chatron N, Fretigny M, Dericquebourg A, Sanlaville D, Vinciguerra C. Comprehensive analysis of F8 large deletions: Characterization of full breakpoint junctions and description of a possible DNA breakage hotspot in intron 6. J Thromb Haemost 2022; 20:2293-2305. [PMID: 35894111 DOI: 10.1111/jth.15835] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/20/2022] [Accepted: 07/25/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Large F8 deletions represent 3-5% of the variations found in severe hemophilia A patients, but only a few deletion breakpoints have been characterized precisely. OBJECTIVES Resolving at the nucleotide level 24 F8 large deletions to provide new data on the mechanisms involved in these rearrangements. METHODS Breakpoint junctions of 24 F8 large deletions were characterized using a combination of long-range polymerase chain reaction, whole F8 NGS sequencing, and Sanger sequencing. Repeat elements, non-B DNA, and secondary structures were analyzed around the breakpoints. RESULTS Deletions ranged from 1.667 kb to 0.5 Mb in size. Nine involved F8 neighboring genes. Simple blunt ends and 2-4 bp microhomologies were identified at the breakpoint junctions of 10 (42%) and 8 (33%) deletions, respectively. Five (21%) deletions resulted from homeologous recombination between two Alu elements. The remaining case corresponded to a more complex rearrangement with an insertion of a 19 bp-inverted sequence at the junction. Four different breakpoints were located in a 562-bp region in F8 intron 6. This finding suggested that this region, composed of two Alu elements, is a DNA breakage hotspot. Non-B DNA and secondary structures were identified in the junction regions and may contribute to DNA breakage. CONCLUSION Molecular characterization of deletion breakpoints revealed that non-homologous non-replicative DNA repair mechanisms and replication-based mechanisms seemed to be the main causative mechanisms of F8 large deletions. Moreover, we identified a possible F8 DNA breakage hotspot involved in non-recurrent rearrangements.
Collapse
Affiliation(s)
- Yohann Jourdy
- Hospices Civils de Lyon, Groupe Hospitalier Est, Service d'hématologie biologique, Bron, France
- Université Claude Bernard Lyon 1, UR 4609, Hémostase et thrombose, Lyon, France
| | - Nicolas Chatron
- Hospices Civils de Lyon, Groupe Hospitalier Est, Service de génétique, Bron, France
- Univ Lyon, Univ Lyon 1, CNRS, INSERM, Physiopathologie et Génétique du Neurone et du Muscle, UMR5261, U1315, Institut NeuroMyoGène, Lyon, France
| | - Mathilde Fretigny
- Hospices Civils de Lyon, Groupe Hospitalier Est, Service d'hématologie biologique, Bron, France
| | - Amy Dericquebourg
- Hospices Civils de Lyon, Groupe Hospitalier Est, Service d'hématologie biologique, Bron, France
- Université Claude Bernard Lyon 1, UR 4609, Hémostase et thrombose, Lyon, France
| | - Damien Sanlaville
- Hospices Civils de Lyon, Groupe Hospitalier Est, Service de génétique, Bron, France
- Univ Lyon, Univ Lyon 1, CNRS, INSERM, Physiopathologie et Génétique du Neurone et du Muscle, UMR5261, U1315, Institut NeuroMyoGène, Lyon, France
| | - Christine Vinciguerra
- Hospices Civils de Lyon, Groupe Hospitalier Est, Service d'hématologie biologique, Bron, France
- Université Claude Bernard Lyon 1, UR 4609, Hémostase et thrombose, Lyon, France
| |
Collapse
|
7
|
Qi M, Stenson PD, Ball EV, Tainer JA, Bacolla A, Kehrer-Sawatzki H, Cooper DN, Zhao H. Distinct sequence features underlie microdeletions and gross deletions in the human genome. Hum Mutat 2021; 43:328-346. [PMID: 34918412 PMCID: PMC9069542 DOI: 10.1002/humu.24314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/02/2021] [Accepted: 12/14/2021] [Indexed: 11/18/2022]
Abstract
Microdeletions and gross deletions are important causes (~20%) of human inherited disease and their genomic locations are strongly influenced by the local DNA sequence environment. This notwithstanding, no study has systematically examined their underlying generative mechanisms. Here, we obtained 42,098 pathogenic microdeletions and gross deletions from the Human Gene Mutation Database (HGMD) that together form a continuum of germline deletions ranging in size from 1 to 28,394,429 bp. We analyzed the DNA sequence within 1 kb of the breakpoint junctions and found that the frequencies of non‐B DNA‐forming repeats, GC‐content, and the presence of seven of 78 specific sequence motifs in the vicinity of pathogenic deletions correlated with deletion length for deletions of length ≤30 bp. Further, we found that the presence of DR, GQ, and STR repeats is important for the formation of longer deletions (>30 bp) but not for the formation of shorter deletions (≤30 bp) while significantly (χ2, p < 2E−16) more microhomologies were identified flanking short deletions than long deletions (length >30 bp). We provide evidence to support a functional distinction between microdeletions and gross deletions. Finally, we propose that a deletion length cut‐off of 25–30 bp may serve as an objective means to functionally distinguish microdeletions from gross deletions.
