1
|
Foncuberta ME, Monges S, Medina A, Lubieniecki F, Gravina LP. A novel deep intronic variant in the DMD gene causes Duchenne muscular dystrophy by pseudoexon activation encoding a nonsense codon. Gene 2024; 930:148862. [PMID: 39151676 DOI: 10.1016/j.gene.2024.148862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/30/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Dystrophinopathies are a group of neuromuscular disorders, inherited in an X-linked recessive manner, caused by pathogenic variants in the DMD gene. Copy number variation detection and next generation sequencing allow the detection of around 99 % of the pathogenic variants. However, some patients require mRNA studies from muscle biopsies to identify deep intronic pathogenic variants. Here, we report a child suspected of having Duchenne muscular dystrophy, with a muscle biopsy showing dystrophin deficiency, and negative molecular testing for deletions, duplications, and small variants. mRNA analysis from muscle biopsy revealed a pseudoexon activation that introduce a premature stop codon into the reading frame. gDNA sequencing allowed to identified a novel variant, c.832-186 T>G, which creates a cryptic donor splice site, recognizing the underlying mechanism causing the pseudoexon insertion. This case highlights the usefulness of the mRNA analysis from muscle biopsy when routine genetic testing is negative and clinical suspicion of dystrophinopathies remains the main clinical diagnosis suspicion.
Collapse
Affiliation(s)
- María Eugenia Foncuberta
- Laboratorio de Biología Molecular - Genética, Hospital de Pediatría Garrahan, Buenos Aires, Argentina.
| | - Soledad Monges
- Servicio de Neurología, Hospital de Pediatría Garrahan, Buenos Aires, Argentina
| | - Adriana Medina
- Laboratorio Biología Molecular - Hematogía y Oncología, Hospital de Pediatría Garrahan, Buenos Aires, Argentina
| | - Fabiana Lubieniecki
- Servicio de Patología, Hospital de Pediatría Garrahan, Buenos Aires, Argentina
| | - Luis Pablo Gravina
- Laboratorio de Biología Molecular - Genética, Hospital de Pediatría Garrahan, Buenos Aires, Argentina
| |
Collapse
|
2
|
Zhao L, Hu C, Pan S, Wang D, Wang Y, Li X. Two novel deep intronic variants cause Duchenne muscular dystrophy by splice-altering mechanism. Neuromuscul Disord 2024; 45:104470. [PMID: 39504661 DOI: 10.1016/j.nmd.2024.104470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/18/2024] [Accepted: 10/01/2024] [Indexed: 11/08/2024]
Abstract
Duchenne muscular dystrophy (DMD) is a genetic disorder characterized by progressive muscle degeneration and weakness, due to mutations in the DMD gene, which encodes the dystrophin protein. While mutations within the coding regions of DMD have been extensively studied, recent focus has shifted to deep intronic variants for their potential impact on disease severity. Here, we characterize two deep intronic variants, c.8669-19_8669-24del and c.6439-1016_6439-3376del, in unrelated DMD patients. These variants were identified using targeted long-read sequencing on patients' DNA. RNA sequencing/reverse transcription polymerase chain reaction on RNA extracted from muscle biopsies revealed the presence of a pseudoexon or retention of part of the intron in the transcript, resulting in the introduction of premature termination codons. This study enhances our understanding of pseudoexon activation mechanisms in DMD and underscores the diverse genetic abnormalities contributing to the disease's complexity.
Collapse
Affiliation(s)
- Lei Zhao
- Department of Neurology, Children's Hospital of Fudan University, Shanghai, PR China
| | - Chaoping Hu
- Department of Neurology, Children's Hospital of Fudan University, Shanghai, PR China
| | | | | | - Yi Wang
- Department of Neurology, Children's Hospital of Fudan University, Shanghai, PR China
| | - Xihua Li
- Department of Neurology, Children's Hospital of Fudan University, Shanghai, PR China.
| |
Collapse
|
3
|
Mangilet AF, Weber J, Schüler S, Adler M, Mjema EY, Heilmann P, Herold A, Renneberg M, Nagel L, Droste-Borel I, Streicher S, Schmutzer T, Rot G, Macek B, Schmidtke C, Laubinger S. The Arabidopsis U1 snRNP regulates mRNA 3'-end processing. NATURE PLANTS 2024; 10:1514-1531. [PMID: 39313562 PMCID: PMC11489095 DOI: 10.1038/s41477-024-01796-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 08/27/2024] [Indexed: 09/25/2024]
Abstract
The removal of introns by the spliceosome is a key gene regulatory mechanism in eukaryotes, with the U1 snRNP subunit playing a crucial role in the early stages of splicing. Studies in metazoans show that the U1 snRNP also conducts splicing-independent functions, but the lack of genetic tools and knowledge about U1 snRNP-associated proteins have limited the study of such splicing-independent functions in plants. Here we describe an RNA-centric approach that identified more than 200 proteins associated with the Arabidopsis U1 snRNP and revealed a tight link to mRNA cleavage and polyadenylation factors. Interestingly, we found that the U1 snRNP protects mRNAs against premature cleavage and polyadenylation within introns-a mechanism known as telescripting in metazoans-while also influencing alternative polyadenylation site selection in 3'-UTRs. Overall, our work provides a comprehensive view of U1 snRNP interactors and reveals novel functions in regulating mRNA 3'-end processing in Arabidopsis, laying the groundwork for understanding non-canonical functions of plant U1 snRNPs.
Collapse
Affiliation(s)
- Anchilie F Mangilet
- Institute of Biology and Environmental Sciences, University of Oldenburg, Oldenburg, Germany
- Max Planck Institute for Plant Breeding Research (MPIPZ), Cologne, Germany
| | - Joachim Weber
- Institute of Biology and Environmental Sciences, University of Oldenburg, Oldenburg, Germany
- Institute of Biology, Department of Genetics, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Sandra Schüler
- Institute of Biology and Environmental Sciences, University of Oldenburg, Oldenburg, Germany
- Institute of Biology, Department of Genetics, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Manon Adler
- Institute of Biology and Environmental Sciences, University of Oldenburg, Oldenburg, Germany
- Institute of Biology, Department of Genetics, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Eneza Yoeli Mjema
- Institute of Biology and Environmental Sciences, University of Oldenburg, Oldenburg, Germany
- Institute of Biology, Department of Genetics, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Paula Heilmann
- Institute of Biology, Department of Genetics, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Angie Herold
- Institute of Biology, Department of Genetics, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Monique Renneberg
- Institute of Biology, Department of Genetics, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Luise Nagel
- Institute of Biology, Department of Genetics, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | | | - Samuel Streicher
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Thomas Schmutzer
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Gregor Rot
- Institute of Molecular Life Sciences of the University of Zurich and Swiss Institute of Bioinformatics, Zurich, Switzerland
| | - Boris Macek
- Proteome Center, University of Tuebingen, Tuebingen, Germany
| | - Cornelius Schmidtke
- Institute of Biology, Department of Genetics, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Sascha Laubinger
- Institute of Biology and Environmental Sciences, University of Oldenburg, Oldenburg, Germany.
- Institute of Biology, Department of Genetics, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.
| |
Collapse
|
4
|
Van Poucke M, Ledeganck L, Guo LT, Shelton GD, Bhatti SFM, Cornelis I, Peelman L. Exonisation of an intronic L1 element in the dystrophin gene associated with X-linked muscular dystrophy in a Border Collie dog. Anim Genet 2024; 55:733-743. [PMID: 39152696 DOI: 10.1111/age.13470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 07/31/2024] [Indexed: 08/19/2024]
Abstract
X-linked recessive dystrophinopathies are the most common muscular dystrophies (MDs) in humans and dogs. To date, 20 breed-specific MD-associated variants are described in the canine dystrophin gene (DMD), including one associated with dystrophin-deficient MD in the Border Collie mixed breed. Here, we report the diagnosis and follow-up of mild dystrophin-deficient MD in a 5-month-old male Border Collie, associated with a novel DMD variant. Diagnosis was based on neurological examination and laboratory evaluations including creatine kinase activity, electromyography and muscle biopsies with immunofluorescent staining. Inspection of the Sashimi plots of the RNA-seq data from the affected muscle biopsy led to the discovery of a 162-bp L1 pseudoexon in DMD intron 63, introducing a frameshift and a premature stop codon (NM_001003343.1: c.9271_9272insN[162] p.(Ala3091fs*21)). Reduced DMD mRNA levels were detected for both the non-pseudoexon (50× less) and pseudoexon (3× less) containing transcripts in the affected muscle, compared with the level of the non-pseudoexon containing transcript in a control muscle, resulting in very low dystrophin protein levels and the upregulation of utrophin. Because the variant was only found in the affected dog, not in the healthy mother and grandmother, or in 108 unrelated Border Collies from the Belgian population (46 males and 62 females), it was considered a de novo variant. Although the prognosis for dystrophinopathy is generally regarded as poor, the dog stabilised at the age of 6 months and is still clinically stable at the age of 2 years.
