1
|
Nathan S, Wang Y, D'ambrosio M, Paul R, Lyu H, Delic D, Bretschneider T, Falana K, Li L, Vijayaraj P. Comparative transcriptomic analysis validates iPSC derived in-vitro progressive fibrosis model as a screening tool for drug discovery and development in systemic sclerosis. Sci Rep 2024; 14:24428. [PMID: 39424619 PMCID: PMC11489818 DOI: 10.1038/s41598-024-74610-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 09/27/2024] [Indexed: 10/21/2024] Open
Abstract
Systemic sclerosis (SSc) is an autoimmune disease characterized by vasculopathy, immune dysregulation, and systemic fibrosis. Research on SSc has been hindered largely by lack of relevant models to study the progressive nature of the disease and to recapitulate the cell plasticity that is observed in this disease context. Generation of models for fibrotic disease using pluripotent stem cells is important for recapitulating the heterogeneity of the fibrotic tissue and are a potential platform for screening anti-fibrotic drugs. We previously reported a novel in-vitro model for fibrosis using induced pluripotent stem cell-derived mesenchymal cells (iSCAR). Here we report the generation of a "scar-like phenotype" when iPSC derived mesenchymal cells are cultured on hydrogel that mimicks a wound healing/scarring response (iSCAR). First, we performed RNA sequencing (RNA-seq) based transcriptome profiling of iSCAR culture at 48 h and 13 days to characterize early and latestage scarring phenotypes. The next generation RNA-seq of these iSCAR culture at different timepoints detected expression 92% of early "scar associated" genes and 85% late "scar associated" genes, respectively. Comparative transcriptomic analysis of a gene level SSc compendium matrix to the iSCAR wound associated model revealed genes common in both data sets. Early scar formation genes showed biological processes of hypoxia (27.5%), vascular development (13.7%) and glycolysis (27.5), while late scar formation showed genes associated with senescence (22.6%). Next we show the effects of two different antifibrotic compounds to validate the utility of the model as a screening tool to study early and late-stagelate-stage fibrosis. An autotaxin inhibitor was used to validate the iSCAR late stage fibrotic model (iSCAR-T) and an antifibrotic tool screening compound of unknown mechanism (EX00015097) was used to study and validate both early (iSCAR-P) and late-stage (iSCAR-T) fibrosis in the iSCAR model.
Collapse
Affiliation(s)
- Shyam Nathan
- Department of Immunology and Respiratory Disease Research, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT, USA
| | - Yifei Wang
- Department of Immunology and Respiratory Disease Research, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT, USA
| | - Matthew D'ambrosio
- Department of Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT, USA
| | - Reeba Paul
- Department of Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT, USA
| | - Huimin Lyu
- Department of Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT, USA
| | - Denis Delic
- Translational Medicine and Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Tom Bretschneider
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Kimberly Falana
- Department of Immunology and Respiratory Disease Research, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT, USA
| | - Li Li
- Department of Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT, USA.
| | - Preethi Vijayaraj
- Department of Immunology and Respiratory Disease Research, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT, USA.
| |
Collapse
|
2
|
Baxter RC. Signaling Pathways of the Insulin-like Growth Factor Binding Proteins. Endocr Rev 2023; 44:753-778. [PMID: 36974712 PMCID: PMC10502586 DOI: 10.1210/endrev/bnad008] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 01/25/2023] [Accepted: 03/15/2023] [Indexed: 03/29/2023]
Abstract
The 6 high-affinity insulin-like growth factor binding proteins (IGFBPs) are multifunctional proteins that modulate cell signaling through multiple pathways. Their canonical function at the cellular level is to impede access of insulin-like growth factor (IGF)-1 and IGF-2 to their principal receptor IGF1R, but IGFBPs can also inhibit, or sometimes enhance, IGF1R signaling either through their own post-translational modifications, such as phosphorylation or limited proteolysis, or by their interactions with other regulatory proteins. Beyond the regulation of IGF1R activity, IGFBPs have been shown to modulate cell survival, migration, metabolism, and other functions through mechanisms that do not appear to involve the IGF-IGF1R system. This is achieved by interacting directly or functionally with integrins, transforming growth factor β family receptors, and other cell-surface proteins as well as intracellular ligands that are intermediates in a wide range of pathways. Within the nucleus, IGFBPs can regulate the diverse range of functions of class II nuclear hormone receptors and have roles in both cell senescence and DNA damage repair by the nonhomologous end-joining pathway, thus potentially modifying the efficacy of certain cancer therapeutics. They also modulate some immune functions and may have a role in autoimmune conditions such as rheumatoid arthritis. IGFBPs have been proposed as attractive therapeutic targets, but their ubiquity in the circulation and at the cellular level raises many challenges. By understanding the diversity of regulatory pathways with which IGFBPs interact, there may still be therapeutic opportunities based on modulation of IGFBP-dependent signaling.
Collapse
Affiliation(s)
- Robert C Baxter
- Kolling Institute of Medical Research, University of Sydney, Royal North Shore Hospital,St Leonards, NSW 2065, Australia
| |
Collapse
|
3
|
Yang Y, Xia L, Yang W, Wang Z, Meng W, Zhang M, Ma Q, Gou J, Wang J, Shu Y, Wu X. Transcriptome profiling of intact bowel wall reveals that PDE1A and SEMA3D are possible markers with roles in enteric smooth muscle apoptosis, proliferative disorders, and dysautonomia in Crohn's disease. Front Genet 2023; 14:1194882. [PMID: 37727374 PMCID: PMC10505932 DOI: 10.3389/fgene.2023.1194882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 08/16/2023] [Indexed: 09/21/2023] Open
Abstract
Background: Inflammatory bowel disease (IBD) is a complex and multifactorial inflammatory condition, comprising Crohn's disease (CD) and ulcerative colitis (UC). While numerous studies have explored the immune response in IBD through transcriptional profiling of the enteric mucosa, the subtle distinctions in the pathogenesis of Crohn's disease and ulcerative colitis remain insufficiently understood. Methods: The intact bowel wall specimens from IBD surgical patients were divided based on their inflammatory status into inflamed Crohn's disease (iCD), inflamed ulcerative colitis (iUC) and non-inflamed (niBD) groups for RNA sequencing. Differential mRNA GO (Gene Ontology), and KEGG (Kyoto Encyclopedia of Genes and Genomes), and GSEA (Gene Set Enrichment Analysis) bioinformatic analyses were performed with a focus on the enteric autonomic nervous system (ANS) and smooth muscle cell (SMC). The transcriptome results were validated by quantitative polymerase chain reaction (qPCR) and immunohistochemistry (IHC). Results: A total of 2099 differentially expressed genes were identified from the comparison between iCD and iUC. Regulation of SMC apoptosis and proliferation were significantly enriched in iCD, but not in iUC. The involved gene PDE1A in iCD was 4-fold and 1.5-fold upregulated at qPCR and IHC compared to that in iUC. Moreover, only iCD was significantly associated with the gene sets of ANS abnormality. The involved gene SEMA3D in iCD was upregulated 8- and 5-fold at qPCR and IHC levels compared to iUC. Conclusion: These findings suggest that PDE1A and SEMA3D may serve as potential markers implicated in enteric smooth muscle apoptosis, proliferative disorders, and dysautonomia specifically in Crohn's disease.
