1
|
Schafer RM, Giancotti LA, Chrivia JC, Li Y, Mufti F, Kufer TA, Zhang J, Doyle TM, Salvemini D. CARTp/GPR160 mediates behavioral hypersensitivities in mice through NOD2. Pain 2024:00006396-990000000-00725. [PMID: 39356206 DOI: 10.1097/j.pain.0000000000003418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 08/27/2024] [Indexed: 10/03/2024]
Abstract
ABSTRACT Neuropathic pain is a debilitating chronic condition that remains difficult to treat. More efficacious and safer therapeutics are needed. A potential target for therapeutic intervention recently identified by our group is the G-protein coupled receptor 160 (GPR160) and the cocaine- and amphetamine-regulated transcript peptide (CARTp) as a ligand for GPR160. Intrathecal administration of CARTp in rodents causes GPR160-dependent behavioral hypersensitivities. However, the molecular and biochemical mechanisms underpinning GPR160/CARTp-induced behavioral hypersensitivities in the spinal cord remain poorly understood. Therefore, we performed an unbiased RNA transcriptomics screen of dorsal horn spinal cord (DH-SC) tissues harvested at the time of peak CARTp-induced hypersensitivities and identified nucleotide-binding oligomerization domain-containing protein 2 (Nod2) as a gene that is significantly upregulated. Nucleotide-binding oligomerization domain-containing protein 2 is a cytosolic pattern-recognition receptor involved in activating the immune system in response to bacterial pathogens. While NOD2 is well studied under pathogenic conditions, the role of NOD2-mediated responses in nonpathogenic settings is still not well characterized. Genetic and pharmacological approaches reveal that CARTp-induced behavioral hypersensitivities are driven by NOD2, with co-immunoprecipitation studies indicating an interaction between GPR160 and NOD2. Cocaine- and amphetamine-regulated transcript peptide-induced behavioral hypersensitivities are independent of receptor-interacting protein kinase 2 (RIPK2), a common adaptor protein to NOD2. Immunofluorescence studies found NOD2 co-expressed with endothelial cells rather than glial cells, implicating potential roles for CARTp/NOD2 signaling in these cells. While these findings are based only on studies with male mice, our results identify a novel pathway by which CARTp causes behavioral hypersensitivities in the DH-SC through NOD2 and highlights the importance of NOD2-mediated responses in nonpathogenic settings.
Collapse
Affiliation(s)
- Rachel M Schafer
- Department of Pharmacology and Physiology, School of Medicine, Saint Louis University, St. Louis, MO, United States
- Institute for Translational Neuroscience, Saint Louis University, St. Louis, MO, United States
| | - Luigino A Giancotti
- Department of Pharmacology and Physiology, School of Medicine, Saint Louis University, St. Louis, MO, United States
- Institute for Translational Neuroscience, Saint Louis University, St. Louis, MO, United States
| | - John C Chrivia
- Department of Pharmacology and Physiology, School of Medicine, Saint Louis University, St. Louis, MO, United States
- Institute for Translational Neuroscience, Saint Louis University, St. Louis, MO, United States
| | - Ying Li
- Department of Pharmacology and Physiology, School of Medicine, Saint Louis University, St. Louis, MO, United States
- Institute for Translational Neuroscience, Saint Louis University, St. Louis, MO, United States
| | - Fatma Mufti
- Department of Pharmacology and Physiology, School of Medicine, Saint Louis University, St. Louis, MO, United States
- Institute for Translational Neuroscience, Saint Louis University, St. Louis, MO, United States
| | - Thomas A Kufer
- Department of Immunology, Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
| | - Jinsong Zhang
- Department of Pharmacology and Physiology, School of Medicine, Saint Louis University, St. Louis, MO, United States
| | - Timothy M Doyle
- Department of Pharmacology and Physiology, School of Medicine, Saint Louis University, St. Louis, MO, United States
- Institute for Translational Neuroscience, Saint Louis University, St. Louis, MO, United States
| | - Daniela Salvemini
- Department of Pharmacology and Physiology, School of Medicine, Saint Louis University, St. Louis, MO, United States
- Institute for Translational Neuroscience, Saint Louis University, St. Louis, MO, United States
| |
Collapse
|
2
|
Venugopal S, Dan Q, Sri Theivakadadcham VS, Wu B, Kofler M, Layne MD, Connelly KA, Rzepka MF, Friedberg MK, Kapus A, Szászi K. Regulation of the RhoA exchange factor GEF-H1 by profibrotic stimuli through a positive feedback loop involving RhoA, MRTF, and Sp1. Am J Physiol Cell Physiol 2024; 327:C387-C402. [PMID: 38912734 DOI: 10.1152/ajpcell.00088.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/03/2024] [Accepted: 06/14/2024] [Indexed: 06/25/2024]
Abstract
RhoA and its effectors, the transcriptional coactivators myocardin-related transcription factor (MRTF) and serum response factor (SRF), control epithelial phenotype and are indispensable for profibrotic epithelial reprogramming during fibrogenesis. Context-dependent control of RhoA and fibrosis-associated changes in its regulators, however, remain incompletely characterized. We previously identified the guanine nucleotide exchange factor GEF-H1 as a central mediator of RhoA activation in renal tubular cells exposed to inflammatory or fibrotic stimuli. Here we found that GEF-H1 expression and phosphorylation were strongly elevated in two animal models of fibrosis. In the Unilateral Ureteral Obstruction mouse kidney fibrosis model, GEF-H1 was upregulated predominantly in the tubular compartment. GEF-H1 was also elevated and phosphorylated in a rat pulmonary artery banding (PAB) model of right ventricular fibrosis. Prolonged stimulation of LLC-PK1 tubular cells with tumor necrosis factor (TNF)-α or transforming growth factor (TGF)-β1 increased GEF-H1 expression and activated a luciferase-coupled GEF-H1 promoter. Knockdown and overexpression studies revealed that these effects were mediated by RhoA, cytoskeleton remodeling, and MRTF, indicative of a positive feedback cycle. Indeed, silencing endogenous GEF-H1 attenuated activation of the GEF-H1 promoter. Of importance, inhibition of MRTF using CCG-1423 prevented GEF-H1 upregulation in both animal models. MRTF-dependent increase in GEF-H1 was prevented by inhibition of the transcription factor Sp1, and mutating putative Sp1 binding sites in the GEF-H1 promoter eliminated its MRTF-dependent activation. As the GEF-H1/RhoA axis is key for fibrogenesis, this novel MRTF/Sp1-dependent regulation of GEF-H1 abundance represents a potential target for reducing renal and cardiac fibrosis.NEW & NOTEWORTHY We show that expression of the RhoA regulator GEF-H1 is upregulated in tubular cells exposed to fibrogenic cytokines and in animal models of kidney and heart fibrosis. We identify a pathway wherein GEF-H1/RhoA-dependent MRTF activation through its noncanonical partner Sp1 upregulates GEF-H1. Our data reveal the existence of a positive feedback cycle that enhances Rho signaling through control of both GEF-H1 activation and expression. This feedback loop may play an important role in organ fibrosis.
Collapse
Affiliation(s)
- Shruthi Venugopal
- Keenan Research Centre for Biomedical Science of the St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
| | - Qinghong Dan
- Keenan Research Centre for Biomedical Science of the St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
| | - Veroni S Sri Theivakadadcham
- Keenan Research Centre for Biomedical Science of the St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
| | - Brian Wu
- Keenan Research Centre for Biomedical Science of the St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
| | - Michael Kofler
- Keenan Research Centre for Biomedical Science of the St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
| | - Matthew D Layne
- Department of Biochemistry & Cell Biology, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, United States
| | - Kim A Connelly
- Keenan Research Centre for Biomedical Science of the St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
| | - Mark F Rzepka
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Mark K Friedberg
- Division of Cardiology, Labatt Family Heart Center Toronto, Hospital for Sick Children, Toronto, Ontario, Canada
- Translational Medicine, Hospital for Sick Children Research Institute and University of Toronto, Toronto, Ontario, Canada
| | - András Kapus
- Keenan Research Centre for Biomedical Science of the St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Katalin Szászi
- Keenan Research Centre for Biomedical Science of the St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
3
|
Dixon CL, Wu A, Fairn GD. Multifaceted roles and regulation of nucleotide-binding oligomerization domain containing proteins. Front Immunol 2023; 14:1242659. [PMID: 37869013 PMCID: PMC10585062 DOI: 10.3389/fimmu.2023.1242659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/19/2023] [Indexed: 10/24/2023] Open
Abstract
Nucleotide-binding oligomerization domain-containing proteins, NOD1 and NOD2, are cytosolic receptors that recognize dipeptides and tripeptides derived from the bacterial cell wall component peptidoglycan (PGN). During the past two decades, studies have revealed several roles for NODs beyond detecting PGN fragments, including activation of an innate immune anti-viral response, NOD-mediated autophagy, and ER stress induced inflammation. Recent studies have also clarified the dynamic regulation of NODs at cellular membranes to generate specific and balanced immune responses. This review will describe how NOD1 and NOD2 detect microbes and cellular stress and detail the molecular mechanisms that regulate activation and signaling while highlighting new evidence and the impact on inflammatory disease pathogenesis.