Collapse
Affiliation(s)
- Mario Van Poucke
- Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Liesbet Ledeganck
- Department of Small Animals, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Ling T Guo
- Department of Pathology, School of Medicine, University of California San Diego, La Jolla, California, USA
| | - G Diane Shelton
- Department of Pathology, School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Sofie F M Bhatti
- Department of Small Animals, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Ine Cornelis
- Department of Small Animals, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Luc Peelman
- Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
5
|
Zhao L, Shi Y, Hu C, Zhou S, Li H, Zhang L, Qian C, Zhou Y, Wang Y, Li X. Comprehensive analysis of 2097 patients with dystrophinopathy based on a database from 2011 to 2021. Orphanet J Rare Dis 2024; 19:311. [PMID: 39182149 PMCID: PMC11344408 DOI: 10.1186/s13023-024-03217-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 05/13/2024] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND An increasing number of clinical trials for new therapeutic strategies are underway or being considered for dystrophinopathy. Having detailed data on the natural progression of this condition is crucial for assessing the effectiveness of new drugs. However, there's a lack of data regarding the long-term data on the natural course and how it's managed in China. In this study, we offer a comprehensive overview of clinical and molecular findings, as well as treatment outcomes in the Chinese population. METHODS Institutional data on all patients with dystrophinopathy from August 2011 to August 2021 were retrospectively reviewed. The data included geographic distribution, age at diagnosis, molecular findings, and treatment options, such as corticosteroids, cardiac interventions, and clinical outcomes. RESULTS In total, 2097 patients with dystrophinopathy, including 1703 cases of Duchenne muscular dystrophy (DMD), 311 cases of Becker muscular dystrophy (BMD), 46 cases of intermediate muscular dystrophy (IMD), and 37 cases categorized as "pending" (individuals with an undetermined phenotype), were registered in the Children's Hospital of Fudan University database for dystrophinopathy from August 2011 to August 2021. The spectrum of identified variants included exonic deletions (66.6%), exonic duplications (10.7%), nonsense variants (10.3%), splice-site variants (4.5%), small deletions (3.5%), small insertions/duplications (1.8%), and missense variants (0.9%). Four deep intronic variants and two inversion variants were identified. Regarding treatment, glucocorticoids were administered to 54.4% of DMD patients and 39.1% of IMD patients. The median age at loss of ambulation was 2.5 years later in DMD patients who received glucocorticoid treatment. Overall, one cardiac medicine at least was prescribed to 7.4% of DMD patients, 8.3% of IMD patients, and 2.6% of BMD patients. Additionally, ventilator support was required by four DMD patients. Eligibility for exon skipping therapy was found in 55.3% of DMD patients, with 12.9%, 10%, and 9.6% of these patients being eligible for skipping exons 51, 53, and 45, respectively. CONCLUSIONS This is one of the largest studies to have evaluated the natural history of dystrophinopathy in China, which is particularly conducive to the recruitment of eligible patients for clinical trials and the provision of real-world data to support drug development.
Collapse
Affiliation(s)
- Lei Zhao
- Department of Neurology, Children's Hospital of Fudan University, No.399, Wanyuan Road, Minhang District, Shanghai, 201102, China
| | - Yiyun Shi
- Department of Neurology, Children's Hospital of Fudan University, No.399, Wanyuan Road, Minhang District, Shanghai, 201102, China
| | - Chaoping Hu
- Department of Neurology, Children's Hospital of Fudan University, No.399, Wanyuan Road, Minhang District, Shanghai, 201102, China
| | - Shuizhen Zhou
- Department of Neurology, Children's Hospital of Fudan University, No.399, Wanyuan Road, Minhang District, Shanghai, 201102, China
| | - Hui Li
- Department of Rehabilitation, Children's Hospital of Fudan University, Shanghai, China
| | - Lifeng Zhang
- Pediatric Heart Center, Children's Hospital of Fudan University, Shanghai, China
| | - Chuang Qian
- Department of Orthopedics, Children's Hospital of Fudan University, Shanghai, China
| | - Yiyao Zhou
- Department of Clinical Nutrition, Children's Hospital of Fudan University, Shanghai, China
| | - Yi Wang
- Department of Neurology, Children's Hospital of Fudan University, No.399, Wanyuan Road, Minhang District, Shanghai, 201102, China.
| | - Xihua Li
- Department of Neurology, Children's Hospital of Fudan University, No.399, Wanyuan Road, Minhang District, Shanghai, 201102, China.
| |
Collapse
|
6
|
Ikelaar NA, Barnard AM, Eng SWM, Hosseini Vajargah S, Ha KCH, Kan HE, Vandenborne K, Niks EH, Walter GA, Spitali P. Large scale serum proteomics identifies proteins associated with performance decline and clinical milestones in Duchenne muscular dystrophy. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.08.05.24311516. [PMID: 39148831 PMCID: PMC11326316 DOI: 10.1101/2024.08.05.24311516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Serum biomarkers are promising minimally invasive outcome measures in clinical studies in Duchenne muscular dystrophy (DMD). However, biomarkers strongly associated with clinical progression and predicting performance decline are lacking. In this study we aimed to identify serum biomarkers associated with clinical performance and able to predict clinical milestones in DMD. Towards this aim we present a retrospective multi-center cohort study including serum samples and clinical data collected in research participants with DMD as part of a natural history study at the University of Florida (UF) and real-world observations at Leiden University Medical Center (LUMC) between 2009-2022. The 7K SomaScan® assay was used to analyse protein levels in in individual serum samples. Serum biomarkers predicted age at loss of ambulation (LoA), age at loss of overhead reach (OHR) and age at loss of hand to mouth function (HTM). Secondary outcomes were the association of biomarkers with age, corticosteroid (CS) usage, and clinical performance based on the North Star Ambulatory Assessment (NSAA), 10 meter run velocity (10mrv), 6 minute walk (6MWT) and Performance of the Upper Limb (PUL2.0). A total of 716 serum samples were collected in 79 participants at UF and 74 at LUMC (mean[SD] age; 10.9[3.2] vs 8.4[3.4]). 244 serum proteins showed an association with CS usage in both cohorts independent of CS type and regimen, including MMP3 and IGLL1. 318 probes (corresponding to 294 proteins) showed significant associations with NSAA, 10mrv, 6MWT and/or PUL2.0 across both cohorts. The expression of 38 probes corresponding to 36 proteins such as RGMA, EHMT2, ART3, ANTXR2 and DLK1 was associated with risk of both lower and upper limb clinical milestones in both the LUMC and UF cohort. In conclusion, multiple biomarkers were associated with CS use, motor function and upper lower and upper limb disease milestones in DMD. These biomarkers were validated across two independent cohorts, increasing their likelihood of translation for use within the broader DMD population.