Collapse
Affiliation(s)
- Yun Yang
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
- Colorectal Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Department of General Surgery, West China Chengdu Shangjin Nanfu Hospital, Sichuan University, Chengdu, China
| | - Lin Xia
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
- Colorectal Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Wenming Yang
- Division of Gastrointestinal Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Ziqiang Wang
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
- Colorectal Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Wenjian Meng
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
- Colorectal Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Mingming Zhang
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
- Colorectal Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Department of General Surgery, West China Chengdu Shangjin Nanfu Hospital, Sichuan University, Chengdu, China
| | - Qin Ma
- Department of General Surgery, West China Chengdu Shangjin Nanfu Hospital, Sichuan University, Chengdu, China
- Division of Gastrointestinal Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Junhe Gou
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Junjian Wang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Ye Shu
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
- Colorectal Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoting Wu
- Division of Gastrointestinal Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
- Colorectal and Pelvic Floor Center, West China Tianfu Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Szczepanski HE, Flannigan KL, Mainoli B, Alston L, Baruta GM, Lee JW, Venu VKP, Shearer J, Dufour A, Hirota SA. NR4A1 modulates intestinal smooth muscle cell phenotype and dampens inflammation-associated intestinal remodeling. FASEB J 2022; 36:e22609. [PMID: 36250380 DOI: 10.1096/fj.202101817rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 09/16/2022] [Accepted: 09/30/2022] [Indexed: 11/11/2022]
Abstract
Stricture formation is a common complication of Crohn's disease (CD), driven by enhanced deposition of extracellular matrix (ECM) and expansion of the intestinal smooth muscle layers. Nuclear receptor subfamily 4 group A member 1 (NR4A1) is an orphan nuclear receptor that exhibits anti-proliferative effects in smooth muscle cells (SMCs). We hypothesized that NR4A1 regulates intestinal SMC proliferation and muscle thickening in the context of inflammation. Intestinal SMCs isolated from Nr4a1+/+ and Nr4a1-/- littermates were subjected to shotgun proteomic analysis, proliferation, and bioenergetic assays. Proliferation was assessed in the presence and absence of NR4A1 agonists, cytosporone-B (Csn-B) and 6-mercaptopurine (6-MP). In vivo, we compared colonic smooth muscle thickening in Nr4a1+/+ and Nr4a1-/- mice using the chronic dextran sulfate sodium (DSS) model of colitis. Second, SAMP1/YitFc mice (a model of spontaneous ileitis) were treated with Csn-B and small intestinal smooth muscle thickening was assessed. SMCs isolated from Nr4a1-/- mice exhibited increased abundance of proteins related to cell proliferation, metabolism, and ECM production, whereas Nr4a1+/+ SMCs highly expressed proteins related to the regulation of the actin cytoskeleton and contractile processes. SMCs isolated from Nr4a1-/- mice exhibited increased proliferation and alterations in cellular metabolism, whereas activation of NR4A1 attenuated proliferation. In vivo, Nr4a1-/- mice exhibited increased colonic smooth muscle thickness following repeated cycles of DSS. Activating NR4A1 with Csn-B, in the context of established inflammation, reduced ileal smooth muscle thickening in SAMP1/YitFc mice. Targeting NR4A1 may provide a novel approach to regulate intestinal SMC phenotype, limiting excessive proliferation that contributes to stricture development in CD.
Collapse
Affiliation(s)
- Holly E Szczepanski
- Department of Physiology & Pharmacology, University of Calgary, Calgary, Alberta, Canada.,Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Kyle L Flannigan
- Department of Physiology & Pharmacology, University of Calgary, Calgary, Alberta, Canada.,Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Barbara Mainoli
- Department of Physiology & Pharmacology, University of Calgary, Calgary, Alberta, Canada.,Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada.,Department of Biochemistry & Molecular Biology, University of Calgary, Calgary, Alberta, Canada
| | - Laurie Alston
- Department of Physiology & Pharmacology, University of Calgary, Calgary, Alberta, Canada.,Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Grace M Baruta
- Department of Physiology & Pharmacology, University of Calgary, Calgary, Alberta, Canada.,Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Joshua W Lee
- Department of Physiology & Pharmacology, University of Calgary, Calgary, Alberta, Canada.,Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Vivek Krishna Pulakazhi Venu
- Department of Physiology & Pharmacology, University of Calgary, Calgary, Alberta, Canada.,Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Jane Shearer
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada.,Department of Biochemistry & Molecular Biology, University of Calgary, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Antoine Dufour
- Department of Physiology & Pharmacology, University of Calgary, Calgary, Alberta, Canada.,Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada.,Department of Biochemistry & Molecular Biology, University of Calgary, Calgary, Alberta, Canada.,McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada
| | - Simon A Hirota
- Department of Physiology & Pharmacology, University of Calgary, Calgary, Alberta, Canada.,Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada.,Department of Immunology, Microbiology & Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
5
|
Pinho RM, Garas LC, Huang BC, Weimer BC, Maga EA. Malnourishment affects gene expression along the length of the small intestine. Front Nutr 2022; 9:894640. [PMID: 36118759 PMCID: PMC9478944 DOI: 10.3389/fnut.2022.894640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
Malnourishment is a risk factor for childhood mortality, jeopardizing the health of children by aggravating pneumonia/acute respiratory infections and diarrheal diseases. Malnourishment causes morphophysiological changes resulting in stunting and wasting that have long-lasting consequences such as cognitive deficit and metabolic dysfunction. Using a pig model of malnutrition, the interplay between the phenotypic data displayed by the malnourished animals, the gene expression pattern along the intestinal tract, microbiota composition of the intestinal contents, and hepatic metabolite concentrations from the same animals were correlated using a multi-omics approach. Samples from the duodenum, jejunum, and ileum of malnourished (protein and calorie-restricted diet) and full-fed (no dietary restrictions) piglets were subjected to RNA-seq. Gene co-expression analysis and phenotypic correlations were made with WGCNA, while the integration of transcriptome with microbiota composition and the hepatic metabolite profile was done using mixOmics. Malnourishment caused changes in tissue gene expression that influenced energetic balance, cell proliferation, nutrient absorption, and response to stress. Repression of antioxidant genes, including glutathione peroxidase, in coordination with induction of metal ion transporters corresponded to the hepatic metabolite changes. These data indicate oxidative stress in the intestine of malnourished animals. Furthermore, several of the phenotypes displayed by these animals could be explained by changes in gene expression.
Collapse
Affiliation(s)
- Raquel M. Pinho
- Department of Animal Science, University of California, Davis, Davis, CA, United States
- *Correspondence: Raquel M. Pinho
| | - Lydia C. Garas
- Department of Animal Science, University of California, Davis, Davis, CA, United States
| | - B. Carol Huang
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Bart C. Weimer
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Elizabeth A. Maga
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| |
Collapse
|
6
|
Zhang H, Mo X, Wang A, Peng H, Guo D, Zhong C, Zhu Z, Xu T, Zhang Y. Association of DNA Methylation in Blood Pressure-Related Genes With Ischemic Stroke Risk and Prognosis. Front Cardiovasc Med 2022; 9:796245. [PMID: 35345488 PMCID: PMC8957103 DOI: 10.3389/fcvm.2022.796245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 01/31/2022] [Indexed: 12/16/2022] Open
Abstract
BackgroundA genome-wide association study identified 12 genetic loci influencing blood pressure and implicated a role of DNA methylation. However, the relationship between methylation and ischemic stroke has not yet been clarified. We conducted a large-sample sequencing study to identify blood leukocyte DNA methylations as novel biomarkers for ischemic stroke risk and prognosis based on previously identified genetic loci.MethodsMethylation levels of 17 genes were measured by sequencing in 271 ischemic stroke cases and 323 controls, and the significant associations were validated in another independent sample of 852 cases and 925 controls. The associations between methylation levels and ischemic stroke risk and prognosis were evaluated.ResultsMethylation of AMH, C17orf82, HDAC9, IGFBP3, LRRC10B, PDE3A, PRDM6, SYT7 and TBX2 was significantly associated with ischemic stroke. Compared to participants without any hypomethylated targets, the odds ratio (OR) (95% confidence interval, CI) for those with 9 hypomethylated genes was 1.41 (1.33–1.51) for ischemic stroke. Adding methylation levels of the 9 genes to the basic model of traditional risk factors significantly improved the risk stratification for ischemic stroke. Associations between AMH, HDAC9, IGFBP3, PDE3A and PRDM6 gene methylation and modified Rankin Scale scores were significant after adjustment for covariates. Lower methylation levels of AMH, C17orf82, PRDM6 and TBX2 were significantly associated with increased 3-month mortality. Compared to patients without any hypomethylated targets, the OR (95% CI) for those with 4 hypomethylated targets was 1.12 (1.08–1.15) for 3-month mortality (P = 2.28 × 10−10).ConclusionThe present study identified blood leukocyte DNA methylations as potential factors affecting ischemic stroke risk and prognosis among Han Chinese individuals.