Collapse
Affiliation(s)
| | - Amy Wu
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Gregory D. Fairn
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
4
|
Asbjornsdottir B, Sigurdsson S, Miranda-Ribera A, Fiorentino M, Konno T, Lan J, Gudmundsson LS, Gottfredsson M, Lauth B, Birgisdottir BE, Fasano A. Evaluating Prophylactic Effect of Bovine Colostrum on Intestinal Barrier Function in Zonulin Transgenic Mice: A Transcriptomic Study. Int J Mol Sci 2023; 24:14730. [PMID: 37834178 PMCID: PMC10572565 DOI: 10.3390/ijms241914730] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/22/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
The intestinal barrier comprises a single layer of epithelial cells tightly joined to form a physical barrier. Disruption or compromise of the intestinal barrier can lead to the inadvertent activation of immune cells, potentially causing an increased risk of chronic inflammation in various tissues. Recent research has suggested that specific dietary components may influence the function of the intestinal barrier, potentially offering a means to prevent or mitigate inflammatory disorders. However, the precise mechanism underlying these effects remains unclear. Bovine colostrum (BC), the first milk from cows after calving, is a natural source of nutrients with immunomodulatory, anti-inflammatory, and gut-barrier fortifying properties. This novel study sought to investigate the transcriptome in BC-treated Zonulin transgenic mice (Ztm), characterized by dysbiotic microbiota, intestinal hyperpermeability, and mild hyperactivity, applying RNA sequencing. Seventy-five tissue samples from the duodenum, colon, and brain of Ztm and wild-type (WT) mice were dissected, processed, and RNA sequenced. The expression profiles were analyzed and integrated to identify differentially expressed genes (DEGs) and differentially expressed transcripts (DETs). These were then further examined using bioinformatics tools. RNA-seq analysis identified 1298 DEGs and 20,952 DETs in the paired (Ztm treatment vs. Ztm control) and reference (WT controls) groups. Of these, 733 DEGs and 10,476 DETs were upregulated, while 565 DEGs and 6097 DETs were downregulated. BC-treated Ztm female mice showed significant upregulation of cingulin (Cgn) and claudin 12 (Cldn12) duodenum and protein interactions, as well as molecular pathways and interactions pertaining to tight junctions, while BC-treated Ztm males displayed an upregulation of transcripts like occludin (Ocln) and Rho/Rac guanine nucleotide exchange factor 2 (Arhgf2) and cellular structures and interfaces, protein-protein interactions, and organization and response mechanisms. This comprehensive analysis reveals the influence of BC treatment on tight junctions (TJs) and Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB) signaling pathway gene expressions. The present study is the first to analyze intestinal and brain samples from BC-treated Ztm mice applying high-throughput RNA sequencing. This study revealed molecular interaction in intestinal barrier function and identified hub genes and their functional pathways and biological processes in response to BC treatment in Ztm mice. Further research is needed to validate these findings and explore their implications for dietary interventions aimed at improving intestinal barrier integrity and function. The MGH Institutional Animal Care and Use Committee authorized the animal study (2013N000013).
Collapse
Affiliation(s)
- Birna Asbjornsdottir
- Department of Pediatric Gastroenterology and Nutrition, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA 02114, USA; (B.A.); (M.F.); (T.K.); (J.L.)
- School of Health Sciences, Faculty of Medicine, University of Iceland, 102 Reykjavik, Iceland (M.G.)
- Unit for Nutrition Research, Landspitali University Hospital, Faculty of Food Science and Nutrition, University of Iceland, 102 Reykjavik, Iceland
| | - Snaevar Sigurdsson
- School of Health Sciences, Faculty of Medicine, University of Iceland, 102 Reykjavik, Iceland (M.G.)
- Biomedical Center, University of Iceland, 102 Reykjavik, Iceland
| | - Alba Miranda-Ribera
- Department of Pediatric Gastroenterology and Nutrition, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA 02114, USA; (B.A.); (M.F.); (T.K.); (J.L.)
| | - Maria Fiorentino
- Department of Pediatric Gastroenterology and Nutrition, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA 02114, USA; (B.A.); (M.F.); (T.K.); (J.L.)
| | - Takumi Konno
- Department of Pediatric Gastroenterology and Nutrition, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA 02114, USA; (B.A.); (M.F.); (T.K.); (J.L.)
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Jinggang Lan
- Department of Pediatric Gastroenterology and Nutrition, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA 02114, USA; (B.A.); (M.F.); (T.K.); (J.L.)
| | - Larus S. Gudmundsson
- School of Health Sciences, Faculty of Pharmaceutical Sciences, University of Iceland, 102 Reykjavik, Iceland
| | - Magnus Gottfredsson
- School of Health Sciences, Faculty of Medicine, University of Iceland, 102 Reykjavik, Iceland (M.G.)
- Department of Scientific Affairs, Landspitali University Hospital, 102 Reykjavik, Iceland
- Department of Infectious Diseases, Landspitali University Hospital, 102 Reykjavik, Iceland
| | - Bertrand Lauth
- School of Health Sciences, Faculty of Medicine, University of Iceland, 102 Reykjavik, Iceland (M.G.)
- Department of Child and Adolescent Psychiatry, Landspitali University Hospital, 102 Reykjavik, Iceland
| | - Bryndis Eva Birgisdottir
- Unit for Nutrition Research, Landspitali University Hospital, Faculty of Food Science and Nutrition, University of Iceland, 102 Reykjavik, Iceland
| | - Alessio Fasano
- Department of Pediatric Gastroenterology and Nutrition, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA 02114, USA; (B.A.); (M.F.); (T.K.); (J.L.)
- Department of Pediatrics, Harvard Medical School, Harvard University, Boston, MA 02138, USA
| |
Collapse
|
5
|
Pei G, Dorhoi A. NOD-Like Receptors: Guards of Cellular Homeostasis Perturbation during Infection. Int J Mol Sci 2021; 22:ijms22136714. [PMID: 34201509 PMCID: PMC8268748 DOI: 10.3390/ijms22136714] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/14/2021] [Accepted: 06/18/2021] [Indexed: 12/30/2022] Open
Abstract
The innate immune system relies on families of pattern recognition receptors (PRRs) that detect distinct conserved molecular motifs from microbes to initiate antimicrobial responses. Activation of PRRs triggers a series of signaling cascades, leading to the release of pro-inflammatory cytokines, chemokines and antimicrobials, thereby contributing to the early host defense against microbes and regulating adaptive immunity. Additionally, PRRs can detect perturbation of cellular homeostasis caused by pathogens and fine-tune the immune responses. Among PRRs, nucleotide binding oligomerization domain (NOD)-like receptors (NLRs) have attracted particular interest in the context of cellular stress-induced inflammation during infection. Recently, mechanistic insights into the monitoring of cellular homeostasis perturbation by NLRs have been provided. We summarize the current knowledge about the disruption of cellular homeostasis by pathogens and focus on NLRs as innate immune sensors for its detection. We highlight the mechanisms employed by various pathogens to elicit cytoskeleton disruption, organelle stress as well as protein translation block, point out exemplary NLRs that guard cellular homeostasis during infection and introduce the concept of stress-associated molecular patterns (SAMPs). We postulate that integration of information about microbial patterns, danger signals, and SAMPs enables the innate immune system with adequate plasticity and precision in elaborating responses to microbes of variable virulence.