Collapse
Affiliation(s)
- N A Ikelaar
- Department of Neurology, Leiden University Medical Center, Leiden, Zuid-Holland, the Netherlands
- Duchenne Center Netherlands
| | - A M Barnard
- Department of Physical Therapy, University of Florida, Gainesville, FL, USA
| | - S W M Eng
- BioSymetrics, Inc., Huntington, NY, USA
| | | | - K C H Ha
- BioSymetrics, Inc., Huntington, NY, USA
| | - H E Kan
- Duchenne Center Netherlands
- C.J. Gorter MRI Center, Department of Radiology, Leiden University Medical Center, Leiden, Zuid-Holland, the Netherlands
| | - K Vandenborne
- Department of Physical Therapy, University of Florida, Gainesville, FL, USA
| | - E H Niks
- Department of Neurology, Leiden University Medical Center, Leiden, Zuid-Holland, the Netherlands
- Duchenne Center Netherlands
| | - G A Walter
- Department of Physiology and Aging, University of Florida, Gainesville, FL, USA
| | - P Spitali
- Human Genetics Department, Leiden University Medical Center, Leiden, Zuid-Holland, the Netherlands
| |
Collapse
|
7
|
Pickart AM, Martin AS, Gross BN, Dellefave-Castillo LM, McCallen LM, Nagaraj CB, Rippert AL, Schultz CP, Ulm EA, Armstrong N. Genetic counseling for the dystrophinopathies-Practice resource of the National Society of Genetic Counselors. J Genet Couns 2024. [PMID: 38682751 DOI: 10.1002/jgc4.1892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 03/06/2024] [Accepted: 03/12/2024] [Indexed: 05/01/2024]
Abstract
The dystrophinopathies encompass the phenotypically variable forms of muscular dystrophy caused by pathogenic variants in the DMD gene. The dystrophinopathies include the most common inherited muscular dystrophy among 46,XY individuals, Duchenne muscular dystrophy, as well as Becker muscular dystrophy and other less common phenotypic variants. With increased access to and utilization of genetic testing in the diagnostic and carrier setting, genetic counselors and clinicians in diverse specialty areas may care for individuals with and carriers of dystrophinopathy. This practice resource was developed as a tool for genetic counselors and other health care professionals to support counseling regarding dystrophinopathies, including diagnosis, health risks and management, psychosocial needs, reproductive options, clinical trials, and treatment. Genetic testing efforts have enabled genotype/phenotype correlation in the dystrophinopathies, but have also revealed unexpected findings, further complicating genetic counseling for this group of conditions. Additionally, the therapeutic landscape for dystrophinopathies has dramatically changed with several FDA-approved therapeutics, an expansive research pathway, and numerous clinical trials. Genotype-phenotype correlations are especially complex and genetic counselors' unique skill sets are useful in exploring and explaining this to families. Given the recent advances in diagnostic testing and therapeutics related to dystrophinopathies, this practice resource is a timely update for genetic counselors and other healthcare professionals involved in the diagnosis and care of individuals with dystrophinopathies.
Collapse
Affiliation(s)
- Angela M Pickart
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Ann S Martin
- Parent Project Muscular Dystrophy, Washington, District of Columbia, USA
| | - Brianna N Gross
- Department of Neurology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Lisa M Dellefave-Castillo
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Leslie M McCallen
- Department of Pediatrics, University of Colorado School of Medicine, Children's Hospital Colorado, Aurora, Colorado, USA
| | - Chinmayee B Nagaraj
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Alyssa L Rippert
- Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | | | - Elizabeth A Ulm
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Niki Armstrong
- Parent Project Muscular Dystrophy, Washington, District of Columbia, USA
| |
Collapse
|
8
|
Zhong H, Sian V, Johari M, Katayama S, Oghabian A, Jonson PH, Hackman P, Savarese M, Udd B. Revealing myopathy spectrum: integrating transcriptional and clinical features of human skeletal muscles with varying health conditions. Commun Biol 2024; 7:438. [PMID: 38600180 PMCID: PMC11006663 DOI: 10.1038/s42003-024-06143-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 04/03/2024] [Indexed: 04/12/2024] Open
Abstract
Myopathy refers to a large group of heterogeneous, rare muscle diseases. Bulk RNA-sequencing has been utilized for the diagnosis and research of these diseases for many years. However, the existing valuable sequencing data often lack integration and clinical interpretation. In this study, we integrated bulk RNA-sequencing data from 1221 human skeletal muscles (292 with myopathies, 929 controls) from both databases and our local samples. By applying a method similar to single-cell analysis, we revealed a general spectrum of muscle diseases, ranging from healthy to mild disease, moderate muscle wasting, and severe muscle disease. This spectrum was further partly validated in three specific myopathies (97 muscles) through clinical features including trinucleotide repeat expansion, magnetic resonance imaging fat fraction, pathology, and clinical severity scores. This spectrum helped us identify 234 genuinely healthy muscles as unprecedented controls, providing a new perspective for deciphering the hallmark genes and pathways among different myopathies. The newly identified featured genes of general myopathy, inclusion body myositis, and titinopathy were highly expressed in our local muscles, as validated by quantitative polymerase chain reaction.
Collapse
Affiliation(s)
- Huahua Zhong
- Department of Neurology, Huashan Rare Disease Center, Huashan Hospital, Fudan University, Shanghai, China.
| | - Veronica Sian
- Department of Precision Medicine, "Luigi Vanvitelli" University of Campania, Via L. De Crecchio 7, Naples, Italy
| | - Mridul Johari
- Department of Medical and Clinical Genetics, Folkhälsan Research Center, Medicum, University of Helsinki, Helsinki, Finland
- Harry Perkins Institute of Medical Research, Centre for Medical Research, University of Western Australia, Nedlands, WA, Australia
| | - Shintaro Katayama
- Department of Medical and Clinical Genetics, Folkhälsan Research Center, Medicum, University of Helsinki, Helsinki, Finland
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Ali Oghabian
- Department of Medical and Clinical Genetics, Folkhälsan Research Center, Medicum, University of Helsinki, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Per Harald Jonson
- Department of Medical and Clinical Genetics, Folkhälsan Research Center, Medicum, University of Helsinki, Helsinki, Finland
| | - Peter Hackman
- Department of Medical and Clinical Genetics, Folkhälsan Research Center, Medicum, University of Helsinki, Helsinki, Finland
| | - Marco Savarese
- Department of Medical and Clinical Genetics, Folkhälsan Research Center, Medicum, University of Helsinki, Helsinki, Finland
| | - Bjarne Udd
- Department of Medical and Clinical Genetics, Folkhälsan Research Center, Medicum, University of Helsinki, Helsinki, Finland
- Tampere Neuromuscular Center, University Hospital, Tampere, Finland
| |
Collapse
|
9
|
Chen Z, Wang G, Wang W, Wang X, Huang Y, Jia J, Gao Q, Xu H, Xu Y, Ma Z, He L, Cheng J, Li C. PDE9A polymorphism and association analysis with growth performance and gastrointestinal weight of Hu sheep. Gene 2024; 900:148137. [PMID: 38184018 DOI: 10.1016/j.gene.2024.148137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/26/2023] [Accepted: 01/03/2024] [Indexed: 01/08/2024]
Abstract
Phosphodiesterase 9A (PDE9A) plays a crucial role in activating the cGMP-dependent signaling pathway and may have important effects on the growth and development of the gastrointestinal tract in Hu sheep. In this study, we analyzed the single nucleotide polymorphisms of PDE9A in 988 Hu sheep and their correlation with growth performance, feed efficiency, and gastrointestinal development. Additionally, we examined the expression level of different PDE9A genotypes in the gastrointestinal tract of Hu sheep by using fluorescence quantitative PCR. The results revealed a moderate level of polymorphism (0.25 < PIC < 0.50) at the g.286248617 T > C mutation site located in the first intron of PDE9A in Hu sheep, with three genotypes: CC, CT, and TT. The weights of the omasum, colon, and cecum were significantly greater in the CC genotype than in the TT genotype (P < 0.05), and the expression level of PDE9A in the tissues of the rumen, ileum, cecum, and colon was notably lower in the CC genotype individuals (P < 0.05). These findings suggest that the polymorphism of PDE9A affects the weight of the stomach, colon, and cecum in Hu sheep through expression regulation. Overall, the results of this study suggest that the g.286248617 T > C mutation site in the first intron of PDE9A can serve as a potential molecular marker for breeding practices related to the gastrointestinal weight of Hu sheep.