Collapse
Affiliation(s)
- Mengling Qi
- Department of Medical Research Center, Sun Yat-sen Memorial Hospital; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangzhou, China
| | - Peter D Stenson
- Institute of Medical Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - Edward V Ball
- Institute of Medical Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - John A Tainer
- Departments of Cancer Biology and of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Albino Bacolla
- Departments of Cancer Biology and of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | | | - David N Cooper
- Institute of Medical Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - Huiying Zhao
- Department of Medical Research Center, Sun Yat-sen Memorial Hospital; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangzhou, China
| |
Collapse
|
8
|
Vocke CD, Ricketts CJ, Schmidt LS, Ball MW, Middelton LA, Zbar B, Linehan WM. Comprehensive characterization of Alu-mediated breakpoints in germline VHL gene deletions and rearrangements in patients from 71 VHL families. Hum Mutat 2021; 42:520-529. [PMID: 33675279 PMCID: PMC8068631 DOI: 10.1002/humu.24194] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/04/2021] [Accepted: 02/11/2021] [Indexed: 12/31/2022]
Abstract
Von Hippel-Lindau (VHL) is a hereditary multisystem disorder caused by germline alterations in the VHL gene. VHL patients are at risk for benign as well as malignant lesions in multiple organs including kidney, adrenal, pancreas, the central nervous system, retina, endolymphatic sac of the ear, epididymis, and broad ligament. An estimated 30%-35% of all families with VHL inherit a germline deletion of one, two, or all three exons. In this study, we have extensively characterized germline deletions identified in patients from 71 VHL families managed at the National Cancer Institute, including 59 partial (PD) and 12 complete VHL deletions (CD). Deletions that ranged in size from 1.09 to 355 kb. Fifty-eight deletions (55 PD and 3 CD) have been mapped to the exact breakpoints. Ninety-five percent (55 of 58) of mapped deletions involve Alu repeats at both breakpoints. Several novel classes of deletions were identified in this cohort, including two cases that have complex rearrangements involving both deletion and inversion, two cases with inserted extra Alu-like sequences, six cases that involve breakpoints in Alu repeats situated in opposite orientations, and a "hotspot" PD of Exon 3 observed in 12 families that involves the same pair of Alu repeats.
Collapse
Affiliation(s)
- Cathy D. Vocke
- Urologic Oncology Branch, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthBethesdaMarylandUSA
| | - Christopher J. Ricketts
- Urologic Oncology Branch, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthBethesdaMarylandUSA
| | - Laura S. Schmidt
- Urologic Oncology Branch, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthBethesdaMarylandUSA
- Basic Science Program and Frederick National Laboratory for Cancer ResearchFrederickMarylandUSA
| | - Mark W. Ball
- Urologic Oncology Branch, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthBethesdaMarylandUSA
| | - Lindsay A. Middelton
- Urologic Oncology Branch, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthBethesdaMarylandUSA
- Clinical Research DirectorateFrederick National Laboratory for Cancer ResearchFrederickMarylandUSA
| | - Berton Zbar
- Urologic Oncology Branch, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthBethesdaMarylandUSA
| | - W. Marston Linehan
- Urologic Oncology Branch, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthBethesdaMarylandUSA
| |
Collapse
|