Collapse
Affiliation(s)
- Gang Pei
- Institute of Immunology, Friedrich-Loeffler-Institut, 17493 Greifswald, Germany
- Correspondence: (G.P.); (A.D.)
| | - Anca Dorhoi
- Institute of Immunology, Friedrich-Loeffler-Institut, 17493 Greifswald, Germany
- Faculty of Mathematics and Natural Sciences, University of Greifswald, 17489 Greifswald, Germany
- Correspondence: (G.P.); (A.D.)
| |
Collapse
|
6
|
Pan W, Nagpal K, Suárez-Fueyo A, Ferretti A, Yoshida N, Tsokos MG, Tsokos GC. The Regulatory Subunit PPP2R2A of PP2A Enhances Th1 and Th17 Differentiation through Activation of the GEF-H1/RhoA/ROCK Signaling Pathway. THE JOURNAL OF IMMUNOLOGY 2021; 206:1719-1728. [PMID: 33762326 DOI: 10.4049/jimmunol.2001266] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 02/04/2021] [Indexed: 01/04/2023]
Abstract
Protein phosphatase 2A (PP2A) composed of a scaffold subunit, a catalytic subunit, and multiple regulatory subunits is a ubiquitously expressed serine/threonine phosphatase. We have previously shown that the PP2A catalytic subunit is increased in T cells from patients with systemic lupus erythematosus and promotes IL-17 production by enhancing the activity of Rho-associated kinase (ROCK) in T cells. However, the molecular mechanism whereby PP2A regulates ROCK activity is unknown. In this study, we show that the PP2A regulatory subunit PPP2R2A is increased in T cells from people with systemic lupus erythematosus and binds to, dephosphorylates, and activates the guanine nucleotide exchange factor GEF-H1 at Ser885, which in turn increases the levels of RhoA-GTP and the activity of ROCK in T cells. Genetic PPP2R2A deficiency in murine T cells reduced Th1 and Th17, but not regulatory T cell differentiation and mice with T cell-specific PPP2R2A deficiency displayed less autoimmunity when immunized with myelin oligodendrocyte glycoprotein peptide. Our studies indicate that PPP2R2A is the regulatory subunit that dictates the PP2A-directed enhanced Th1 and Th17 differentiation, and therefore, it represents a therapeutic target for pathologies linked to Th1 and Th17 cell expansion.
Collapse
Affiliation(s)
- Wenliang Pan
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| | - Kamalpreet Nagpal
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| | - Abel Suárez-Fueyo
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| | - Andrew Ferretti
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| | - Nobuya Yoshida
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| | - Maria G Tsokos
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| | - George C Tsokos
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| |
Collapse
|
7
|
Oviduct as a sensor of embryo quality: deciphering the extracellular vesicle (EV)-mediated embryo-maternal dialogue. J Mol Med (Berl) 2021; 99:685-697. [PMID: 33512581 DOI: 10.1007/s00109-021-02042-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/07/2020] [Accepted: 01/18/2021] [Indexed: 12/25/2022]
Abstract
Embryo-derived extracellular vesicles (EVs) may play a role in mediating the embryo-maternal dialogue at the oviduct, potentially carrying signals reflecting embryo quality. We investigated the effects of bovine embryo-derived EVs on the gene expression of bovine oviductal epithelial cells (BOECs), and whether these effects are dependent on embryo quality. Presumptive zygotes were cultured individually in vitro in culture medium droplets until day 8 while their development was assessed at day 2, 5 and 8. Conditioned medium samples were collected at day 5 and pooled based on embryo development (good quality embryo media and degenerating embryo media). EVs were isolated from conditioned media by size exclusion chromatography and supplemented to primary BOEC monolayer cultures to evaluate the effects of embryo-derived EVs on gene expression profile of BOEC. Gene expression was quantified by RNA-seq and RT-qPCR. A total of 7 upregulated and 18 downregulated genes were detected in the BOECs supplemented with good quality embryo-derived EV compared to the control. The upregulated genes included interferon-τ-induced genes, such as OAS1Y, MX1 and ISG15, which have previously been reported as upregulated in the oviductal epithelial cells in the presence of embryos. Of the upregulated genes, OAS1Y and MX1 were validated with RT-qPCR. In contrast, only one differentially expressed gene was detected in BOECs in response to degenerating embryo-derived EVs, suggesting that oviductal responses are dependent on embryo quality. Our results support the hypothesis that embryo-derived EVs are involved in embryo-maternal communication at the oviduct and the oviductal response is dependant on the embryo quality. KEY MESSAGES: • Extracellular vesicles (EVs) released by individually cultured pre-implantation bovine embryos can alter the gene expression of primary oviductal epithelial cells. • The oviductal response, in terms of gene expression, to the bovine embryo-derived EVs varied depending on the embryo quality. • In vivo, the oviduct may have the ability to sense the quality of the pre-implantation embryos. • The observed effect of embryo-derived EVs on oviductal epithelial cells could serve as a non-invasive method of evaluating the embryo quality.
Collapse
|
8
|
Kashyap AS, Fernandez-Rodriguez L, Zhao Y, Monaco G, Trefny MP, Yoshida N, Martin K, Sharma A, Olieric N, Shah P, Stanczak M, Kirchhammer N, Park SM, Wieckowski S, Laubli H, Zagani R, Kasenda B, Steinmetz MO, Reinecker HC, Zippelius A. GEF-H1 Signaling upon Microtubule Destabilization Is Required for Dendritic Cell Activation and Specific Anti-tumor Responses. Cell Rep 2020; 28:3367-3380.e8. [PMID: 31553907 PMCID: PMC6876861 DOI: 10.1016/j.celrep.2019.08.057] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 06/06/2019] [Accepted: 08/16/2019] [Indexed: 12/31/2022] Open
Abstract
Dendritic cell (DC) activation is a critical step for anti-tumor T cell responses. Certain chemotherapeutics can influence DC function. Here we demonstrate that chemotherapy capable of microtubule destabilization has direct effects on DC function; namely, it induces potent DC maturation and elicits anti-tumor immunity. Guanine nucleotide exchange factor-H1 (GEF-H1) is specifically released upon microtubule destabilization and is required for DC activation. In response to chemotherapy, GEF-H1 drives a distinct cell signaling program in DCs dominated by the c-Jun N-terminal kinase (JNK) pathway and AP-1/ATF transcriptional response for control of innate and adaptive immune responses. Microtubule destabilization, and subsequent GEF-H1 signaling, enhances cross-presentation of tumor antigens to CD8 T cells. In absence of GEF-H1, anti-tumor immunity is hampered. In cancer patients, high expression of the GEF-H1 immune gene signature is associated with prolonged survival. Our study identifies an alternate intracellular axis in DCs induced upon microtubule destabilization in which GEF-H1 promotes protective anti-tumor immunity. Certain chemotherapeutics elicit potent anti-tumor immunity. Kashyap et al. demonstrate that microtubule-destabilizing chemotherapeutics induce maturation of dendritic cells through activation of microtubule-associated protein GEF-H1. This leads to effective priming of CD8 T cells against tumor antigens. GEF-H1 is critical for anti-tumor immunity of microtubule-targeting chemotherapy.
Collapse
Affiliation(s)
- Abhishek S Kashyap
- Department of Biomedicine, University Hospital Basel and University of Basel, 4031 Basel, Switzerland; Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | - Laura Fernandez-Rodriguez
- Department of Biomedicine, University Hospital Basel and University of Basel, 4031 Basel, Switzerland
| | - Yun Zhao
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Gianni Monaco
- Department of Biomedicine, University Hospital Basel and University of Basel, 4031 Basel, Switzerland
| | - Marcel P Trefny
- Department of Biomedicine, University Hospital Basel and University of Basel, 4031 Basel, Switzerland
| | - Naohiro Yoshida
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Kea Martin
- Department of Biomedicine, University Hospital Basel and University of Basel, 4031 Basel, Switzerland
| | - Ashwani Sharma
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, 5232 Villigen, Switzerland
| | - Natacha Olieric
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, 5232 Villigen, Switzerland
| | - Pankaj Shah
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Michal Stanczak
- Department of Biomedicine, University Hospital Basel and University of Basel, 4031 Basel, Switzerland
| | - Nicole Kirchhammer
- Department of Biomedicine, University Hospital Basel and University of Basel, 4031 Basel, Switzerland
| | - Sung-Moo Park
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Sebastien Wieckowski
- Department of Biomedicine, University Hospital Basel and University of Basel, 4031 Basel, Switzerland
| | - Heinz Laubli
- Department of Biomedicine, University Hospital Basel and University of Basel, 4031 Basel, Switzerland; Medical Oncology, University Hospital Basel, 4031 Basel, Switzerland
| | - Rachid Zagani
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Benjamin Kasenda
- Medical Oncology, University Hospital Basel, 4031 Basel, Switzerland
| | - Michel O Steinmetz
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, 5232 Villigen, Switzerland; University of Basel, Biozentrum, 4056 Basel, Switzerland
| | - Hans-Christian Reinecker
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | - Alfred Zippelius
- Department of Biomedicine, University Hospital Basel and University of Basel, 4031 Basel, Switzerland; Medical Oncology, University Hospital Basel, 4031 Basel, Switzerland.
| |
Collapse
|
9
|
Douanne T, Chapelier S, Rottapel R, Gavard J, Bidère N. The LUBAC participates in lysophosphatidic acid-induced NF-κB activation. Cell Immunol 2020; 353:104133. [PMID: 32450431 DOI: 10.1016/j.cellimm.2020.104133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/29/2020] [Accepted: 05/12/2020] [Indexed: 12/16/2022]
Abstract
The natural bioactive glycerophospholipid lysophosphatidic acid (LPA) binds to its cognate G protein-coupled receptors (GPCRs) on the cell surface to promote the activation of several transcription factors, including NF-κB. LPA-mediated activation of NF-κB relies on the formation of a signalosome that contains the scaffold CARMA3, the adaptor BCL10 and the paracaspase MALT1 (CBM complex). The CBM complex has been extensively studied in lymphocytes, where it links antigen receptors to NF-κB activation via the recruitment of the linear ubiquitin assembly complex (LUBAC), a tripartite complex of HOIP, HOIL1 and SHARPIN. Moreover, MALT1 cleaves the LUBAC subunit HOIL1 to further enhance NF-κB activation. However, the contribution of the LUBAC downstream of GPCRs has not been investigated. By using murine embryonic fibroblasts from mice deficient for HOIP, HOIL1 and SHARPIN, we report that the LUBAC is crucial for the activation of NF-κB in response to LPA. Further echoing the situation in lymphocytes, LPA unbridles the protease activity of MALT1, which cleaves HOIL1 at the Arginine 165. The expression of a MALT1-insensitive version of HOIL1 reveals that this processing is involved in the optimal production of the NF-κB target cytokine interleukin-6. Lastly, we provide evidence that the guanine exchange factor GEF-H1 favors MALT1-mediated cleavage of HOIL1 and NF-κB signaling in this context. Together, our results unveil a critical role for the LUBAC as a positive regulator of NF-κB signaling downstream of LPA receptors.