Collapse
Affiliation(s)
- Zhanyu Chen
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Guoxiu Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Weimin Wang
- The State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou Gansu 730020, China
| | - Xiaojuan Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Yongliang Huang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Jiale Jia
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Qihao Gao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Haoyu Xu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Yunfei Xu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Zongwu Ma
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Lijuan He
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Jiangbo Cheng
- The State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou Gansu 730020, China
| | - Chong Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China.
| |
Collapse
|
10
|
Gatto F, Benemei S, Piluso G, Bello L. The complex landscape of DMD mutations: moving towards personalized medicine. Front Genet 2024; 15:1360224. [PMID: 38596212 PMCID: PMC11002111 DOI: 10.3389/fgene.2024.1360224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/26/2024] [Indexed: 04/11/2024] Open
Abstract
Duchenne muscular dystrophy (DMD) is a severe genetic disorder characterized by progressive muscle degeneration, with respiratory and cardiac complications, caused by mutations in the DMD gene, encoding the protein dystrophin. Various DMD mutations result in different phenotypes and disease severity. Understanding genotype/phenotype correlations is essential to optimize clinical care, as mutation-specific therapies and innovative therapeutic approaches are becoming available. Disease modifier genes, trans-active variants influencing disease severity and phenotypic expressivity, may modulate the response to therapy, and become new therapeutic targets. Uncovering more disease modifier genes via extensive genomic mapping studies offers the potential to fine-tune prognostic assessments for individuals with DMD. This review provides insights into genotype/phenotype correlations and the influence of modifier genes in DMD.
Collapse
Affiliation(s)
| | | | - Giulio Piluso
- Medical Genetics and Cardiomyology, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Napoli, Italy
| | - Luca Bello
- Department of Neurosciences DNS, University of Padova, Padova, Italy
| |
Collapse
|
11
|
Chandrasekhar A, Mroczkowski HJ, Urraca N, Gross A, Bluske K, Thorpe E, Hagelstrom RT, Schonberg SA, Perry DL, Taft RJ, Kesari A. Genome sequencing detects a balanced pericentric inversion with breakpoints that impact the DMD and upstream region of POU3F4 genes. Am J Med Genet A 2024; 194:e63462. [PMID: 37929330 DOI: 10.1002/ajmg.a.63462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/11/2023] [Accepted: 10/20/2023] [Indexed: 11/07/2023]
Abstract
We describe a family with two maternal half-brothers both of whom presented with muscular dystrophy, autism spectrum disorder, developmental delay, and sensorineural hearing loss. The elder brother had onset of features at ~3 months of age, followed by clinical confirmation of muscular dystrophy at 3 years. Skeletal biopsy staining at 4.7 years showed an absence of dystrophin protein which prompted extensive molecular testing over 4 years that included gene panels, targeted single-gene assays, arrays, and karyotyping, all of which failed to identify a clinically significant variant in the DMD gene. At 10 years of age, clinical whole-genome sequencing (cWGS) was performed, which revealed a novel hemizygous ~50.7 Mb balanced pericentric inversion on chromosome X that disrupts the DMD gene in both siblings, consistent with the muscular dystrophy phenotype. This inversion also impacts the upstream regulatory region of POU3F4, structural rearrangements which are known to cause hearing loss. The unaffected mother is a heterozygous carrier for the pericentric inversion. This finding illustrates the ability of cWGS to detect a wide breadth of disease-causing genomic variations including large genomic rearrangements.
Collapse
Affiliation(s)
| | - Henry J Mroczkowski
- Department of Pediatrics, University of Tennessee Health Science Center and Le Bonheur Children's Hospital, Memphis, Tennessee, USA
| | - Nora Urraca
- Department of Pediatrics, University of Tennessee Health Science Center and Le Bonheur Children's Hospital, Memphis, Tennessee, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Xie Z, Sun C, Liu C, Lu Y, Chen B, Wu R, Liu Y, Liu R, Peng Q, Deng J, Meng L, Wang Z, Zhang W, Yuan Y. A new pseudoexon activation due to ultrarare branch point formation in Duchenne muscular dystrophy. Neuromuscul Disord 2024; 35:8-12. [PMID: 38194733 DOI: 10.1016/j.nmd.2023.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/14/2023] [Accepted: 12/13/2023] [Indexed: 01/11/2024]
Abstract
Deep-intronic variants that create or enhance a splice site are increasingly reported as a significant cause of monogenic diseases. However, deep-intronic variants that activate pseudoexons by affecting a branch point are extremely rare in monogenic diseases. Here, we describe a novel deep-intronic DMD variant that created a branch point in a Duchenne muscular dystrophy (DMD) patient. A 7.0-year-old boy was enrolled because he was suspected of DMD based on his clinical, muscle imaging, and pathological features. Routine genetic testing did not discover a pathogenic DMD variant. We then performed muscle-derived dystrophin mRNA analysis and detected an aberrant pseudoexon-containing transcript. Further genomic Sanger sequencing and bioinformatic analyses revealed a novel deep-intronic splicing variant in DMD (NM_004006.2:c.5325+1759G>T), which created a new branch point sequence and thus activated a new dystrophin pseudoexon (NM_004006.2:r.5325_5326ins5325+1779_5325+1855). Our study highlights the significant role of branch point alterations in the pathogenesis of monogenic diseases.
Collapse
Affiliation(s)
- Zhiying Xie
- Department of Neurology, Peking University First Hospital, Beijing 100034, China
| | - Chengyue Sun
- Department of Neurology, Peking University People's Hospital, Beijing 100044, China
| | - Chang Liu
- Department of Neurology, Peking University First Hospital, Beijing 100034, China
| | - Yanyu Lu
- Department of Neurology, Peking University First Hospital, Beijing 100034, China
| | - Bin Chen
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Rui Wu
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250000, Shandong
| | - Yanru Liu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Ran Liu
- Department of Neurology, Peking University First Hospital, Beijing 100034, China
| | - Qing Peng
- Department of Neurology, Peking University First Hospital, Beijing 100034, China
| | - Jianwen Deng
- Department of Neurology, Peking University First Hospital, Beijing 100034, China
| | - Lingchao Meng
- Department of Neurology, Peking University First Hospital, Beijing 100034, China
| | - Zhaoxia Wang
- Department of Neurology, Peking University First Hospital, Beijing 100034, China
| | - Wei Zhang
- Department of Neurology, Peking University First Hospital, Beijing 100034, China.
| | - Yun Yuan
- Department of Neurology, Peking University First Hospital, Beijing 100034, China.
| |
Collapse
|
13
|
Berntsson SG, Matsson H, Kristoffersson A, Niemelä V, van Duyvenvoorde HA, Richel-van Assenbergh C, van der Klift HM, Casar-Borota O, Frykholm C, Landtblom AM. Case report: a novel deep intronic splice-altering variant in DMD as a cause of Becker muscular dystrophy. Front Genet 2023; 14:1226766. [PMID: 37795243 PMCID: PMC10546389 DOI: 10.3389/fgene.2023.1226766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 09/04/2023] [Indexed: 10/06/2023] Open
Abstract
We present the case of a male patient who was ultimately diagnosed with Becker muscular dystrophy (BMD; MIM# 300376) after the onset of muscle weakness in his teens progressively led to significant walking difficulties in his twenties. A genetic diagnosis was pursued but initial investigation revealed no aberrations in the dystrophin gene (DMD), although immunohistochemistry and Western blot analysis suggested the diagnosis of dystrophinopathy. Eventually, after more than 10 years, an RNA analysis captured abnormal splicing where 154 nucleotides from intron 43 were inserted between exon 43 and 44 resulting in a frameshift and a premature stop codon. Normal splicing of the DMD gene was also observed. Additionally, a novel variant c.6291-13537A>G in DMD was confirmed in the genomic DNA of the patient. The predicted function of the variant aligns with the mRNA results. To conclude, we here demonstrate that mRNA analysis can guide the diagnosis of non-coding genetic variants in DMD.