Collapse
Affiliation(s)
- Huan Zhang
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
- Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Xingbo Mo
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
- Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, China
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Aili Wang
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
- Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Hao Peng
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
- Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Daoxia Guo
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
- Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Chongke Zhong
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
- Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Zhengbao Zhu
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
- Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Tan Xu
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
- Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Yonghong Zhang
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
- Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, China
- *Correspondence: Yonghong Zhang
| |
Collapse
|
7
|
Upregulated IGFBP3 with Aging Is Involved in Modulating Apoptosis, Oxidative Stress, and Fibrosis: A Target of Age-Related Erectile Dysfunction. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6831779. [PMID: 35154570 PMCID: PMC8831074 DOI: 10.1155/2022/6831779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 11/24/2021] [Accepted: 12/11/2021] [Indexed: 12/04/2022]
Abstract
Aging has been deemed the primary factor in erectile dysfunction (ED). Herein, age-related changes in the erectile response and histomorphology were detected, and the relationship between aging and ED was investigated based on gene expression levels. Thirty male Sprague–Dawley (SD) rats were randomly divided into 6 groups, and intracavernous pressure (ICP) and mean arterial pressure (MAP) were measured. Subsequently, the corpus cavernosum (CC) was harvested and prepared for histological examinations of apoptosis, oxidative stress (OS), and fibrosis. Then, the microarray dataset (GSE10804) was analyzed to identify differentially expressed genes (DEGs) in ED progression, and hub genes were selected. In addition, aged CC smooth muscle cells (CCSMCs) were isolated to evaluate the function of the hub gene by siRNA interference, qRT–PCR, immunofluorescence staining, enzyme-linked immunosorbent assay, western blot analysis, CCK-8 assay, EdU staining, and flow cytometry approaches. The ICP/MAP and smooth muscle cell (SMC)/collagen ratios declined with aging, while apoptosis and OS levels increased with aging. The enriched functions and pathways of the DEGs were investigated, and 15 hub genes were identified, among which IGFBP3 was significantly upregulated. The IGFBP3 upregulation was verified in the CC of aging rats. Furthermore, aged CCSMCs were transfected with siRNA to knock down IGFBP3 expression. The viability and proliferation of the CCSMCs increased, while apoptosis, OS, and fibrosis decreased. Our findings demonstrate that the erectile response of SD rats declines in parallel with enhanced CC apoptosis, OS, and fibrosis with aging. Upregulation of IGFBP3 plays an important role; furthermore, downregulation of IGFBP3 improves the viability and proliferation of CCSMCs and alleviates apoptosis, OS, and fibrosis. Thus, IGFBP3 is a potential therapeutic target for age-related ED.
Collapse
|
8
|
Jasso GJ, Jaiswal A, Varma M, Laszewski T, Grauel A, Omar A, Silva N, Dranoff G, Porter JA, Mansfield K, Cremasco V, Regev A, Xavier RJ, Graham DB. Colon stroma mediates an inflammation-driven fibroblastic response controlling matrix remodeling and healing. PLoS Biol 2022; 20:e3001532. [PMID: 35085231 PMCID: PMC8824371 DOI: 10.1371/journal.pbio.3001532] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 02/08/2022] [Accepted: 01/07/2022] [Indexed: 12/22/2022] Open
Abstract
Chronic inflammation is often associated with the development of tissue fibrosis, but how mesenchymal cell responses dictate pathological fibrosis versus resolution and healing remains unclear. Defining stromal heterogeneity and identifying molecular circuits driving extracellular matrix deposition and remodeling stands to illuminate the relationship between inflammation, fibrosis, and healing. We performed single-cell RNA-sequencing of colon-derived stromal cells and identified distinct classes of fibroblasts with gene signatures that are differentially regulated by chronic inflammation, including IL-11-producing inflammatory fibroblasts. We further identify a transcriptional program associated with trans-differentiation of mucosa-associated fibroblasts and define a functional gene signature associated with matrix deposition and remodeling in the inflamed colon. Our analysis supports a critical role for the metalloprotease Adamdec1 at the interface between tissue remodeling and healing during colitis, demonstrating its requirement for colon epithelial integrity. These findings provide mechanistic insight into how inflammation perturbs stromal cell behaviors to drive fibroblastic responses controlling mucosal matrix remodeling and healing.
Collapse
Affiliation(s)
- Guadalupe J. Jasso
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Alok Jaiswal
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Mukund Varma
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Tyler Laszewski
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, United States of America
| | - Angelo Grauel
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, United States of America
| | - Abdifatah Omar
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Nilsa Silva
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, United States of America
| | - Glenn Dranoff
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, United States of America
| | - Jeffrey A. Porter
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, United States of America
| | - Keith Mansfield
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, United States of America
| | - Viviana Cremasco
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, United States of America
| | - Aviv Regev
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Howard Hughes Medical Institute and David H. Koch Institute for Integrative Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Ramnik J. Xavier
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- * E-mail: (RJX); (DBG)
| | - Daniel B. Graham
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- * E-mail: (RJX); (DBG)
| |
Collapse
|
9
|
Alfredsson J, Wick MJ. Mechanism of fibrosis and stricture formation in Crohn's disease. Scand J Immunol 2020; 92:e12990. [PMID: 33119150 PMCID: PMC7757243 DOI: 10.1111/sji.12990] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 10/06/2020] [Accepted: 10/25/2020] [Indexed: 12/11/2022]
Abstract
Crohn's disease (CD) is a chronic inflammatory disease of the gastrointestinal tract that leads to substantial suffering for millions of patients. In some patients, the chronic inflammation leads to remodelling of the extracellular matrix and fibrosis. Fibrosis, in combination with expansion of smooth muscle layers, leaves the bowel segment narrowed and stiff resulting in strictures, which often require urgent medical intervention. Although stricture development is associated with inflammation in the affected segment, anti‐inflammatory therapies fall far short of treating strictures. At best, current therapies might allow some patients to avoid surgery in a shorter perspective and no anti‐fibrotic therapy is yet available. This likely relates to our poor understanding of the mechanism underlying stricture development. Chronic inflammation is a prerequisite, but progression to strictures involves changes in fibroblasts, myofibroblasts and smooth muscle cells in a poorly understood interplay with immune cells and environmental cues. Much of the experimental evidence available is from animal models, cell lines or non‐strictured patient tissue. Accordingly, these limitations create the basis for many previously published reviews covering the topic. Although this information has contributed to the understanding of fibrotic mechanisms in general, in the end, data must be validated in strictured tissue from patients. As stricture formation is a serious complication of CD, we endeavoured to summarize findings exclusively performed using strictured tissue from patients. Here, we give an update of the mechanism driving this serious complication in patients, and how the strictured tissue differs from adjacent unaffected tissue and controls.