Collapse
Affiliation(s)
- Tiphaine Douanne
- Université de Nantes, INSERM, CNRS, CRCINA, Team SOAP, F-440000 Nantes, France
| | - Sarah Chapelier
- Université de Nantes, INSERM, CNRS, CRCINA, Team SOAP, F-440000 Nantes, France
| | - Robert Rottapel
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Julie Gavard
- Université de Nantes, INSERM, CNRS, CRCINA, Team SOAP, F-440000 Nantes, France; Institut de Cancérologie de l'Ouest, Site René Gauducheau, 44800 Saint-Herblain, France
| | - Nicolas Bidère
- Université de Nantes, INSERM, CNRS, CRCINA, Team SOAP, F-440000 Nantes, France.
| |
Collapse
|
10
|
Lai HJ, Hsu YH, Lee GY, Chiang HS. Microtubule-Mediated NLRP3 Inflammasome Activation Is Independent of Microtubule-Associated Innate Immune Factor GEF-H1 in Murine Macrophages. Int J Mol Sci 2020; 21:ijms21041302. [PMID: 32075101 PMCID: PMC7072875 DOI: 10.3390/ijms21041302] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/08/2020] [Accepted: 02/12/2020] [Indexed: 11/16/2022] Open
Abstract
Inflammasomes are intracellular multiple protein complexes that mount innate immune responses to tissue damage and invading pathogens. Their excessive activation is crucial in the development and pathogenesis of inflammatory disorders. Microtubules have been reported to provide the platform for mediating the assembly and activation of NLRP3 inflammasome. Recently, we have identified the microtubule-associated immune molecule guanine nucleotide exchange factor-H1 (GEF-H1) that is crucial in coupling microtubule dynamics to the initiation of microtubule-mediated immune responses. However, whether GEF-H1 also controls the activation of other immune receptors that require microtubules is still undefined. Here we employed GEF-H1-deficient mouse bone marrow-derived macrophages (BMDMs) to interrogate the impact of GEF-H1 on the activation of NLRP3 inflammasome. NLRP3 but not NLRC4 or AIM2 inflammasome-mediated IL-1β production was dependent on dynamic microtubule network in wild-type (WT) BMDMs. However, GEF-H1 deficiency did not affect NLRP3-driven IL-1β maturation and secretion in macrophages. Moreover, α-tubulin acetylation and mitochondria aggregations were comparable between WT and GEF-H1-deficient BMDMs in response to NLRP3 inducers. Further, GEF-H1 was not required for NLRP3-mediated immune defense against Salmonella typhimurium infection. Collectively, these findings suggest that the microtubule-associated immune modulator GEF-H1 is dispensable for microtubule-mediated NLRP3 activation and host defense in mouse macrophages.
Collapse
Affiliation(s)
- Hsuan-Ju Lai
- Department of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | - Yi-Hsuan Hsu
- Department of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | - Guan-Ying Lee
- Department of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | - Hao-Sen Chiang
- Department of Life Science, National Taiwan University, Taipei 10617, Taiwan
- Genome and Systems Biology Degree Program, National Taiwan University, Taipei 10617, Taiwan
- Correspondence: ; Tel.: +886-2-3366-2454
| |
Collapse
|
11
|
Kufer TA, Creagh EM, Bryant CE. Guardians of the Cell: Effector-Triggered Immunity Steers Mammalian Immune Defense. Trends Immunol 2019; 40:939-951. [PMID: 31500957 DOI: 10.1016/j.it.2019.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 07/31/2019] [Accepted: 08/08/2019] [Indexed: 12/14/2022]
Abstract
The mammalian innate immune system deals with invading pathogens and stress by activating pattern-recognition receptors (PRRs) in the host. Initially proposed to be triggered by the discrimination of defined molecular signatures from pathogens rather than from self, it is now clear that PRRs can also be activated by endogenous ligands, bacterial metabolites and, following pathogen-induced alterations of cellular processes, changes in the F-actin cytoskeleton. These processes are collectively referred to as effector-triggered immunity (ETI). Here, we summarize the molecular and conceptual advances in our understanding of cell autonomous innate immune responses against bacterial pathogens, and discuss how classical activation of PRRs and ETI interplay to drive inflammatory responses.
Collapse
Affiliation(s)
- Thomas A Kufer
- Institute of Nutritional Medicine, Department of Immunology, University of Hohenheim, Stuttgart, Germany.
| | - Emma M Creagh
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.
| | - Clare E Bryant
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK.
| |
Collapse
|
12
|
Zhao Y, Zagani R, Park SM, Yoshida N, Shah P, Reinecker HC. Microbial recognition by GEF-H1 controls IKKε mediated activation of IRF5. Nat Commun 2019; 10:1349. [PMID: 30902986 PMCID: PMC6430831 DOI: 10.1038/s41467-019-09283-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 02/27/2019] [Indexed: 02/08/2023] Open
Abstract
During infection, transcription factor interferon regulatory factor 5 (IRF5) is essential for the control of host defense. Here we show that the microtubule-associated guanine nucleotide exchange factor (GEF)-H1, is required for the phosphorylation of IRF5 by microbial muramyl-dipeptides (MDP), the minimal structural motif of peptidoglycan of both Gram-positive and Gram-negative bacteria. Specifically, GEF-H1 functions in a microtubule based recognition system for microbial peptidoglycans that mediates the activation of IKKε which we identify as a new upstream IKKα/β and IRF5 kinase. The deletion of GEF-H1 or dominant-negative variants of GEF-H1 prevent activation of IKKε and phosphorylation of IRF5. The GEF-H1-IKKε-IRF5 signaling axis functions independent of NOD-like receptors and is critically required for the recognition of intracellular peptidoglycans and host defenses against Listeria monocytogenes.
Collapse
Affiliation(s)
- Yun Zhao
- Department of Medicine, Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Rachid Zagani
- Department of Medicine, Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Sung-Moo Park
- Department of Medicine, Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Naohiro Yoshida
- Department of Medicine, Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Pankaj Shah
- Department of Medicine, Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Hans-Christian Reinecker
- Department of Medicine, Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA.
| |
Collapse
|
13
|
Li S, Wong EM, Bui M, Nguyen TL, Joo JHE, Stone J, Dite GS, Dugué PA, Milne RL, Giles GG, Saffery R, Southey MC, Hopper JL. Inference about causation between body mass index and DNA methylation in blood from a twin family study. Int J Obes (Lond) 2018; 43:243-252. [PMID: 29777239 DOI: 10.1038/s41366-018-0103-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 03/19/2018] [Accepted: 04/04/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Several studies have reported DNA methylation in blood to be associated with body mass index (BMI), but few have investigated causal aspects of the association. We used a twin family design to assess this association at two life points and applied a novel analytical approach to appraise the evidence for causality. METHODS The methylation profile of DNA from peripheral blood was measured for 479 Australian women from 130 twin families. Linear regression was used to estimate the associations of DNA methylation at ~410,000 cytosine-guanine dinucleotides (CpGs), and of the average DNA methylation at ~20,000 genes, with current BMI, BMI at age 18-21 years, and the change between the two (BMI change). A novel regression-based methodology for twins, Inference about Causation through Examination of Familial Confounding (ICE FALCON), was used to assess causation. RESULTS At a 5% false discovery rate, nine, six and 12 CpGs at 24 loci were associated with current BMI, BMI at age 18-21 years and BMI change, respectively. The average DNA methylation of the BHLHE40 and SOCS3 loci was associated with current BMI, and of the PHGDH locus with BMI change. From the ICE FALCON analyses with BMI as the predictor and DNA methylation as the outcome, a woman's DNA methylation level was associated with her co-twin's BMI, and the association disappeared after conditioning on her own BMI, consistent with BMI causing DNA methylation. To the contrary, using DNA methylation as the predictor and BMI as the outcome, a woman's BMI was not associated with her co-twin's DNA methylation level, consistent with DNA methylation not causing BMI. CONCLUSION For middle-aged women, peripheral blood DNA methylation at several genomic locations is associated with current BMI, BMI at age 18-21 years and BMI change. Our study suggests that BMI has a causal effect on peripheral blood DNA methylation.