Collapse
Affiliation(s)
| | - Hans Matsson
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
- Clinical Genetics, Rudbeck Laboratory, Uppsala University Hospital, Uppsala, Sweden
| | - Anna Kristoffersson
- Department of Medical Sciences, Neurology, Uppsala University, Uppsala, Sweden
| | - Valter Niemelä
- Department of Medical Sciences, Neurology, Uppsala University, Uppsala, Sweden
| | | | | | | | - Olivera Casar-Borota
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
- Department of Clinical Pathology, Uppsala University Hospital, Uppsala, Sweden
| | - Carina Frykholm
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
- Clinical Genetics, Rudbeck Laboratory, Uppsala University Hospital, Uppsala, Sweden
| | - Anne-Marie Landtblom
- Department of Medical Sciences, Neurology, Uppsala University, Uppsala, Sweden
- Department of Clinical Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health, Linköping University, Linköping, Sweden
| |
Collapse
|
14
|
Hildyard JCW, Piercy RJ. When Size Really Matters: The Eccentricities of Dystrophin Transcription and the Hazards of Quantifying mRNA from Very Long Genes. Biomedicines 2023; 11:2082. [PMID: 37509720 PMCID: PMC10377302 DOI: 10.3390/biomedicines11072082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/10/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
At 2.3 megabases in length, the dystrophin gene is enormous: transcription of a single mRNA requires approximately 16 h. Principally expressed in skeletal muscle, the dystrophin protein product protects the muscle sarcolemma against contraction-induced injury, and dystrophin deficiency results in the fatal muscle-wasting disease, Duchenne muscular dystrophy. This gene is thus of key clinical interest, and therapeutic strategies aimed at eliciting dystrophin restoration require quantitative analysis of its expression. Approaches for quantifying dystrophin at the protein level are well-established, however study at the mRNA level warrants closer scrutiny: measured expression values differ in a sequence-dependent fashion, with significant consequences for data interpretation. In this manuscript, we discuss these nuances of expression and present evidence to support a transcriptional model whereby the long transcription time is coupled to a short mature mRNA half-life, with dystrophin transcripts being predominantly nascent as a consequence. We explore the effects of such a model on cellular transcriptional dynamics and then discuss key implications for the study of dystrophin gene expression, focusing on both conventional (qPCR) and next-gen (RNAseq) approaches.
Collapse
Affiliation(s)
- John C. W. Hildyard
- Comparative Neuromuscular Disease Laboratory, Department of Clinical Science and Services, Royal Veterinary College, London NW1 0TU, UK;
| | | |
Collapse
|
15
|
Folland C, Ganesh V, Weisburd B, McLean C, Kornberg AJ, O'Donnell-Luria A, Rehm HL, Stevanovski I, Chintalaphani SR, Kennedy P, Deveson IW, Ravenscroft G. Transcriptome and Genome Analysis Uncovers a DMD Structural Variant: A Case Report. Neurol Genet 2023; 9:e200064. [PMID: 37090938 PMCID: PMC10117699 DOI: 10.1212/nxg.0000000000200064] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 01/27/2023] [Indexed: 03/16/2023]
Abstract
Objective Duchenne muscular dystrophy (DMD) is caused by pathogenic variants in the dystrophin gene (DMD). Hypermethylated CGG expansions within DIP2B 5' UTR are associated with an intellectual development disorder. Here, we demonstrate the diagnostic utility of genomic short-read sequencing (SRS) and transcriptome sequencing to identify a novel DMD structural variant (SV) and a DIP2B CGG expansion in a patient with DMD for whom conventional diagnostic testing failed to yield a genetic diagnosis. Methods We performed genomic SRS, skeletal muscle transcriptome sequencing, and targeted programmable long-read sequencing (LRS). Results The proband had a typical DMD clinical presentation, autism spectrum disorder (ASD), and dystrophinopathy on muscle biopsy. Transcriptome analysis identified 6 aberrantly expressed genes; DMD and DIP2B were the strongest underexpression and overexpression outliers, respectively. Genomic SRS identified a 216 kb paracentric inversion (NC_000023.11: g.33162217-33378800) overlapping 2 DMD promoters. ExpansionHunter indicated an expansion of 109 CGG repeats within the 5' UTR of DIP2B. Targeted genomic LRS confirmed the SV and genotyped the DIP2B repeat expansion as 270 CGG repeats. Discussion Here, transcriptome data heavily guided genomic analysis to resolve a complex DMD inversion and a DIP2B repeat expansion. Longitudinal follow-up will be important for clarifying the clinical significance of the DIP2B genotype.
Collapse
Affiliation(s)
- Chiara Folland
- Centre for Medical Research, University of Western Australia (C.F., G.R.), Harry Perkins Institute of Medical Research, Perth, Australia; Center for Mendelian Genomics (V.G., B.W., A.O.-L., H.L.R.), Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA; Department of Neurology (V.G.), Brigham and Women's Hospital; Division of Genetics and Genomics (V.G., A.O.-L.), Boston Children's Hospital, MA; Department of Anatomical Pathology (C.M., P.K.), Alfred Health; Department of Medicine (C.M., P.K.), Central Clinical School, Monash University, Melbourne; Murdoch Children's Research Institute (A.J.K.); Department of Neurology (A.J.K.), Royal Children's Hospital; Department of Paediatrics (A.J.K.), University of Melbourne, Victoria, Australia; Center for Genomic Medicine (A.O.-L., H.L.R.), Massachusetts General Hospital, Boston, MA; Genomics Pillar (I.S., S.R.C., I.W.D.), Garvan Institute of Medical Research, Sydney, Australia; Centre for Population Genomics (I.S., S.R.C., I.W.D.), Garvan Institute of Medical Research and Murdoch Children's Research Institute, Australia; School of Clinical Medicine (S.R.C., I.W.D.), Faculty of Medicine and Health, UNSW Sydney, Australia; and School of Biomedical Sciences (G.R.), University of Western Australia, Perth, Australia
| | - Vijay Ganesh
- Centre for Medical Research, University of Western Australia (C.F., G.R.), Harry Perkins Institute of Medical Research, Perth, Australia; Center for Mendelian Genomics (V.G., B.W., A.O.-L., H.L.R.), Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA; Department of Neurology (V.G.), Brigham and Women's Hospital; Division of Genetics and Genomics (V.G., A.O.-L.), Boston Children's Hospital, MA; Department of Anatomical Pathology (C.M., P.K.), Alfred Health; Department of Medicine (C.M., P.K.), Central Clinical School, Monash University, Melbourne; Murdoch Children's Research Institute (A.J.K.); Department of Neurology (A.J.K.), Royal Children's Hospital; Department of Paediatrics (A.J.K.), University of Melbourne, Victoria, Australia; Center for Genomic Medicine (A.O.-L., H.L.R.), Massachusetts General Hospital, Boston, MA; Genomics Pillar (I.S., S.R.C., I.W.D.), Garvan Institute of Medical Research, Sydney, Australia; Centre for Population Genomics (I.S., S.R.C., I.W.D.), Garvan Institute of Medical Research and Murdoch Children's Research Institute, Australia; School of Clinical Medicine (S.R.C., I.W.D.), Faculty of Medicine and Health, UNSW Sydney, Australia; and School of Biomedical Sciences (G.R.), University of Western Australia, Perth, Australia
| | - Ben Weisburd
- Centre for Medical Research, University of Western Australia (C.F., G.R.), Harry Perkins Institute of Medical Research, Perth, Australia; Center for Mendelian Genomics (V.G., B.W., A.O.-L., H.L.R.), Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA; Department of Neurology (V.G.), Brigham and Women's Hospital; Division of Genetics and Genomics (V.G., A.O.-L.), Boston Children's Hospital, MA; Department of Anatomical Pathology (C.M., P.K.), Alfred Health; Department of Medicine (C.M., P.K.), Central Clinical School, Monash University, Melbourne; Murdoch Children's Research Institute (A.J.K.); Department of Neurology (A.J.K.), Royal Children's Hospital; Department of Paediatrics (A.J.K.), University of Melbourne, Victoria, Australia; Center for Genomic Medicine (A.O.-L., H.L.R.), Massachusetts General Hospital, Boston, MA; Genomics Pillar (I.S., S.R.C., I.W.D.), Garvan Institute of Medical Research, Sydney, Australia; Centre for Population Genomics (I.S., S.R.C., I.W.D.), Garvan Institute of Medical Research and Murdoch Children's Research Institute, Australia; School of Clinical Medicine (S.R.C., I.W.D.), Faculty of Medicine and Health, UNSW Sydney, Australia; and School of Biomedical Sciences (G.R.), University of Western Australia, Perth, Australia