Collapse
Affiliation(s)
- Johannes Alfredsson
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Mary Jo Wick
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
10
|
Thomson CA, Nibbs RJ, McCoy KD, Mowat AM. Immunological roles of intestinal mesenchymal cells. Immunology 2020; 160:313-324. [PMID: 32181492 DOI: 10.1111/imm.13191] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 03/09/2020] [Accepted: 03/10/2020] [Indexed: 12/20/2022] Open
Abstract
The intestine is continuously exposed to an enormous variety and quantity of antigens and innate immune stimuli derived from both pathogens and harmless materials, such as food and commensal bacteria. Accordingly, the intestinal immune system is uniquely adapted to ensure appropriate responses to the different kinds of challenge; maintaining tolerance to harmless antigens in the steady-state, whilst remaining poised to deal with potential pathogens. To accomplish this, leucocytes of the intestinal immune system have to adapt to a constantly changing environment and interact with many different non-leucocytic intestinal cell types, including epithelial and endothelial cells, neurons, and a heterogenous network of intestinal mesenchymal cells (iMC). These interactions are intricately involved in the generation of protective immunity, the elaboration of inflammatory responses, and the development of inflammatory conditions, such as inflammatory bowel diseases. Here we discuss recent insights into the immunological functions of iMC under homeostatic and inflammatory conditions, focusing particularly on iMC in the mucosa and submucosa, and highlighting how an appreciation of the immunology of iMC may help understand the pathogenesis and treatment of disease.
Collapse
Affiliation(s)
- Carolyn A Thomson
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Robert J Nibbs
- Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary Medicine and Life Sciences, University of Glasgow, Glasgow, UK
| | - Kathy D McCoy
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Allan Mcl Mowat
- Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary Medicine and Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
11
|
Graham DB, Xavier RJ. Pathway paradigms revealed from the genetics of inflammatory bowel disease. Nature 2020; 578:527-539. [PMID: 32103191 PMCID: PMC7871366 DOI: 10.1038/s41586-020-2025-2] [Citation(s) in RCA: 394] [Impact Index Per Article: 98.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 12/10/2019] [Indexed: 12/13/2022]
Abstract
Inflammatory bowel disease (IBD) is a complex genetic disease that is instigated and amplified by the confluence of multiple genetic and environmental variables that perturb the immune-microbiome axis. The challenge of dissecting pathological mechanisms underlying IBD has led to the development of transformative approaches in human genetics and functional genomics. Here we describe IBD as a model disease in the context of leveraging human genetics to dissect interactions in cellular and molecular pathways that regulate homeostasis of the mucosal immune system. Finally, we synthesize emerging insights from multiple experimental approaches into pathway paradigms and discuss future prospects for disease-subtype classification and therapeutic intervention.
Collapse
Affiliation(s)
- Daniel B Graham
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Center for Microbiome Informatics and Therapeutics, MIT, Cambridge, MA, USA.
| | - Ramnik J Xavier
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Center for Microbiome Informatics and Therapeutics, MIT, Cambridge, MA, USA.
| |
Collapse
|
12
|
Targeting anti-fibrotic pathways in Crohn's disease - The final frontier? Best Pract Res Clin Gastroenterol 2019; 38-39:101603. [PMID: 31327400 DOI: 10.1016/j.bpg.2019.02.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 02/14/2019] [Indexed: 02/08/2023]
Abstract
Intestinal fibrosis with stricture formation affects up to half of patients with Crohn's disease (CD), resulting in impaired quality of life, increased risk of surgical intervention, and associated patient morbidity. The underlying pathophysiologic mechansisms responsible for initiating and perpetuating intestinal fibrosis are complex, dynamic, and implicate both inflammation-dependent and independent pathways. Previously thought to be an irreversible complication of long-standing inflammation unresponsive to medical therapy, fibrostenotic CD has been traditionally managed with endoscopic or surgical approaches. However, recent advances in our understanding of the humoral, cellular, and environmental pathways driving intestinal fibrosis has the potential to fundamentally change these management paradigms for CD-related strictures. Furthermore, the promise of fibrosis treatments in other organ systems has encouraged hope that anti-fibrotic treatment approaches for CD may be within reach. Here, we summarize the key breakthroughs in our molecular understanding of intestinal fibrosis, review current medical, endoscopic, and surgical treatment approaches to CD-related strictures, propose future directions for anti-fibrotic therapy in CD, and identify crucial research questions in this field that require additional investigation.
Collapse
|
13
|
Muir AB, Wang JX, Nakagawa H. Epithelial-stromal crosstalk and fibrosis in eosinophilic esophagitis. J Gastroenterol 2019; 54:10-18. [PMID: 30101408 PMCID: PMC6314980 DOI: 10.1007/s00535-018-1498-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 07/29/2018] [Indexed: 02/07/2023]
Abstract
Eosinophilic esophagitis (EoE) is a food allergen-induced inflammatory disorder. EoE is increasingly recognized as a cause of swallowing dysfunction, food impaction and esophageal stricture. Inflammation of the esophageal mucosa involves immune cell infiltrate, reactive epithelial changes and fibroblast activation, culminating in robust tissue remodeling toward esophageal fibrosis characterized by excess collagen deposition in the subepithelial lamina propria. Fibrosis contributes to a unique mechanical property of the EoE-affected esophagus that is substantially stiffer than the normal esophagus. There is a great need to better understand the processes behind esophageal fibrosis in order to foster improved diagnostic tools and novel therapeutics for EoE-related esophageal fibrosis. In this review, we discuss the role of esophageal inflammatory microenvironment that promotes esophageal fibrosis, with specific emphasis upon cytokines-mediated functional epithelial-stromal interplays, recruitment and activation of a variety of effector cells, and tissue stiffness. We then explore the current state of clinical methodologies to detect and treat the EoE-related esophageal stricture.
Collapse
Affiliation(s)
- Amanda B. Muir
- 0000 0001 0680 8770grid.239552.aDivision of Pediatric Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104-6160 USA ,0000 0004 1936 8972grid.25879.31Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Joshua X. Wang
- 0000 0001 0680 8770grid.239552.aDivision of Pediatric Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104-6160 USA ,0000 0004 1936 8972grid.25879.31Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Hiroshi Nakagawa
- 0000 0004 1936 8972grid.25879.31Division of Gastroenterology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, 956 Biomedical Research Building, 421 Curie Boulevard, Philadelphia, PA 19104-6160 USA ,0000 0004 1936 8972grid.25879.31Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104 USA
| |
Collapse
|
14
|
ATP-mediated Events in Peritubular Cells Contribute to Sterile Testicular Inflammation. Sci Rep 2018; 8:1431. [PMID: 29362497 PMCID: PMC5780482 DOI: 10.1038/s41598-018-19624-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 01/03/2018] [Indexed: 12/19/2022] Open
Abstract
Peritubular myoid cells, which form the walls of seminiferous tubules in the testis, are functionally unexplored. While they transport sperm and contribute to the spermatogonial stem cell niche, specifically their emerging role in the immune surveillance of the testis and in male infertility remains to be studied. Recently, cytokine production and activation of Toll-like receptors (TLRs) were uncovered in cultured peritubular cells. We now show that human peritubular cells express purinergic receptors P2RX4 and P2RX7, which are functionally linked to TLRs, with P2RX4 being the prevalent ATP-gated ion channel. Subsequent ATP treatment of cultured peritubular cells resulted in up-regulated (pro-)inflammatory cytokine expression and secretion, while characteristic peritubular proteins, that is smooth muscle cell markers and extracellular matrix molecules, decreased. These findings indicate that extracellular ATP may act as danger molecule on peritubular cells, able to promote inflammatory responses in the testicular environment.
Collapse
|
15
|
Microvesicle-mediated delivery of miR-1343: impact on markers of fibrosis. Cell Tissue Res 2017; 371:325-338. [PMID: 29022142 DOI: 10.1007/s00441-017-2697-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 09/05/2017] [Indexed: 12/12/2022]
Abstract
Tissue fibrosis, the development of fibrous connective tissue as a result of injury or damage, is associated with many common diseases and cannot be treated effectively. The complex biological processes accompanying fibrosis often involve aberrant signaling through the transforming growth factor beta (TGF-β) pathway. In the search for mechanisms to repress this signaling, microRNAs have emerged as a novel class of molecules capable of targeting single members of the TGF-β pathway, or the pathway as a whole. We previously identified miR-1343 as a potent repressor of TGF-β signaling and fibrosis through the direct attenuation of both canonical TGF-β receptors. Here, we build upon our previous findings to better characterize the function of endogenous miR-1343 in normal biology and examine the potential role of exogenous miR-1343 as a repressor of TGF-β signaling. CRISPR/Cas9-mediated deletion of miR-1343 from A549 lung epithelial cells impacts several processes and genes implicated in fibrosis and known to be TGF-β pathway effectors. Moreover, the responses are opposite to those we observed previously when miR-1343 was overexpressed in the same cell type. We also show that miR-1343 can be shuttled into exosomes, a type of extracellular vesicle that are exported by cells into the surrounding medium and can be absorbed by distant target cells. miR-1343 delivered into primary lung fibroblasts by exosomes has a measurable function in reducing TGF-β signaling and markers of fibrosis. These results highlight a role for miR-1343 in fine-tuning the TGF-β pathway and suggest its use as a therapeutic in fibrotic disease.