Collapse
Affiliation(s)
- Shuai Li
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Parkville, VIC, Australia
| | - Ee Ming Wong
- Genetic Epidemiology Laboratory, Department of Clinical Pathology, University of Melbourne, Parkville, VIC, Australia.,Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia
| | - Minh Bui
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Parkville, VIC, Australia
| | - Tuong L Nguyen
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Parkville, VIC, Australia
| | - Ji-Hoon Eric Joo
- Genetic Epidemiology Laboratory, Department of Clinical Pathology, University of Melbourne, Parkville, VIC, Australia.,Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia
| | - Jennifer Stone
- Centre for Genetic Origins of Health and Disease, Curtin University and the University of Western Australia, Perth, WA, Australia
| | - Gillian S Dite
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Parkville, VIC, Australia
| | - Pierre-Antoine Dugué
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Parkville, VIC, Australia.,Cancer Epidemiology and Intelligence Division, Cancer Council Victoria, Melbourne, VIC, Australia
| | - Roger L Milne
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Parkville, VIC, Australia.,Cancer Epidemiology and Intelligence Division, Cancer Council Victoria, Melbourne, VIC, Australia
| | - Graham G Giles
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Parkville, VIC, Australia.,Cancer Epidemiology and Intelligence Division, Cancer Council Victoria, Melbourne, VIC, Australia
| | - Richard Saffery
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC, Australia.,Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
| | - Melissa C Southey
- Genetic Epidemiology Laboratory, Department of Clinical Pathology, University of Melbourne, Parkville, VIC, Australia.,Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia
| | - John L Hopper
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
14
|
Liu S, Xia Q, Wu X, Sun F, Hu Q, Wu J, Wang M, Rao Q, Guan W. Stimulator of Interferon Genes in Classical Dendritic Cells Controls Mucosal Th17 Responses to Cyclic Dinucleotides for Host Defenses Against Microbial Infections in Gut. Front Immunol 2018; 9:1085. [PMID: 29868030 PMCID: PMC5964311 DOI: 10.3389/fimmu.2018.01085] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 05/01/2018] [Indexed: 12/23/2022] Open
Abstract
Cyclic dinucleotides are bacterial signal transducers that bind to host intracellular protein, stimulator of interferon genes (STING) encoded by Tmem173. In this study, we demonstrate that STING triggers adaptive immune responses that control Th17 differentiation. Cyclic dinucleotides recognition enables classical dendritic cells (cDCs) that predominantly express CD103 to induce Th17 lymphocytes in an IL-6/IL-1β-dependent manner in gut. STING expression in human lamina propria is associated with the severity of mucosal inflammation and clinical disease activity in patients with Crohn’s disease. Mice deficient in Tmem173 fail to mount Th17 responses to cyclic dinucleotides or prevent immune evasion of enteroinvasive pathogens. In summary, STING in mucosal cDCs controls Th17 subspecification that is essential for host defenses against microbial infection in gut-associated immune system.
Collapse
Affiliation(s)
- Song Liu
- Department of General Surgery, Nanjing Drum Tower Hospital, Nanjing, China.,School of Medicine, Nanjing University, Nanjing, China
| | - Qiuyuan Xia
- School of Medicine, Nanjing University, Nanjing, China.,Department of Pathology, Jinling Hospital, Nanjing, China
| | - Xiuwen Wu
- School of Medicine, Nanjing University, Nanjing, China.,Department of General Surgery, Jinling Hospital, Nanjing, China
| | - Feng Sun
- Department of General Surgery, Nanjing Drum Tower Hospital, Nanjing, China.,School of Medicine, Nanjing University, Nanjing, China
| | - Qiongyuan Hu
- School of Medicine, Nanjing University, Nanjing, China.,Department of General Surgery, Jinling Hospital, Nanjing, China
| | - Jie Wu
- School of Medicine, Nanjing University, Nanjing, China.,Department of General Surgery, Jinling Hospital, Nanjing, China
| | - Meng Wang
- Department of General Surgery, Nanjing Drum Tower Hospital, Nanjing, China.,School of Medicine, Nanjing University, Nanjing, China
| | - Qiu Rao
- School of Medicine, Nanjing University, Nanjing, China.,Department of Pathology, Jinling Hospital, Nanjing, China
| | - Wenxian Guan
- Department of General Surgery, Nanjing Drum Tower Hospital, Nanjing, China.,School of Medicine, Nanjing University, Nanjing, China
| |
Collapse
|
15
|
Corridoni D, Chapman T, Ambrose T, Simmons A. Emerging Mechanisms of Innate Immunity and Their Translational Potential in Inflammatory Bowel Disease. Front Med (Lausanne) 2018. [PMID: 29515999 PMCID: PMC5825991 DOI: 10.3389/fmed.2018.00032] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Activation of the innate immune system through pattern-recognition receptor (PRR) signaling plays a pivotal role in the early induction of host defense following exposure to pathogens. Loss of intestinal innate immune regulation leading aberrant immune responses has been implicated in the pathogenesis of inflammatory bowel disease (IBD). The precise role of PRRs in gut inflammation is not well understood, but considering their role as bacterial sensors and their genetic association with IBD, they likely contribute to dysregulated immune responses to the commensal microbiota. The purpose of this review is to evaluate the emerging functions of PRRs including their functional cross-talk, how they respond to mitochondrial damage, induce mitophagy or autophagy, and influence adaptive immune responses by interacting with the antigen presentation machinery. The review also summarizes some of the recent attempts to harness these pathways for therapeutic approaches in intestinal inflammation.
Collapse
Affiliation(s)
- Daniele Corridoni
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom.,Translational Gastroenterology Unit, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Thomas Chapman
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom.,Translational Gastroenterology Unit, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Tim Ambrose
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom.,Translational Gastroenterology Unit, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Alison Simmons
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom.,Translational Gastroenterology Unit, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
16
|
Fine N, Dimitriou ID, Rottapel R. Go with the flow: GEF-H1 mediated shear stress mechanotransduction in neutrophils. Small GTPases 2017; 11:23-31. [PMID: 29188751 DOI: 10.1080/21541248.2017.1332505] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Neutrophils in circulation experience significant shear forces due to blood flow when they tether to the vascular endothelium. Biochemical and biophysical responses of neutrophils to the physical force of flowing blood modulate their behavior and promote tissue recruitment under pro-inflammatory conditions. Neutrophil mechanotransduction responses occur through mechanisms that are not yet fully understood. In our recent work, we showed that GEF-H1, a RhoA specific guanine nucleotide exchange factor (GEF), is required to maintain neutrophil motility and migration in response to shear stress. GEF-H1 re-localizes to flottilin-rich uropods in neutrophils in response to fluid shear stress and promotes spreading and crawling on activated endothelial cells. GEF-H1 drives cellular contractility through myosin light chain (MLC) phosphorylation downstream of the Rho-ROCK signaling axis. We propose that GEF-H1-dependent cell spreading and crawling in shear stress-dependent neutrophil recruitment from the vasculature are due to the specific localization of Rho-induced contractility in the uropod.
Collapse
Affiliation(s)
- Noah Fine
- Matrix Dynamics Group, University of Toronto, Toronto, Ontario, Canada
| | - Ioannis D Dimitriou
- Princess Margaret Cancer Center, Toronto Medical Discovery Tower, Toronto, Ontario, Canada
| | - Robert Rottapel
- Princess Margaret Cancer Center, Toronto Medical Discovery Tower, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario, Canada.,Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
17
|
Wang H, Wang J, Yang J, Yang X, He J, Wang R, Liu S, Zhou L, Ma L. Guanine nucleotide exchange factor -H1 promotes inflammatory cytokine production and intracellular mycobacterial elimination in macrophages. Cell Cycle 2017; 16:1695-1704. [PMID: 28783414 DOI: 10.1080/15384101.2017.1347739] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Mycobacterium tuberculosis (M.tb), which causes tuberculosis, is a host-adapted intracellular pathogen that can live within macrophages owning to its ability to arrest phagolysosome biogenesis. The guanine nucleotide exchange factor H1 (GEF-H1) may contribute to the phagocytosis of bacteria by macrophages through mediating the crosstalk between microtubules and the actin cytoskeleton. Its role in Shigella infection has been determined but little is known about the role of GEF-H1 in mycobacterial infection. In the present study, we demonstrated that GEF-H1 functioned as a key regulator of the macrophage-mediated anti-mycobacterial response. We found that both mRNA and protein expression levels of GEF-H1 were significantly upregulated in macrophage during mycobacterial infection. Moreover, silencing of GEF-H1 with specific siRNAs reduced the phosphorylation of p38 mitogen-activated protein kinase and TANK binding kinase 1 as well as the expression of interleukin-1β (IL-1β), IL-6, and interferon-β (IFN-β), without affecting nitric oxide production or autophagy. Importantly, GEF-H1 depletion attenuated macrophages-mediated mycobacterial phagocytosis and elimination. Taken together, our data supported that GEF-H1 was a novel regulator of inflammatory cytokine production and mycobacterial elimination, and may serve as a novel potential target for clinical treatment of tuberculosis.