| | - Catriona McLean
- Centre for Medical Research, University of Western Australia (C.F., G.R.), Harry Perkins Institute of Medical Research, Perth, Australia; Center for Mendelian Genomics (V.G., B.W., A.O.-L., H.L.R.), Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA; Department of Neurology (V.G.), Brigham and Women's Hospital; Division of Genetics and Genomics (V.G., A.O.-L.), Boston Children's Hospital, MA; Department of Anatomical Pathology (C.M., P.K.), Alfred Health; Department of Medicine (C.M., P.K.), Central Clinical School, Monash University, Melbourne; Murdoch Children's Research Institute (A.J.K.); Department of Neurology (A.J.K.), Royal Children's Hospital; Department of Paediatrics (A.J.K.), University of Melbourne, Victoria, Australia; Center for Genomic Medicine (A.O.-L., H.L.R.), Massachusetts General Hospital, Boston, MA; Genomics Pillar (I.S., S.R.C., I.W.D.), Garvan Institute of Medical Research, Sydney, Australia; Centre for Population Genomics (I.S., S.R.C., I.W.D.), Garvan Institute of Medical Research and Murdoch Children's Research Institute, Australia; School of Clinical Medicine (S.R.C., I.W.D.), Faculty of Medicine and Health, UNSW Sydney, Australia; and School of Biomedical Sciences (G.R.), University of Western Australia, Perth, Australia
| | - Andrew J Kornberg
- Centre for Medical Research, University of Western Australia (C.F., G.R.), Harry Perkins Institute of Medical Research, Perth, Australia; Center for Mendelian Genomics (V.G., B.W., A.O.-L., H.L.R.), Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA; Department of Neurology (V.G.), Brigham and Women's Hospital; Division of Genetics and Genomics (V.G., A.O.-L.), Boston Children's Hospital, MA; Department of Anatomical Pathology (C.M., P.K.), Alfred Health; Department of Medicine (C.M., P.K.), Central Clinical School, Monash University, Melbourne; Murdoch Children's Research Institute (A.J.K.); Department of Neurology (A.J.K.), Royal Children's Hospital; Department of Paediatrics (A.J.K.), University of Melbourne, Victoria, Australia; Center for Genomic Medicine (A.O.-L., H.L.R.), Massachusetts General Hospital, Boston, MA; Genomics Pillar (I.S., S.R.C., I.W.D.), Garvan Institute of Medical Research, Sydney, Australia; Centre for Population Genomics (I.S., S.R.C., I.W.D.), Garvan Institute of Medical Research and Murdoch Children's Research Institute, Australia; School of Clinical Medicine (S.R.C., I.W.D.), Faculty of Medicine and Health, UNSW Sydney, Australia; and School of Biomedical Sciences (G.R.), University of Western Australia, Perth, Australia
| | - Anne O'Donnell-Luria
- Centre for Medical Research, University of Western Australia (C.F., G.R.), Harry Perkins Institute of Medical Research, Perth, Australia; Center for Mendelian Genomics (V.G., B.W., A.O.-L., H.L.R.), Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA; Department of Neurology (V.G.), Brigham and Women's Hospital; Division of Genetics and Genomics (V.G., A.O.-L.), Boston Children's Hospital, MA; Department of Anatomical Pathology (C.M., P.K.), Alfred Health; Department of Medicine (C.M., P.K.), Central Clinical School, Monash University, Melbourne; Murdoch Children's Research Institute (A.J.K.); Department of Neurology (A.J.K.), Royal Children's Hospital; Department of Paediatrics (A.J.K.), University of Melbourne, Victoria, Australia; Center for Genomic Medicine (A.O.-L., H.L.R.), Massachusetts General Hospital, Boston, MA; Genomics Pillar (I.S., S.R.C., I.W.D.), Garvan Institute of Medical Research, Sydney, Australia; Centre for Population Genomics (I.S., S.R.C., I.W.D.), Garvan Institute of Medical Research and Murdoch Children's Research Institute, Australia; School of Clinical Medicine (S.R.C., I.W.D.), Faculty of Medicine and Health, UNSW Sydney, Australia; and School of Biomedical Sciences (G.R.), University of Western Australia, Perth, Australia
| | - Heidi L Rehm
- Centre for Medical Research, University of Western Australia (C.F., G.R.), Harry Perkins Institute of Medical Research, Perth, Australia; Center for Mendelian Genomics (V.G., B.W., A.O.-L., H.L.R.), Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA; Department of Neurology (V.G.), Brigham and Women's Hospital; Division of Genetics and Genomics (V.G., A.O.-L.), Boston Children's Hospital, MA; Department of Anatomical Pathology (C.M., P.K.), Alfred Health; Department of Medicine (C.M., P.K.), Central Clinical School, Monash University, Melbourne; Murdoch Children's Research Institute (A.J.K.); Department of Neurology (A.J.K.), Royal Children's Hospital; Department of Paediatrics (A.J.K.), University of Melbourne, Victoria, Australia; Center for Genomic Medicine (A.O.-L., H.L.R.), Massachusetts General Hospital, Boston, MA; Genomics Pillar (I.S., S.R.C., I.W.D.), Garvan Institute of Medical Research, Sydney, Australia; Centre for Population Genomics (I.S., S.R.C., I.W.D.), Garvan Institute of Medical Research and Murdoch Children's Research Institute, Australia; School of Clinical Medicine (S.R.C., I.W.D.), Faculty of Medicine and Health, UNSW Sydney, Australia; and School of Biomedical Sciences (G.R.), University of Western Australia, Perth, Australia
| | - Igor Stevanovski
- Centre for Medical Research, University of Western Australia (C.F., G.R.), Harry Perkins Institute of Medical Research, Perth, Australia; Center for Mendelian Genomics (V.G., B.W., A.O.-L., H.L.R.), Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA; Department of Neurology (V.G.), Brigham and Women's Hospital; Division of Genetics and Genomics (V.G., A.O.-L.), Boston Children's Hospital, MA; Department of Anatomical Pathology (C.M., P.K.), Alfred Health; Department of Medicine (C.M., P.K.), Central Clinical School, Monash University, Melbourne; Murdoch Children's Research Institute (A.J.K.); Department of Neurology (A.J.K.), Royal Children's Hospital; Department of Paediatrics (A.J.K.), University of Melbourne, Victoria, Australia; Center for Genomic Medicine (A.O.-L., H.L.R.), Massachusetts General Hospital, Boston, MA; Genomics Pillar (I.S., S.R.C., I.W.D.), Garvan Institute of Medical Research, Sydney, Australia; Centre for Population Genomics (I.S., S.R.C., I.W.D.), Garvan Institute of Medical Research and Murdoch Children's Research Institute, Australia; School of Clinical Medicine (S.R.C., I.W.D.), Faculty of Medicine and Health, UNSW Sydney, Australia; and School of Biomedical Sciences (G.R.), University of Western Australia, Perth, Australia
| | - Sanjog R Chintalaphani
- Centre for Medical Research, University of Western Australia (C.F., G.R.), Harry Perkins Institute of Medical Research, Perth, Australia; Center for Mendelian Genomics (V.G., B.W., A.O.-L., H.L.R.), Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA; Department of Neurology (V.G.), Brigham and Women's Hospital; Division of Genetics and Genomics (V.G., A.O.-L.), Boston Children's Hospital, MA; Department of Anatomical Pathology (C.M., P.K.), Alfred Health; Department of Medicine (C.M., P.K.), Central Clinical School, Monash University, Melbourne; Murdoch Children's Research Institute (A.J.K.); Department of Neurology (A.J.K.), Royal Children's Hospital; Department of Paediatrics (A.J.K.), University of Melbourne, Victoria, Australia; Center for Genomic Medicine (A.O.-L., H.L.R.), Massachusetts General Hospital, Boston, MA; Genomics Pillar (I.S., S.R.C., I.W.D.), Garvan Institute of Medical Research, Sydney, Australia; Centre for Population Genomics (I.S., S.R.C., I.W.D.), Garvan Institute of Medical Research and Murdoch Children's Research Institute, Australia; School of Clinical Medicine (S.R.C., I.W.D.), Faculty of Medicine and Health, UNSW Sydney, Australia; and School of Biomedical Sciences (G.R.), University of Western Australia, Perth, Australia