Collapse
|
16
|
Scirocco A, Matarrese P, Carabotti M, Ascione B, Malorni W, Severi C. Cellular and Molecular Mechanisms of Phenotypic Switch in Gastrointestinal Smooth Muscle. J Cell Physiol 2016; 231:295-302. [PMID: 26206426 DOI: 10.1002/jcp.25105] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 07/21/2015] [Indexed: 10/16/2023]
Abstract
As a general rule, smooth muscle cells (SMC) are able to switch from a contractile phenotype to a less mature synthetic phenotype. This switch is accompanied by a loss of differentiation with decreased expression of contractile markers, increased proliferation as well as the synthesis and the release of several signaling molecules such as pro-inflammatory cytokines, chemotaxis-associated molecules, and growth factors. This SMC phenotypic plasticity has extensively been investigated in vascular diseases, but interest is also emerging in the field of gastroenterology. It has in fact been postulated that altered microenvironmental conditions, including the composition of microbiota, could trigger the remodeling of the enteric SMC, with phenotype changes and consequent alterations of contraction and impairment of gut motility. Several molecular actors participate in this phenotype remodeling. These include extracellular molecules such as cytokines and extracellular matrix proteins, as well as intracellular proteins, for example, transcription factors. Epigenetic control mechanisms and miRNA have also been suggested to participate. In this review key roles and actors of smooth muscle phenotypic switch, mainly in GI tissue, are described and discussed in the light of literature data available so far. J. Cell. Physiol. 231: 295-302, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Annunziata Scirocco
- Department of Internal Medicine and Medical Specialties, University Sapienza Rome, Rome, Italy
| | - Paola Matarrese
- Department of Drug Research and Evaluation, Istituto Superiore di Sanit, à, Rome, Italy
- Center of Metabolomics, Rome, Italy
| | - Marilia Carabotti
- Department of Internal Medicine and Medical Specialties, University Sapienza Rome, Rome, Italy
| | - Barbara Ascione
- Department of Drug Research and Evaluation, Istituto Superiore di Sanit, à, Rome, Italy
| | - Walter Malorni
- Department of Drug Research and Evaluation, Istituto Superiore di Sanit, à, Rome, Italy
- San Raffaele Pisana Institute, Rome, Italy
| | - Carola Severi
- Department of Internal Medicine and Medical Specialties, University Sapienza Rome, Rome, Italy
| |
Collapse
|
17
|
Li C, Vu K, Hazelgrove K, Kuemmerle JF. Increased IGF-IEc expression and mechano-growth factor production in intestinal muscle of fibrostenotic Crohn's disease and smooth muscle hypertrophy. Am J Physiol Gastrointest Liver Physiol 2015; 309:G888-99. [PMID: 26428636 PMCID: PMC4669353 DOI: 10.1152/ajpgi.00414.2014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 09/27/2015] [Indexed: 01/31/2023]
Abstract
The igf1 gene is alternatively spliced as IGF-IEa and IGF-IEc variants in humans. In fibrostenotic Crohn's disease, the fibrogenic cytokine TGF-β1 induces IGF-IEa expression and IGF-I production in intestinal smooth muscle and results in muscle hyperplasia and collagen I production that contribute to stricture formation. Mechano-growth factor (MGF) derived from IGF-IEc induces skeletal and cardiac muscle hypertrophy following stress. We hypothesized that increased IGF-IEc expression and MGF production mediated smooth muscle hypertrophy also characteristic of fibrostenotic Crohn's disease. IGF-IEc transcripts and MGF protein were increased in muscle cells isolated from fibrostenotic intestine under regulation by endogenous TGF-β1. Erk5 and MEF2C were phosphorylated in vivo in fibrostenotic muscle; both were phosphorylated and colocalized to nucleus in response to synthetic MGF in vitro. Smooth muscle-specific protein expression of α-smooth muscle actin, γ-smooth muscle actin, and smoothelin was increased in affected intestine. Erk5 inhibition or MEF2C siRNA blocked smooth muscle-specific gene expression and hypertrophy induced by synthetic MGF. Conditioned media of cultured fibrostenotic muscle induced muscle hypertrophy that was inhibited by immunoneutralization of endogenous MGF or pro-IGF-IEc. The results indicate that TGF-β1-dependent IGF-IEc expression and MGF production in patients with fibrostenotic Crohn's disease regulates smooth muscle cell hypertrophy a critical factor that contributes to intestinal stricture formation.
Collapse
Affiliation(s)
- Chao Li
- 1Department of Medicine, VCU Program in Enteric Neuromuscular Sciences, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia; and
| | - Kent Vu
- 1Department of Medicine, VCU Program in Enteric Neuromuscular Sciences, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia; and
| | - Krystina Hazelgrove
- 1Department of Medicine, VCU Program in Enteric Neuromuscular Sciences, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia; and
| | - John F. Kuemmerle
- 1Department of Medicine, VCU Program in Enteric Neuromuscular Sciences, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia; and ,2Department of Physiology and Biophysics, VCU Program in Enteric Neuromuscular Sciences, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
18
|
Li C, Iness A, Yoon J, Grider JR, Murthy KS, Kellum JM, Kuemmerle JF. Noncanonical STAT3 activation regulates excess TGF-β1 and collagen I expression in muscle of stricturing Crohn's disease. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2015; 194:3422-31. [PMID: 25740948 PMCID: PMC4369432 DOI: 10.4049/jimmunol.1401779] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Increased TGF-β1 and TGF-β1-dependent Collagen I production in intestinal mesenchymal cells result in fibrosis in patients with Montreal B2 fibrostenotic Crohn's disease. Numerous cytokines, including IL-6, are produced by activated mesenchymal cells themselves and activate STAT3. The aim of the current study was to determine the mechanisms by which STAT-3 activation might result in intestinal fibrosis. Cytokine levels were measured by ELISA. STAT3 and suppressor of cytokine signaling 3 protein levels were measured by immunoblot, STAT3-TGFB1 DNA-binding activity by chromatin immunoprecipitation, and TGFB1 transcriptional activity by luciferase reporter assay. TGF-β1 (TGFB1), Collagen1α1, and connective tissue growth factor (CTGF) gene expression was measured by quantitative RT-PCR. The role of STAT3 activation was determined using STAT3 inhibitor, Stattic, and by transfection of STAT3 mutants. Autocrine production of cytokines was increased in muscle cells of B2 phenotype patients from strictures and normal intestine in the same patient and compared with other Crohn's phenotypes, ulcerative colitis, and non-Crohn's patients. A unique pattern of STAT3 phosphorylation emerged: high STAT3(S727) and low STAT3(Y705) in strictures and the opposite in unaffected intestine. TGFB1 transcriptional activity was regulated by phospho-STAT3(S727) and was decreased by Stattic or dominant-negative STAT3(S727A). TGF-β1, COL1A1, and CTGF expression was inhibited by Stattic or dominant-negative STAT3(S727A). Treatment of normal muscle cells with IL-6 or expression of constitutively active STAT3(S727E) phenocopied muscle cells from strictured intestine. Neutralization of autocrine IL-6 reversed STAT3 phosphorylation and normalized expression of TGF-β1 in strictured intestinal muscle. The ability of Stattic to improve development of fibrosis was confirmed in mice with 2,4,6-trinitrobenzenesulfonic acid-induced colitis. We observed a unique phospho-STAT3(S727) response in patients with Montreal B2 Crohn's disease, particularly in response to IL-6 leading to increased TGF-β1, collagen, and CTGF production in ileal strictures.