Collapse
Affiliation(s)
- Hui Wang
- a Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology , Southern Medical University , Guangzhou , China
| | - Jinli Wang
- a Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology , Southern Medical University , Guangzhou , China
| | - Jiahui Yang
- a Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology , Southern Medical University , Guangzhou , China
| | - Xiaofan Yang
- a Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology , Southern Medical University , Guangzhou , China
| | - Jianchun He
- a Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology , Southern Medical University , Guangzhou , China
| | - Ruining Wang
- a Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology , Southern Medical University , Guangzhou , China
| | - Sudong Liu
- a Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology , Southern Medical University , Guangzhou , China
| | - Lin Zhou
- b Center for Tuberculosis Control of Guangdong Province , Guangzhou , China
| | - Li Ma
- a Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology , Southern Medical University , Guangzhou , China
| |
Collapse
|
18
|
Keestra-Gounder AM, Tsolis RM. NOD1 and NOD2: Beyond Peptidoglycan Sensing. Trends Immunol 2017; 38:758-767. [PMID: 28823510 DOI: 10.1016/j.it.2017.07.004] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 07/12/2017] [Accepted: 07/13/2017] [Indexed: 02/06/2023]
Abstract
NOD1 and NOD2 are pattern recognition receptors of the innate immune system with well-established roles in sensing fragments of bacterial peptidoglycan. In addition to their role as microbial sensors, recent evidence indicates that nucleotide-binding oligomerization domains (NODs) can also recognize a broader array of danger signals. Indeed, recent work has expanded the roles of NOD1 and NOD2 to encompass not only sensing of infections with viruses and parasites but also perceiving perturbations of cellular processes such as regulation of the actin cytoskeleton and maintenance of endoplasmic reticulum homeostasis. This review will comment on recent progress and point out emerging questions in these areas.
Collapse
Affiliation(s)
| | - Renée M Tsolis
- Department of Medical Microbiology and Immunology, University of California at Davis, School of Medicine, Davis, CA USA.
| |
Collapse
|
19
|
Baker PJ, De Nardo D, Moghaddas F, Tran LS, Bachem A, Nguyen T, Hayman T, Tye H, Vince JE, Bedoui S, Ferrero RL, Masters SL. Posttranslational Modification as a Critical Determinant of Cytoplasmic Innate Immune Recognition. Physiol Rev 2017; 97:1165-1209. [DOI: 10.1152/physrev.00026.2016] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 02/27/2017] [Accepted: 02/28/2017] [Indexed: 12/21/2022] Open
Abstract
Cell surface innate immune receptors can directly detect a variety of extracellular pathogens to which cytoplasmic innate immune sensors are rarely exposed. Instead, within the cytoplasm, the environment is rife with cellular machinery and signaling pathways that are indirectly perturbed by pathogenic microbes to activate intracellular sensors, such as pyrin, NLRP1, NLRP3, or NLRC4. Therefore, subtle changes in key intracellular processes such as phosphorylation, ubiquitination, and other pathways leading to posttranslational protein modification are key determinants of innate immune recognition in the cytoplasm. This concept is critical to establish the “guard hypothesis” whereby otherwise homeostatic pathways that keep innate immune sensors at bay are released in response to alterations in their posttranslational modification status. Originally identified in plants, evidence that a similar guardlike mechanism exists in humans has recently been identified, whereby a mutation that prevents phosphorylation of the innate immune sensor pyrin triggers a dominantly inherited autoinflammatory disease. It is also noteworthy that even when a cytoplasmic innate immune sensor has a direct ligand, such as bacterial peptidoglycan (NOD1 or NOD2), RNA (RIG-I or MDA5), or DNA (cGAS or IFI16), it can still be influenced by posttranslational modification to dramatically alter its response. Therefore, due to their existence in the cytoplasmic milieu, posttranslational modification is a key determinant of intracellular innate immune receptor functionality.
Collapse
Affiliation(s)
- Paul J. Baker
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; Hudson Institute of Medical Research, Monash University, Centre for Innate Immunity and Infectious Diseases, Clayton, Victoria, Australia; The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia; and Departments of Medical Biology and of Microbiology and Immunology, The University of Melbourne, Parkville, Australia
| | - Dominic De Nardo
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; Hudson Institute of Medical Research, Monash University, Centre for Innate Immunity and Infectious Diseases, Clayton, Victoria, Australia; The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia; and Departments of Medical Biology and of Microbiology and Immunology, The University of Melbourne, Parkville, Australia
| | - Fiona Moghaddas
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; Hudson Institute of Medical Research, Monash University, Centre for Innate Immunity and Infectious Diseases, Clayton, Victoria, Australia; The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia; and Departments of Medical Biology and of Microbiology and Immunology, The University of Melbourne, Parkville, Australia
| | - Le Son Tran
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; Hudson Institute of Medical Research, Monash University, Centre for Innate Immunity and Infectious Diseases, Clayton, Victoria, Australia; The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia; and Departments of Medical Biology and of Microbiology and Immunology, The University of Melbourne, Parkville, Australia
| | - Annabell Bachem
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; Hudson Institute of Medical Research, Monash University, Centre for Innate Immunity and Infectious Diseases, Clayton, Victoria, Australia; The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia; and Departments of Medical Biology and of Microbiology and Immunology, The University of Melbourne, Parkville, Australia
| | - Tan Nguyen
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; Hudson Institute of Medical Research, Monash University, Centre for Innate Immunity and Infectious Diseases, Clayton, Victoria, Australia; The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia; and Departments of Medical Biology and of Microbiology and Immunology, The University of Melbourne, Parkville, Australia
| | - Thomas Hayman
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; Hudson Institute of Medical Research, Monash University, Centre for Innate Immunity and Infectious Diseases, Clayton, Victoria, Australia; The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia; and Departments of Medical Biology and of Microbiology and Immunology, The University of Melbourne, Parkville, Australia
| | - Hazel Tye
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; Hudson Institute of Medical Research, Monash University, Centre for Innate Immunity and Infectious Diseases, Clayton, Victoria, Australia; The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia; and Departments of Medical Biology and of Microbiology and Immunology, The University of Melbourne, Parkville, Australia
| | - James E. Vince
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; Hudson Institute of Medical Research, Monash University, Centre for Innate Immunity and Infectious Diseases, Clayton, Victoria, Australia; The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia; and Departments of Medical Biology and of Microbiology and Immunology, The University of Melbourne, Parkville, Australia
| | - Sammy Bedoui
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; Hudson Institute of Medical Research, Monash University, Centre for Innate Immunity and Infectious Diseases, Clayton, Victoria, Australia; The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia; and Departments of Medical Biology and of Microbiology and Immunology, The University of Melbourne, Parkville, Australia
| | - Richard L. Ferrero
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; Hudson Institute of Medical Research, Monash University, Centre for Innate Immunity and Infectious Diseases, Clayton, Victoria, Australia; The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia; and Departments of Medical Biology and of Microbiology and Immunology, The University of Melbourne, Parkville, Australia
| | - Seth L. Masters
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; Hudson Institute of Medical Research, Monash University, Centre for Innate Immunity and Infectious Diseases, Clayton, Victoria, Australia; The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia; and Departments of Medical Biology and of Microbiology and Immunology, The University of Melbourne, Parkville, Australia
| |
Collapse
|
20
|
Claes AK, Zhou JY, Philpott DJ. NOD-Like Receptors: Guardians of Intestinal Mucosal Barriers. Physiology (Bethesda) 2016; 30:241-50. [PMID: 25933824 DOI: 10.1152/physiol.00025.2014] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The NOD-like receptors (NLRs) are cytosolic pattern-recognition receptors, which are critically involved in mucosal immune defense. The association of the NLR, NOD2, with inflammatory bowel disease first pointed to the NLRs potential function as guardians of the intestinal barrier. Since then, several studies have emphasized the importance of NLRs in maintaining gut homeostasis and intestinal infections, and in shaping the microbiota. In this review, we will highlight the function of NLRs in intestinal inflammation.