| | - Paul Kennedy
- Centre for Medical Research, University of Western Australia (C.F., G.R.), Harry Perkins Institute of Medical Research, Perth, Australia; Center for Mendelian Genomics (V.G., B.W., A.O.-L., H.L.R.), Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA; Department of Neurology (V.G.), Brigham and Women's Hospital; Division of Genetics and Genomics (V.G., A.O.-L.), Boston Children's Hospital, MA; Department of Anatomical Pathology (C.M., P.K.), Alfred Health; Department of Medicine (C.M., P.K.), Central Clinical School, Monash University, Melbourne; Murdoch Children's Research Institute (A.J.K.); Department of Neurology (A.J.K.), Royal Children's Hospital; Department of Paediatrics (A.J.K.), University of Melbourne, Victoria, Australia; Center for Genomic Medicine (A.O.-L., H.L.R.), Massachusetts General Hospital, Boston, MA; Genomics Pillar (I.S., S.R.C., I.W.D.), Garvan Institute of Medical Research, Sydney, Australia; Centre for Population Genomics (I.S., S.R.C., I.W.D.), Garvan Institute of Medical Research and Murdoch Children's Research Institute, Australia; School of Clinical Medicine (S.R.C., I.W.D.), Faculty of Medicine and Health, UNSW Sydney, Australia; and School of Biomedical Sciences (G.R.), University of Western Australia, Perth, Australia
| | - Ira W Deveson
- Centre for Medical Research, University of Western Australia (C.F., G.R.), Harry Perkins Institute of Medical Research, Perth, Australia; Center for Mendelian Genomics (V.G., B.W., A.O.-L., H.L.R.), Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA; Department of Neurology (V.G.), Brigham and Women's Hospital; Division of Genetics and Genomics (V.G., A.O.-L.), Boston Children's Hospital, MA; Department of Anatomical Pathology (C.M., P.K.), Alfred Health; Department of Medicine (C.M., P.K.), Central Clinical School, Monash University, Melbourne; Murdoch Children's Research Institute (A.J.K.); Department of Neurology (A.J.K.), Royal Children's Hospital; Department of Paediatrics (A.J.K.), University of Melbourne, Victoria, Australia; Center for Genomic Medicine (A.O.-L., H.L.R.), Massachusetts General Hospital, Boston, MA; Genomics Pillar (I.S., S.R.C., I.W.D.), Garvan Institute of Medical Research, Sydney, Australia; Centre for Population Genomics (I.S., S.R.C., I.W.D.), Garvan Institute of Medical Research and Murdoch Children's Research Institute, Australia; School of Clinical Medicine (S.R.C., I.W.D.), Faculty of Medicine and Health, UNSW Sydney, Australia; and School of Biomedical Sciences (G.R.), University of Western Australia, Perth, Australia
| | - Gianina Ravenscroft
- Centre for Medical Research, University of Western Australia (C.F., G.R.), Harry Perkins Institute of Medical Research, Perth, Australia; Center for Mendelian Genomics (V.G., B.W., A.O.-L., H.L.R.), Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA; Department of Neurology (V.G.), Brigham and Women's Hospital; Division of Genetics and Genomics (V.G., A.O.-L.), Boston Children's Hospital, MA; Department of Anatomical Pathology (C.M., P.K.), Alfred Health; Department of Medicine (C.M., P.K.), Central Clinical School, Monash University, Melbourne; Murdoch Children's Research Institute (A.J.K.); Department of Neurology (A.J.K.), Royal Children's Hospital; Department of Paediatrics (A.J.K.), University of Melbourne, Victoria, Australia; Center for Genomic Medicine (A.O.-L., H.L.R.), Massachusetts General Hospital, Boston, MA; Genomics Pillar (I.S., S.R.C., I.W.D.), Garvan Institute of Medical Research, Sydney, Australia; Centre for Population Genomics (I.S., S.R.C., I.W.D.), Garvan Institute of Medical Research and Murdoch Children's Research Institute, Australia; School of Clinical Medicine (S.R.C., I.W.D.), Faculty of Medicine and Health, UNSW Sydney, Australia; and School of Biomedical Sciences (G.R.), University of Western Australia, Perth, Australia
| |
Collapse
|
16
|
Clinical, muscle imaging, and genetic characteristics of dystrophinopathies with deep-intronic DMD variants. J Neurol 2023; 270:925-937. [PMID: 36319768 DOI: 10.1007/s00415-022-11432-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/15/2022] [Accepted: 10/17/2022] [Indexed: 11/07/2022]
Abstract
BACKGROUND Phenotypic heterogeneity within or between families with a same deep-intronic splice-altering variant in the DMD gene has never been systematically analyzed. This study aimed to determine the phenotypic and genetic characteristics of patients with deep-intronic DMD variants. METHODS Of 1338 male patients with a suspected dystrophinopathy, 38 were confirmed to have atypical pathogenic DMD variants via our comprehensive genetic testing approach. Of the 38 patients, 30 patients from 22 unrelated families with deep-intronic DMD variants underwent a detailed clinical and imaging assessment. RESULTS Nineteen different deep-intronic DMD variants were identified in the 30 patients, including 15 with Duchenne muscular dystrophy (DMD), 14 with Becker muscular dystrophy (BMD), and one with X-linked dilated cardiomyopathy. Of the 19 variants, 15 were single-nucleotide variants, 2 were structural variants (SVs), and 2 were pure-intronic large-scale SVs causing aberrant inclusion of other protein-coding genes sequences into the mature DMD transcripts. The trefoil with single fruit sign was observed in 18 patients and the concentric fatty infiltration pattern was observed in 2 patients. Remarkable phenotypic heterogeneity was observed not only in skeletal but also cardiac muscle involvement in 2 families harboring a same deep-intronic variant. Different skeletal muscle involvement between families with a same variant was observed in 4 families. High inter-individual phenotypic heterogeneity was observed within two BMD families and one DMD family. CONCLUSIONS Our study first highlights the variable phenotypic expressivity of deep-intronic DMD variants and demonstrates a new class of deep-intronic DMD variants, i.e., pure-intronic SVs involving other protein-coding genes.
Collapse
|
17
|
RNA-seq analysis, targeted long-read sequencing and in silico prediction to unravel pathogenic intronic events and complicated splicing abnormalities in dystrophinopathy. Hum Genet 2023; 142:59-71. [PMID: 36048237 DOI: 10.1007/s00439-022-02485-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 08/24/2022] [Indexed: 01/18/2023]
Abstract
Dystrophinopathy is caused by alterations in DMD. Approximately 1% of patients remain genetically undiagnosed, because intronic variations are not detected by standard methods. Here, we combined laboratory and in silico analyses to identify disease-causing genomic variants in genetically undiagnosed patients and determine the regulatory mechanisms underlying abnormal DMD transcript generation. DMD transcripts from 20 genetically undiagnosed dystrophinopathy patients in whom no exon variants were identified, despite dystrophin deficiency on muscle biopsy, were analyzed by transcriptome sequencing. Genome sequencing captured intronic variants and their effects were interpreted using in silico tools. Targeted long-read sequencing was applied in cases with suspected structural genomic abnormalities. Abnormal DMD transcripts were detected in 19 of 20 cases; Exonization of intronic sequences in 15 cases, exon skipping in one case, aberrantly spliced and polyadenylated transcripts in two cases and transcription termination in one case. Intronic single nucleotide variants, chromosomal rearrangements and nucleotide repeat expansion were identified in DMD gene as pathogenic causes of transcript alteration. Our combined analysis approach successfully identified pathogenic events. Detection of diseasing-causing mechanisms in DMD transcripts could inform the therapeutic options for patients with dystrophinopathy.