Collapse
Affiliation(s)
- Chao Li
- Department of Medicine, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298
| | - Audra Iness
- Department of Medicine, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298
| | - Jennifer Yoon
- Department of Medicine, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298
| | - John R Grider
- Department of Medicine, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298; VCU Program in Enteric Neuromuscular Sciences, Department of Physiology and Biophysics, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298; and
| | - Karnam S Murthy
- Department of Medicine, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298; VCU Program in Enteric Neuromuscular Sciences, Department of Physiology and Biophysics, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298; and
| | - John M Kellum
- Department of Surgery, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298
| | - John F Kuemmerle
- Department of Medicine, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298; VCU Program in Enteric Neuromuscular Sciences, Department of Physiology and Biophysics, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298; and
| |
Collapse
|
19
|
Han TY, Lourenssen S, Miller KG, Blennerhassett MG. Intestinal smooth muscle phenotype determines enteric neuronal survival via GDNF expression. Neuroscience 2015; 290:357-68. [PMID: 25655216 DOI: 10.1016/j.neuroscience.2015.01.056] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 01/13/2015] [Accepted: 01/23/2015] [Indexed: 12/18/2022]
Abstract
Intestinal inflammation causes initial axonal degeneration and neuronal death, as well as the proliferation of intestinal smooth muscle cells (ISMC), but subsequent axonal outgrowth leads to re-innervation. We recently showed that expression of glial cell-derived neurotrophic factor (GDNF), the critical neurotrophin for the post-natal enteric nervous system (ENS) is upregulated in ISMC by inflammatory cytokines, leading us to explore the relationship between ISMC growth and GDNF expression. In co-cultures of myenteric neurons and ISMC, GDNF or fetal calf serum (FCS) was equally effective in supporting neuronal survival, with neurons forming extensive axonal networks among the ISMC. However, only GDNF was effective in low-density cultures where neurons lacked contact with ISMC. In early-passage cultures of colonic circular smooth muscle cells (CSMC), polymerase chain reaction (PCR) and western blotting showed that proliferation was associated with expression of GDNF, and the successful survival of neonatal neurons co-cultured on CSMC was blocked by vandetanib or siGDNF. In tri-nitrobenzene sulfonic acid (TNBS)-induced colitis, immunocytochemistry showed the selective expression of GDNF in proliferating CSMC, suggesting that smooth muscle proliferation supports the ENS in vivo as well as in vitro. However, high-passage CSMC expressed significantly less GDNF and failed to support neuronal survival, while expressing reduced amounts of smooth muscle marker proteins. We conclude that in the inflamed intestine, smooth muscle proliferation supports the ENS, and thus its own re-innervation, by expression of GDNF. In chronic inflammation, a compromised smooth muscle phenotype may lead to progressive neural damage. Intestinal stricture formation in human disease, such as inflammatory bowel disease (IBD), may be an endpoint of failure of this homeostatic mechanism.
Collapse
Affiliation(s)
- T Y Han
- Gastrointestinal Diseases Research Unit, Department of Medicine, Queen's University, Kingston, Ontario, Canada
| | - S Lourenssen
- Gastrointestinal Diseases Research Unit, Department of Medicine, Queen's University, Kingston, Ontario, Canada
| | - K G Miller
- Gastrointestinal Diseases Research Unit, Department of Medicine, Queen's University, Kingston, Ontario, Canada
| | - M G Blennerhassett
- Gastrointestinal Diseases Research Unit, Department of Medicine, Queen's University, Kingston, Ontario, Canada.
| |
Collapse
|
20
|
Severi C, Sferra R, Scirocco A, Vetuschi A, Pallotta N, Pronio A, Caronna R, Di Rocco G, Gaudio E, Corazziari E, Onori P. Contribution of intestinal smooth muscle to Crohn's disease fibrogenesis. Eur J Histochem 2014; 58:2457. [PMID: 25578979 PMCID: PMC4289851 DOI: 10.4081/ejh.2014.2457] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 11/17/2014] [Accepted: 11/18/2014] [Indexed: 01/19/2023] Open
Abstract
Mesenchymal cells transdifferentiation and extracellular matrix deposition are involved in the fibrotic process of Crohn's disease (CD). Mesenchymal smooth muscle cells (SMCs) de-differentiation, driven by Platelet-derived growth factor (PDGF) that counteracts Transforming growth factor (TGF-β) has been studied in vascular muscle. The role of SMCs in intestinal fibrogenesis is still not clearly elucidated. Aim of the study was to evaluate the possible myogenic contribution to CD fibrotic process through the comparative analysis of histological, morphometric and molecular alterations occurring in human smooth muscle. Full thickness specimens were obtained from CD (non-involved and stenotic tracts) and healthy (control) ileum. Tissues were processed for histological and immunohistochemical (IHC) analyses and SMCs were isolated from the muscularis propria for morphofunctional and molecular (qPCR) analyses. CD stenotic ileum showed a significant increased thickness of all layers compared to CD non-involved and control ileum. IHC revealed an overexpression of α-smooth muscle actin and collagens I-III throughout all intestinal layers only in stenotic tracts. The two growth factors, PDGF and TGF-β, showed a progressive increase in expression in the muscle layer from CD non-involved to stenotic tracts. Freshly isolated SMCs presented alterations in CD non-involved tracts that progressively increased in the stenotic tracts consisting in a statistical increase in mRNA encoding for PDGF-β and collagen III, paralleled to a decrease in TGF-β and Tribbles-like protein-3 mRNA, and altered morphofunctional parameters consisting in progressive decreases in cell length and contraction to acetylcholine. These findings indicate that intrinsic myogenic alterations occur in CD ileum, that they likely precede stricture formation, and might represent suitable new targets for anti-fibrotic interventions.
Collapse
|
21
|
Abstract
Crohn's disease is complicated by the development of fibrosis and stricture in approximately 30% to 50% of patients over time. The pathogenesis of fibrostenotic disease is multifactorial involving the activation of mesenchymal cells by cytokines, growth factors, and other mediators released by immune cells, epithelial cells, and mesenchymal cells. Transforming growth factor β, a key activator of mesenchymal cells, is central to the process of fibrosis and regulates numerous genes involved in the disordered wound healing including collagens, and other extracellular matrix proteins, connective tissue growth factor, and insulin-like growth factors. The activated mesenchymal compartment is expanded by recruitment of new mesenchymal cells through epithelial to mesenchymal transition, endothelial to mesenchymal transition, and invasion of circulating fibrocytes. Cellular hyperplasia and increased extracellular matrix production, particularly collagens, from fibroblasts, myofibroblasts, and smooth muscle cells add to the disturbed architecture and scarring on the intestine. Extracellular matrix homeostasis is further disrupted by alterations in the expression of matrix metalloproteinases and tissue inhibitors of metalloproteinase in the gut. Among the 163 susceptibility genes identified that contribute to susceptibility in inflammatory bowel disease mutations in NOD2/CARD15, innate immune system components and autophagy jointly contribute to the activation of mesenchymal cells and pathogenesis of fibrosis in this polygenic disorder. Numerous growth factors cytokines and other mediators also contribute to development of fibrosis in the susceptible patient. This review focuses on the molecular mechanisms that regulate mesenchymal cell function, particularly smooth muscle cells, the largest compartment of mesenchyme in the intestine, that lead to fibrosis in Crohn's disease.