Collapse
Affiliation(s)
- Anne-Kathrin Claes
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada; Division Models of Inflammation, Leibniz Center for Medicine and Biosciences, Research Center Borstel, Borstel, Germany; and Institute for Experimental Medicine, University of Kiel, Kiel, Germany
| | - Jun Yu Zhou
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Dana J Philpott
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada;
| |
Collapse
|
21
|
Slany A, Bileck A, Kreutz D, Mayer RL, Muqaku B, Gerner C. Contribution of Human Fibroblasts and Endothelial Cells to the Hallmarks of Inflammation as Determined by Proteome Profiling. Mol Cell Proteomics 2016; 15:1982-97. [PMID: 27025457 DOI: 10.1074/mcp.m116.058099] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Indexed: 12/20/2022] Open
Abstract
In order to systematically analyze proteins fulfilling effector functionalities during inflammation, here we present a comprehensive proteome study of inflammatory activated primary human endothelial cells and fibroblasts. Cells were stimulated with interleukin 1-β and fractionated in order to obtain secreted, cytoplasmic and nuclear protein fractions. Proteins were submitted to a data-dependent bottom up analytical platform using a QExactive orbitrap and the MaxQuant software for protein identification and label-free quantification. Results were further combined with similarly generated data previously obtained from the analysis of inflammatory activated peripheral blood mononuclear cells. Applying a false discovery rate of less than 0.01 at both, peptide and protein level, a total of 8370 protein groups assembled from 117,599 peptides was identified; mass spectrometry data have been made fully accessible via ProteomeXchange with identifier PXD003406 to PXD003417.Comparative proteome analysis allowed us to determine common and cell type-specific inflammation signatures comprising novel candidate marker molecules and related expression patterns of transcription factors. Cardinal features of inflammation such as interleukin 1-β processing and the interferon response differed substantially between the investigated cells. Furthermore, cells also exerted similar inflammation-related tasks; however, by making use of different sets of proteins. Hallmarks of inflammation thus emerged, including angiogenesis, extracellular matrix reorganization, adaptive and innate immune responses, oxidative stress response, cell proliferation and differentiation, cell adhesion and migration in addition to monosaccharide metabolic processes, representing both, common and cell type-specific responsibilities of cells during inflammation.
Collapse
Affiliation(s)
- Astrid Slany
- From the ‡Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Austria
| | - Andrea Bileck
- From the ‡Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Austria
| | - Dominique Kreutz
- From the ‡Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Austria
| | - Rupert L Mayer
- From the ‡Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Austria
| | - Besnik Muqaku
- From the ‡Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Austria
| | - Christopher Gerner
- From the ‡Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Austria
| |
Collapse
|
22
|
Jiang Y, Jiang H, Zhou S, Meng B, Liu ZJ, Ouyang S. Crystal structure of hGEF-H1 PH domain provides insight into incapability in phosphoinositide binding. Biochem Biophys Res Commun 2016; 471:621-7. [DOI: 10.1016/j.bbrc.2016.01.150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 01/23/2016] [Indexed: 01/31/2023]
|
23
|
The Roles of RNase-L in Antimicrobial Immunity and the Cytoskeleton-Associated Innate Response. Int J Mol Sci 2016; 17:ijms17010074. [PMID: 26760998 PMCID: PMC4730318 DOI: 10.3390/ijms17010074] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 12/21/2015] [Accepted: 01/04/2016] [Indexed: 12/26/2022] Open
Abstract
The interferon (IFN)-regulated endoribonuclease RNase-L is involved in multiple aspects of the antimicrobial innate immune response. It is the terminal component of an RNA cleavage pathway in which dsRNA induces the production of RNase-L-activating 2-5A by the 2′-5′-oligoadenylate synthetase. The active nuclease then cleaves ssRNAs, both cellular and viral, leading to downregulation of their expression and the generation of small RNAs capable of activating retinoic acid-inducible gene-I (RIG-I)-like receptors or the nucleotide-binding oligomerization domain-like receptor 3 (NLRP3) inflammasome. This leads to IFNβ expression and IL-1β activation respectively, in addition to broader effects on immune cell function. RNase-L is also one of a growing number of innate immune components that interact with the cell cytoskeleton. It can bind to several cytoskeletal proteins, including filamin A, an actin-binding protein that collaborates with RNase-L to maintain the cellular barrier to viral entry. This antiviral activity is independent of catalytic function, a unique mechanism for RNase-L. We also describe here the interaction of RNase-L with the E3 ubiquitin ligase and scaffolding protein, ligand of nump protein X (LNX), a regulator of tight junction proteins. In order to better understand the significance and context of these novel binding partners in the antimicrobial response, other innate immune protein interactions with the cytoskeleton are also discussed.
Collapse
|
24
|
The cytoskeleton in cell-autonomous immunity: structural determinants of host defence. Nat Rev Immunol 2015; 15:559-73. [PMID: 26292640 DOI: 10.1038/nri3877] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Host cells use antimicrobial proteins, pathogen-restrictive compartmentalization and cell death in their defence against intracellular pathogens. Recent work has revealed that four components of the cytoskeleton--actin, microtubules, intermediate filaments and septins, which are well known for their roles in cell division, shape and movement--have important functions in innate immunity and cellular self-defence. Investigations using cellular and animal models have shown that these cytoskeletal proteins are crucial for sensing bacteria and for mobilizing effector mechanisms to eliminate them. In this Review, we highlight the emerging roles of the cytoskeleton as a structural determinant of cell-autonomous host defence.
Collapse
|
25
|
Boyle JP, Parkhouse R, Monie TP. Insights into the molecular basis of the NOD2 signalling pathway. Open Biol 2015; 4:rsob.140178. [PMID: 25520185 PMCID: PMC4281710 DOI: 10.1098/rsob.140178] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The cytosolic pattern recognition receptor NOD2 is activated by the peptidoglycan fragment muramyl dipeptide to generate a proinflammatory immune response. Downstream effects include the secretion of cytokines such as interleukin 8, the upregulation of pro-interleukin 1β, the induction of autophagy, the production of antimicrobial peptides and defensins, and contributions to the maintenance of the composition of the intestinal microbiota. Polymorphisms in NOD2 are the cause of the inflammatory disorder Blau syndrome and act as susceptibility factors for the inflammatory bowel condition Crohn's disease. The complexity of NOD2 signalling is highlighted by the observation that over 30 cellular proteins interact with NOD2 directly and influence or regulate its functional activity. Previously, the majority of reviews on NOD2 function have focused upon the role of NOD2 in inflammatory disease or in its interaction with and response to microbes. However, the functionality of NOD2 is underpinned by its biochemical interactions. Consequently, in this review, we have taken the opportunity to address the more ‘basic’ elements of NOD2 signalling. In particular, we have focused upon the core interactions of NOD2 with protein factors that influence and modulate the signal transduction pathways involved in NOD2 signalling. Further, where information exists, such as in relation to the role of RIP2, we have drawn comparison with the closely related, but functionally discrete, pattern recognition receptor NOD1. Overall, we provide a comprehensive resource targeted at understanding the complexities of NOD2 signalling.
Collapse
Affiliation(s)
- Joseph P Boyle
- Department of Biochemistry, University of Cambridge, Cambridge, UK Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | | | - Tom P Monie
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK MRC Human Nutrition Research, Elsie Widdowson Laboratory, 120 Fulbourn Road, Cambridge, UK
| |
Collapse
|
26
|
Hornef MW, Fulde M. Ontogeny of intestinal epithelial innate immune responses. Front Immunol 2014; 5:474. [PMID: 25346729 PMCID: PMC4191320 DOI: 10.3389/fimmu.2014.00474] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 09/16/2014] [Indexed: 12/18/2022] Open
Abstract
Emerging evidence indicates that processes during postnatal development might significantly influence the establishment of mucosal host-microbial homeostasis. Developmental and adaptive immunological processes but also environmental and microbial exposure early after birth might thus affect disease susceptibility and health during adult life. The present review aims at summarizing the current understanding of the intestinal epithelial innate immune system and its developmental and adaptive changes after birth.
Collapse
Affiliation(s)
- Mathias W Hornef
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School , Hannover , Germany ; Institute of Medical Microbiology, RWTH University , Aachen , Germany
| | - Marcus Fulde
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School , Hannover , Germany
| |
Collapse
|
27
|
Jakopin Ž. Nucleotide-binding oligomerization domain (NOD) inhibitors: a rational approach toward inhibition of NOD signaling pathway. J Med Chem 2014; 57:6897-918. [PMID: 24707857 DOI: 10.1021/jm401841p] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Dysregulation of nucleotide-binding oligomerization domains 1 and 2 (NOD1 and NOD2) has been implicated in the pathology of various inflammatory disorders, rendering them and their downstream signaling proteins potential therapeutic targets. Selective inhibition of NOD1 and NOD2 signaling could be advantageous in treating many acute and chronic diseases; therefore, harnessing the full potential of NOD inhibitors is a key topic in medicinal chemistry. Although they are among the best studied NOD-like receptors (NLRs), the therapeutic potential of pharmacological modulation of NOD1 and NOD2 is largely unexplored. This review is focused on the scientific progress in the field of NOD inhibitors over the past decade, including the recently reported selective inhibitors of NOD1 and NOD2. In addition, the potential approaches to inhibition of NOD signaling as well as the advantages and disadvantages linked with inhibition of NOD signaling are discussed. Finally, the potential directions for drug discovery are also discussed.