Collapse
|
18
|
Soderstrom CI, Larsen J, Owen C, Gifondorwa D, Beidler D, Yong FH, Conrad P, Neubert H, Moore SA, Hassanein M. Development and Validation of a Western Blot Method to Quantify Mini-Dystrophin in Human Skeletal Muscle Biopsies. AAPS J 2022; 25:12. [PMID: 36539515 PMCID: PMC10034579 DOI: 10.1208/s12248-022-00776-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a degenerative muscular disease affecting roughly one in 5000 males at birth. The disease is often caused by inherited X-linked recessive pathogenic variants in the dystrophin gene, but may also arise from de novo mutations. Disease-causing variants include nonsense, out of frame deletions or duplications that result in loss of dystrophin protein expression. There is currently no cure for DMD and the few treatment options available aim at slowing muscle degradation. New advances in gene therapy and understanding of dystrophin (DYS) expression in other muscular dystrophies have opened new opportunities for treatment. Therefore, reliable methods are needed to monitor dystrophin expression and assess the efficacy of new therapies for muscular dystrophies such as DMD and Becker muscular dystrophy (BMD). Here, we describe the validation of a novel Western blot (WB) method for the quantitation of mini-dystrophin protein in human skeletal muscle tissues that is easy to adopt in most laboratory settings. This WB method was assessed through precision, accuracy, selectivity, dilution linearity, stability, and repeatability. Based on mini-DYS standard performance, the assay has a dynamic range of 0.5-15 ng protein (per 5 µg total protein per lane), precision of 3.3 to 25.5%, and accuracy of - 7.5 to 3.3%. Our stability assessment showed that the protein is stable after 4 F/T cycles, up to 2 h at RT and after 7 months at - 70°C. Furthermore, our WB method was compared to the results from our recently published LC-MS method. Workflow for our quantitative WB method to determine mini-dystrophin levels in muscle tissues (created in Biorender.com). Step 1 involves protein extraction from skeletal muscle tissue lysates from control, DMD, or BMD biospecimen. Step 2 measures total protein concentrations. Step 3 involves running gel electrophoresis with wild-type dystrophin (wt-DYS) from muscle tissue extracts alongside mini-dystrophin STD curve and mini-DYS and protein normalization with housekeeping GAPDH.
Collapse
Affiliation(s)
| | - Jennifer Larsen
- Early Clinical Development, Precision Medicine, Cambridge, MA, USA
| | - Carolina Owen
- Early Clinical Development, Precision Medicine, Cambridge, MA, USA
| | - David Gifondorwa
- Clinical Assay Group, Global Product Development (GPD), Pfizer Inc, Groton, Connecticut, USA
| | - David Beidler
- Early Clinical Development, Precision Medicine, Pfizer Inc., 1 Portland, Cambridge, Massachusetts, 02139, USA
| | - Florence H Yong
- Biostatistics, Early Clinical Development, Worldwide Research & Development, Pfizer Inc., Cambridge, MA, USA
| | - Patricia Conrad
- Early Clinical Development, Precision Medicine, Cambridge, MA, USA
| | - Hendrik Neubert
- Biomedicine Design, Worldwide Research & Development, Pfizer Inc., Andover, Massachusetts, USA
| | - Steven A Moore
- Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, Department of Pathology, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, Iowa, 52242, USA
| | - Mohamed Hassanein
- Early Clinical Development, Precision Medicine, Pfizer Inc., 1 Portland, Cambridge, Massachusetts, 02139, USA.
| |
Collapse
|
19
|
Bruels CC, Littel HR, Daugherty AL, Stafki S, Estrella EA, McGaughy ES, Truong D, Badalamenti JP, Pais L, Ganesh VS, O'Donnell‐Luria A, Stalker HJ, Wang Y, Collins C, Behlmann A, Lemmers RJLF, van der Maarel SM, Laine R, Ghosh PS, Darras BT, Zingariello CD, Pacak CA, Kunkel LM, Kang PB. Diagnostic capabilities of nanopore long-read sequencing in muscular dystrophy. Ann Clin Transl Neurol 2022; 9:1302-1309. [PMID: 35734998 PMCID: PMC9380148 DOI: 10.1002/acn3.51612] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 11/05/2022] Open
Abstract
Many individuals with muscular dystrophies remain genetically undiagnosed despite clinical diagnostic testing, including exome sequencing. Some may harbor previously undetected structural variants (SVs) or cryptic splice sites. We enrolled 10 unrelated families: nine had muscular dystrophy but lacked complete genetic diagnoses and one had an asymptomatic DMD duplication. Nanopore genomic long-read sequencing identified previously undetected pathogenic variants in four individuals: an SV in DMD, an SV in LAMA2, and two single nucleotide variants in DMD that alter splicing. The DMD duplication in the asymptomatic individual was in tandem. Nanopore sequencing may help streamline genetic diagnostic approaches for muscular dystrophy.
Collapse
Affiliation(s)
- Christine C. Bruels
- Paul and Sheila Wellstone Muscular Dystrophy Center and Department of NeurologyUniversity of Minnesota Medical SchoolMinneapolisMinnesota55455
| | - Hannah R. Littel
- Paul and Sheila Wellstone Muscular Dystrophy Center and Department of NeurologyUniversity of Minnesota Medical SchoolMinneapolisMinnesota55455
| | - Audrey L. Daugherty
- Paul and Sheila Wellstone Muscular Dystrophy Center and Department of NeurologyUniversity of Minnesota Medical SchoolMinneapolisMinnesota55455
| | - Seth Stafki
- Paul and Sheila Wellstone Muscular Dystrophy Center and Department of NeurologyUniversity of Minnesota Medical SchoolMinneapolisMinnesota55455
| | - Elicia A. Estrella
- Department of NeurologyBoston Children's HospitalBostonMassachusetts
- Division of Genetics and GenomicsBoston Children's HospitalBostonMassachusetts
| | - Emily S. McGaughy
- Division of Pediatric Neurology, Department of PediatricsUniversity of Florida College of MedicineGainesvilleFlorida32610
| | - Don Truong
- Paul and Sheila Wellstone Muscular Dystrophy Center and Department of NeurologyUniversity of Minnesota Medical SchoolMinneapolisMinnesota55455
| | | | - Lynn Pais
- Division of Genetics and GenomicsBoston Children's HospitalBostonMassachusetts
- Program in Medical and Population Genetics, Center for Mendelian GenomicsBroad Institute of MIT and HarvardCambridgeMassachusetts
- Analytic and Translational Genetics Unit and Center for Genomic MedicineMassachusetts General HospitalBostonMassachusetts
| | - Vijay S. Ganesh
- Division of Genetics and GenomicsBoston Children's HospitalBostonMassachusetts
- Program in Medical and Population Genetics, Center for Mendelian GenomicsBroad Institute of MIT and HarvardCambridgeMassachusetts
- Analytic and Translational Genetics Unit and Center for Genomic MedicineMassachusetts General HospitalBostonMassachusetts
- Department of NeurologyBrigham and Women's HospitalBostonMassachusetts
| | - Anne O'Donnell‐Luria
- Division of Genetics and GenomicsBoston Children's HospitalBostonMassachusetts
- Program in Medical and Population Genetics, Center for Mendelian GenomicsBroad Institute of MIT and HarvardCambridgeMassachusetts
- Analytic and Translational Genetics Unit and Center for Genomic MedicineMassachusetts General HospitalBostonMassachusetts
| | - Heather J. Stalker
- Division of Genetics, Department of PediatricsUniversity of Florida College of MedicineGainesvilleFlorida32610
| | - Yang Wang
- PerkinElmer GenomicsPittsburghPennsylvania
| | | | | | | | | | - Regina Laine
- Department of NeurologyBoston Children's HospitalBostonMassachusetts
| | - Partha S. Ghosh
- Department of NeurologyBoston Children's HospitalBostonMassachusetts
| | - Basil T. Darras
- Department of NeurologyBoston Children's HospitalBostonMassachusetts
| | - Carla D. Zingariello
- Division of Pediatric Neurology, Department of PediatricsUniversity of Florida College of MedicineGainesvilleFlorida32610
| | - Christina A. Pacak
- Paul and Sheila Wellstone Muscular Dystrophy Center and Department of NeurologyUniversity of Minnesota Medical SchoolMinneapolisMinnesota55455
| | - Louis M. Kunkel
- Division of Genetics and GenomicsBoston Children's HospitalBostonMassachusetts
| | - Peter B. Kang
- Paul and Sheila Wellstone Muscular Dystrophy Center and Department of NeurologyUniversity of Minnesota Medical SchoolMinneapolisMinnesota55455
- Institute for Translational NeuroscienceUniversity of Minnesota Medical SchoolMinneapolisMinnesota55455
| |
Collapse
|