Collapse
|
22
|
Adali G, Yorulmaz E, Ozkanli S, Ulasoglu C, Bayraktar B, Orhun A, Colak Y, Tuncer I. Serum concentrations of insulin-like growth factor-binding protein 5 in Crohn’s disease. World J Gastroenterol 2013; 19:9049-9056. [PMID: 24379630 PMCID: PMC3870558 DOI: 10.3748/wjg.v19.i47.9049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2013] [Revised: 09/01/2013] [Accepted: 09/17/2013] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate serum insulin-like growth factor-binding protein 5 (IGFBP-5) levels and intestinal IGFBP-5 expression in patients with Crohn’s disease (CD).
METHODS: We analyzed the serum concentrations and intestinal expression of IGFBP-5 in 42 patients with CD, of whom 26 had endoscopically or radiologically proven stricture formation. Nine of the 42 patients had active disease, with a Crohn’s disease activity index > 150. Serum IGFBP-5 levels were analyzed in 20 healthy controls matched by sex and age to the CD patients. Serum IGFBP-5 was measured using an enzyme-linked immunosorbent assay. Intestinal tissue was obtained from patients through endoscopic biopsies. IGFBP-5 expression was detected using immunohistochemistry and was scored semiquantitatively.
RESULTS: The median serum IGFBP-5 concentrations of CD patients were significantly lower compared with healthy controls [median 7.2 (IQR: 5.5-11.3) ng/mL vs 11.3 (8.0-44.6) ng/mL, P < 0.001]. There was no significant difference between median serum IGFBP-5 levels in CD patients with or without stricture formation [6.9 (5.5-11.3) ng/mL vs 7.8 (5.3-10.1) ng/mL, P = 0.815]. The serum IGFBP-5 levels were not significantly different between patients with active disease and inactive disease [7.2 (6.5-7.6) ng/mL vs 7.2 (5.5-11.3) ng/mL, P = 0.890]. However, a significant correlation was observed between serum IGFBP-5 levels and platelet count (PLT) (r = 0.319, P = 0.0395). No significant correlation was found between tissue IGFBP-5 immunohistochemical staining intensity scores and serum IGFBP-5 levels. No significant difference was found when comparing the serum IGFBP-5 levels among the patients with different tissue IGFBP-5 staining scores (absent/very weak, weak, moderate or strong). There was a significant correlation between tissue IGFBP-5 staining scores and white blood cell count (r = 0.391, P = 0.01) and PLT (r = 0.356, P = 0.021).
CONCLUSION: Our results indicate that serum IGFBP-5 concentrations were lower in CD patients compared to healthy controls regardless of disease activity or the presence of stricture formation.
Collapse
|
23
|
Alkahtani R, Mahavadi S, Al-Shboul O, Alsharari S, Grider JR, Murthy KS. Changes in the expression of smooth muscle contractile proteins in TNBS- and DSS-induced colitis in mice. Inflammation 2013; 36:1304-15. [PMID: 23794034 PMCID: PMC3823744 DOI: 10.1007/s10753-013-9669-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Thin filament-associated proteins such as calponin, caldesmon, tropomyosin, and smoothelin are thought to regulate acto-myosin interaction and thus, muscle contraction. However, the effect of inflammation on the expression of thin filament-associated proteins is not known. The aim of the present study is to determine the changes in the expression of calponin, caldesmon, tropomyosin, and smoothelin in colonic smooth muscle from trinitrobenzene sulphonic acid (TNBS)- and dextran sodium sulphate (DSS)-induced colitis in mice. Expression of h-caldesmon, h2-calponin, α-tropomyosin, and smoothelin-A was measured by qRT-PCR and Western blot. Contraction in response to acetylcholine in dispersed muscle cells was measured by scanning micrometry. mRNA and protein expression of α-actin, h2-calponin, h-caldesmon, smoothelin, and α-tropomyosin in colonic muscle strips from mice with TNBS- or DSS-induced colitis was significantly increased compared to control animals. Contraction in response to acetylcholine was significantly decreased in muscle cells isolated from inflamed regions of TNBS- or DSS-treated mice compared to control mice. Our results show that increase in the expression of thin filament-associated contractile proteins, which inhibit acto-myosin interaction, could contribute to decrease in smooth muscle contraction in inflammation.
Collapse
Affiliation(s)
- Reem Alkahtani
- Department of Physiology, VCU Program in Enteric Neuromuscular Sciences, Virginia Commonwealth University, Richmond, Virginia
| | - Sunila Mahavadi
- Department of Physiology, VCU Program in Enteric Neuromuscular Sciences, Virginia Commonwealth University, Richmond, Virginia
| | - Othman Al-Shboul
- Department of Physiology, VCU Program in Enteric Neuromuscular Sciences, Virginia Commonwealth University, Richmond, Virginia
| | - Shakir Alsharari
- Department of Pharmacology, Virginia Commonwealth University, Richmond, Virginia
| | - John R. Grider
- Department of Physiology, VCU Program in Enteric Neuromuscular Sciences, Virginia Commonwealth University, Richmond, Virginia
| | - Karnam S. Murthy
- Department of Physiology, VCU Program in Enteric Neuromuscular Sciences, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
24
|
Increased activation of latent TGF-β1 by αVβ3 in human Crohn's disease and fibrosis in TNBS colitis can be prevented by cilengitide. Inflamm Bowel Dis 2013; 19:2829-39. [PMID: 24051933 PMCID: PMC3889641 DOI: 10.1097/mib.0b013e3182a8452e] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Strictures develop in >30% of patients affected with Crohn's disease. No available medication prevents stricture development in susceptible patients. In Crohn's strictures, but not adjacent normal intestine, TGF-β1 increases in muscularis smooth muscle, increasing collagen I production and strictures. Muscle cells express αVβ3 integrin containing an Arg-Gly-Asp (RGD) binding domain. The aim was to determine whether increased TGF-β1 levels in strictures were the result of latent TGF-β1, which contains an RGD sequence, binding to and activation by αVβ3; and whether cilengitide, which is an RGD-containing αVβ3 integrin inhibitor, decreases TGF-β1 activation and development of fibrosis in chronic 2,4,6 trinitrobenzene sulfonic acid (TNBS)-induced colitis. DESIGN Muscle cells isolated from Crohn's disease strictures and normal resection margin and from the colon of rats after 42 days of chronic TNBS-induced colitis were used to prepare RNA and protein lysates and to initiate primary cultures. The mechanisms leading to increased TGF-β1 activation, collagen I production, and fibrosis were examined in human muscle and in rats. Human cultured cells in vitro and rats in vivo were treated with cilengitide to determines it efficacy to decrease TGF-β1-activation, collagen production, and decrease the development of fibrosis. RESULTS Latent TGF-β1 is activated by the αVβ3 RGD domain in human and rat intestinal smooth muscles. Increased activation of TGF-β1 in Crohn's disease and in TNBS-induced colitis causes increased collagen production, and fibrosis that could be inhibited by cilengitide. CONCLUSIONS Cilengitide, an αVβ3 integrin RGD inhibitor, could be a novel treatment to diminish excess TGF-β1 activation, collagen I production, and development of fibrosis in Crohn's disease.
Collapse
|
25
|
Shen JQ, Shen J, Wang XP. Expression of insulin-like growth factor binding protein-4 (IGFBP-4) in acute pancreatitis induced by L-arginine in mice. Acta Histochem 2012; 114:379-85. [PMID: 21839495 DOI: 10.1016/j.acthis.2011.07.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Revised: 07/13/2011] [Accepted: 07/17/2011] [Indexed: 01/01/2023]
Abstract
The mechanisms of injury and regeneration after acute pancreatitis are still incompletely understood. Insulin-like growth factor binding proteins (IGFBPs) have been reported to play roles in various pancreatic diseases, but the involvement of insulin-like growth factor binding protein-4 (IGFBP-4) in acute pancreatitis is unknown. The aim of the study was to examine the expression of IGFBP-4 in mice with acute pancreatitis induced by two doses of L-arginine. IGFBP-4 expression was assayed by microarray test, real-time RT-PCR, Western blotting, ELISA and by an immunohistochemical assay. Microarray test of pancreatic mRNA showed that IGFBP-4 mRNA increased significantly after L-arginine treatment and the increase was confirmed by real-time RT-PCR. Western blotting and ELISA assay showed similar patterns of increase of IGFBP-4 in pancreatic tissues and serum. In the control pancreas, IGFBP-4 was mainly immunolocalized in the pancreatic islets. In the pancreatic tissues of mice with pancreatitis induced by L-arginine, the immunolocalization of IGFBP-4 was detected in both acinar cells and pancreatic islets. In conclusion, our results suggest that IGFBP-4 may play a potential role in pancreatic injury and regeneration in a murine model of acute pancreatitis induced by L-arginine.
Collapse
|
26
|
Veraldi KL, Feghali-Bostwick CA. Insulin-like growth factor binding proteins-3 and -5: central mediators of fibrosis and promising new therapeutic targets. Open Rheumatol J 2012; 6:140-5. [PMID: 22802912 PMCID: PMC3395973 DOI: 10.2174/1874312901206010140] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2012] [Revised: 03/27/2012] [Accepted: 04/04/2012] [Indexed: 12/22/2022] Open
Abstract
Fibrosis involves an orchestrated cascade of events including activation of fibroblasts, increased production and deposition of extracellular matrix components, and differentiation of fibroblasts into myofibroblasts. Epithelial-mesenchymal cross-talk plays an important role in this process, and current hypotheses of organ fibrosis liken it to an aberrant wound healing response in which epithelial-mesenchymal transition (EMT) and cellular senescence may also contribute to disease pathogenesis. The fibrotic response is associated with altered expression of growth factors and cytokines, including increased levels of transforming growth factor-β1 (TGF-β1) and the more recent observation that increased levels of several insulin-like growth factor binding proteins (IGFBPs) are associated with a number of fibrotic conditions. IGFBPs have been implicated in virtually every cell type and process associated with the fibrotic response, making the IGFBPs attractive targets for the development of novel anti-fibrotic therapies. In this review, the current state of knowledge regarding the classical IGFBP family in organ fibrosis will be summarized and the clinical implications considered.
Collapse
Affiliation(s)
- Kristen L Veraldi
- The Division of Pulmonary, Allergy, and Critical Care Medicine, and Pittsburgh Scleroderma Center, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | | |
Collapse
|
27
|
Kuemmerle JF. Insulin-like growth factors in the gastrointestinal tract and liver. Endocrinol Metab Clin North Am 2012; 41:409-23, vii. [PMID: 22682638 PMCID: PMC3372868 DOI: 10.1016/j.ecl.2012.04.018] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The liver is a major source of insulin-like growth factors (IGFs) and IGF binding proteins (IGFBPs) that are present in the circulation and have important endocrine activities relating to energy metabolism, body size, carcinogenesis, and various organ-specific functions. Although IGFs have only minor effects on the normal liver itself, production of IGFs and IGFBPs in a tissue-specific manner in the gastrointestinal tract exert important regulatory effects on cellular proliferation, survival, and apoptosis. IGFs and IGFBPs play important regulatory roles in the response of both the liver and the gastrointestinal tract to inflammation and in the development of neoplasia.
Collapse
Affiliation(s)
- John F Kuemmerle
- Department of Medicine, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298-0341, USA.
| |
Collapse
|
28
|
Yu Q, Lu ZK. Clinical significance of peripheral blood levels of insulin-like growth factor in patients with Crohn's disease. Shijie Huaren Xiaohua Zazhi 2011; 19:2790-2793. [DOI: 10.11569/wcjd.v19.i26.2790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To analyze the clinical significance of peripheral blood levels of insulin-like growth factor (IGF) in patients with Crohn's disease (CD).
METHODS: Fifty-four patients with CD were collected and divided into mild, moderate, and severe groups according to the severity of the disease. Enzyme-labeled chemiluminescent immunometric assay was used to detect peripheral blood levels of IGF-I and insulin-like growth factor-binding protein 3 (IGFBP3) in patients before and after standard treatment to assess their association with the severity of CD and therapeutic efficacy. Fifty healthy people were enrolled as controls.
RESULTS: The levels of IGF-I and IGFBP3 were significantly lower in the moderate and severe groups than in the control group (all P < 0.05) and decreased with the increase in clinical severity (P < 0.05). No significant difference was noted in the levels of IGF-I and IGFBP3 between the mild group and control group. However, the levels of IGF-I and IGFBP3 were significantly higher in patients with moderate or severe CD after treatment than before treatment (all P < 0.05). No significant difference was noted in the levels of IGF-I and IGFBP3 in patients with mild CD between before and after treatment.
CONCLUSION: Peripheral blood levels of IGF-I and IGFBP3 are useful to evaluate disease severity and therapeutic efficacy in patients with CD.
Collapse
|
29
|
Mahavadi S, Flynn RS, Grider JR, Qiao L, Murthy KS, Hazelgrove KB, Kuemmerle JF. Amelioration of excess collagen IαI, fibrosis, and smooth muscle growth in TNBS-induced colitis in IGF-I(+/-) mice. Inflamm Bowel Dis 2011; 17:711-9. [PMID: 20722057 PMCID: PMC2990779 DOI: 10.1002/ibd.21437] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Accepted: 06/22/2010] [Indexed: 12/24/2022]
Abstract
BACKGROUND Strictures occur in ≈ 30% of patients with Crohn's disease (CD) and are characterized by intestinal smooth muscle hyperplasia, hypertrophy, and fibrosis due to excess extracellular matrix production including collagen. Insulin-like growth factor-I (IGF-I) expression is increased in smooth muscle cells of the muscularis propria in CD and in animal models of CD, including trinitrobenzene sulfonic acid (TNBS)-induced colitis. While upregulated IGF-I is conjectured to cause smooth muscle cell growth and collagen production in the inflamed intestine, its role in the development of fibrosis has not been directly demonstrated. METHODS Colitis was induced in IGF-I(+/-) or wildtype C57BL/6J mice by rectal administration of TNBS or ethanol vehicle. After 7 days, colonic smooth muscle cells were isolated and used to prepare RNA or protein lysates. Transcript levels of IGF-IEa, IGF binding protein (IGFBP)-3, IGFBP-5, TGF-β1, and collagen IαI were measured by quantitative reverse-transcription polymerase chain reaction (RT-PCR). Corresponding protein levels were measured by Western blot or enzyme-linked immunosorbent assay (ELISA). Fibrosis was measured using digital image analysis of Masson's trichrome-stained histologic sections. RESULTS In IGF-I(+/-) mice, which express significantly lower levels of IGF-I than wildtype, the response to TNBS-induced colitis: upregulation of IGF-I, IGFBP-3, IGFBP-5 muscle growth, and collagen IαI expression, the resulting collagen deposition, and fibrosis are all significantly diminished compared to C57BL/6J wildtype controls. TGF-β1 expression and its increase following TNBS administration are not altered in IGF-I(+/-) mice compared to wildtype. CONCLUSIONS The findings indicate that IGF-I is a key regulator in intestinal smooth muscle hyperplasia and excess collagen production that leads to fibrosis and long term to stricture formation.
Collapse
Affiliation(s)
- Sunila Mahavadi
- Department of Medicine, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298-0341
| | - Robert S. Flynn
- Department of Medicine, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298-0341
| | - John R. Grider
- Department of Medicine, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298-0341,Department of Physiology and Biophysics, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298-0341
| | - Liya Qiao
- Department of Physiology and Biophysics, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298-0341
| | - Karnam S. Murthy
- Department of Medicine, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298-0341,Department of Physiology and Biophysics, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298-0341
| | - Krystina B. Hazelgrove
- Department of Medicine, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298-0341
| | - John F. Kuemmerle
- Department of Medicine, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298-0341,Department of Physiology and Biophysics, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298-0341
| |
Collapse
|