Collapse
Affiliation(s)
- Žiga Jakopin
- Faculty of Pharmacy, University of Ljubljana , Aškerčeva 7, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
28
|
Philpott DJ, Sorbara MT, Robertson SJ, Croitoru K, Girardin SE. NOD proteins: regulators of inflammation in health and disease. Nat Rev Immunol 2013; 14:9-23. [PMID: 24336102 DOI: 10.1038/nri3565] [Citation(s) in RCA: 471] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Entry of bacteria into host cells is an important virulence mechanism. Through peptidoglycan recognition, the nucleotide-binding oligomerization domain (NOD) proteins NOD1 and NOD2 enable detection of intracellular bacteria and promote their clearance through initiation of a pro-inflammatory transcriptional programme and other host defence pathways, including autophagy. Recent findings have expanded the scope of the cellular compartments monitored by NOD1 and NOD2 and have elucidated the signalling pathways that are triggered downstream of NOD activation. In vivo, NOD1 and NOD2 have complex roles, both during bacterial infection and at homeostasis. The association of alleles that encode constitutively active or constitutively inactive forms of NOD2 with different diseases highlights this complexity and indicates that a balanced level of NOD signalling is crucial for the maintenance of immune homeostasis.
Collapse
Affiliation(s)
- Dana J Philpott
- 1] Department of Immunology, University of Toronto, Toronto M5S 1A8, Canada. [2]
| | - Matthew T Sorbara
- 1] Department of Immunology, University of Toronto, Toronto M5S 1A8, Canada. [2]
| | | | - Kenneth Croitoru
- Institute of Medical Science, Department of Medicine, University of Toronto, Toronto M5S 1A8, Canada
| | - Stephen E Girardin
- 1] Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto M5S 1A8, Canada. [2]
| |
Collapse
|
29
|
Chiang HS, Zhao Y, Song JH, Liu S, Wang N, Terhorst C, Sharpe AH, Basavappa M, Jeffrey KL, Reinecker HC. GEF-H1 controls microtubule-dependent sensing of nucleic acids for antiviral host defenses. Nat Immunol 2013; 15:63-71. [PMID: 24270516 PMCID: PMC4066330 DOI: 10.1038/ni.2766] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 10/08/2013] [Indexed: 12/15/2022]
Abstract
Detailed understanding of the signaling intermediates that confer the sensing of intracellular viral nucleic acids for induction of type I interferons is critical for strategies to curtail viral mechanisms that impede innate immune defenses. Here we show that the activation of the microtubule-associated guanine nucleotide exchange factor GEF-H1, encoded by Arhgef2, is essential for sensing of foreign RNA by RIG-I-like receptors. Activation of GEF-H1 controls RIG-I and Mda5-dependent phosphorylation of IRF3 and induction of interferon-β expression in macrophages. Generation of Arhgef2−/− mice revealed a pronounced signaling defect that prevented antiviral host responses to encephalomyocarditis virus and influenza A virus. Microtubule networks sequester GEF-H1 that upon activation is released to enable antiviral signaling by intracellular nucleic acid detection pathways.
Collapse
Affiliation(s)
- Hao-Sen Chiang
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School
| | - Yun Zhao
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School
| | - Joo-Hye Song
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School
| | - Song Liu
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School
| | - Ninghai Wang
- Division of Immunology, Beth Israel Deaconess Medical Center and Center for the Study of Inflammatory Bowel Disease, Harvard Medical School
| | - Cox Terhorst
- Division of Immunology, Beth Israel Deaconess Medical Center and Center for the Study of Inflammatory Bowel Disease, Harvard Medical School
| | - Arlene H Sharpe
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Megha Basavappa
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School
| | - Kate L Jeffrey
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School
| | - Hans-Christian Reinecker
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School
| |
Collapse
|
30
|
Keestra AM, Bäumler AJ. Detection of enteric pathogens by the nodosome. Trends Immunol 2013; 35:123-30. [PMID: 24268520 DOI: 10.1016/j.it.2013.10.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 10/23/2013] [Accepted: 10/24/2013] [Indexed: 01/31/2023]
Abstract
Nucleotide-binding oligomerization domain protein (NOD)1 and NOD2 participate in signaling pathways that detect pathogen-induced processes, such as the presence of peptidoglycan fragments in the host cell cytosol, as danger signals. Recent work suggests that peptidoglycan fragments activate NOD1 indirectly, through activation of the small Rho GTPase Ras-related C3 botulinum toxin substrate 1 (RAC1). Excessive activation of small Rho GTPases by virulence factors of enteric pathogens also triggers the NOD1 signaling pathway. Many enteric pathogens use virulence factors that alter the activation state of small Rho GTPases, thereby manipulating the host cell cytoskeleton of intestinal epithelial cells to promote bacterial attachment or entry. These data suggest that the NOD1 signaling pathway in intestinal epithelial cells provides an important sentinel function for detecting 'breaking and entering' by enteric pathogens.
Collapse
Affiliation(s)
- A Marijke Keestra
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Avenue, Davis CA 95616, USA
| | - Andreas J Bäumler
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Avenue, Davis CA 95616, USA.
| |
Collapse
|
31
|
Park S, Ha SD, Coleman M, Meshkibaf S, Kim SO. p62/SQSTM1 enhances NOD2-mediated signaling and cytokine production through stabilizing NOD2 oligomerization. PLoS One 2013; 8:e57138. [PMID: 23437331 PMCID: PMC3577775 DOI: 10.1371/journal.pone.0057138] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 01/18/2013] [Indexed: 02/04/2023] Open
Abstract
NOD2 is a cytosolic pattern-recognition receptor that senses muramyl dipeptide of peptidoglycan that constitutes the bacterial cell wall, and plays an important role in maintaining immunological homeostasis in the intestine. To date, multiple molecules have shown to be involved in regulating NOD2 signaling cascades. p62 (sequestosome-1; SQSTM1) is a multifaceted scaffolding protein involved in trafficking molecules to autophagy, and regulating signal cascades activated by Toll-like receptors, inflammasomes and several cytokine receptors. Here, we show that p62 positively regulates NOD2-induced NF-κB activation and p38 MAPK, and subsequent production of cytokines IL-1β and TNF-α. p62 associated with the nucleotide binding domain of NOD2 through a bi-directional interaction mediated by either TRAF6-binding or ubiquitin-associated domains. NOD2 formed a large complex with p62 in an electron-dense area of the cytoplasm, which increased its signaling cascade likely through preventing its degradation. This study for the first time demonstrates a novel role of p62 in enhancing NOD2 signaling effects.
Collapse
Affiliation(s)
- Sangwook Park
- Department of Microbiology and Immunology and Centre for Human Immunology, Siebens-Drake Research Institute, University of Western Ontario, London, Ontario, Canada
| | | | | | | | | |
Collapse
|
32
|
Cagliani R, Pozzoli U, Forni D, Cassinotti A, Fumagalli M, Giani M, Fichera M, Lombardini M, Ardizzone S, Asselta R, de Franchis R, Riva S, Biasin M, Comi GP, Bresolin N, Clerici M, Sironi M. Crohn's disease loci are common targets of protozoa-driven selection. Mol Biol Evol 2013; 30:1077-87. [PMID: 23389767 DOI: 10.1093/molbev/mst020] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Previous studies indicated that a few risk variants for autoimmune diseases are subject to pathogen-driven selection. Nonetheless, the proportion of risk loci that has been targeted by pathogens and the type of infectious agent(s) that exerted the strongest pressure remain to be evaluated. We assessed whether different pathogens exerted a pressure on known Crohn's disease (CD) risk variants and demonstrate that these single-nucleotide polymorphisms (SNPs) are preferential targets of protozoa-driven selection (P = 0.008). In particular, 19% of SNPs associated with CD have been subject to protozoa-driven selective pressure. Analysis of P values from genome-wide association studies (GWASs) and meta-analyses indicated that protozoan-selected SNPs display significantly stronger association with CD compared with nonselected variants. This same behavior was not observed for GWASs of other autoimmune diseases. Thus, we integrated selection signatures and meta-analysis results to prioritize five genic SNPs for replication in an Italian cohort. Three SNPs were significantly associated with CD risk, and combination with meta-analysis results yielded P values < 4 × 10(-6). The bona fide risk alleles are located in ARHGEF2, an interactor of NOD2, NSF, a gene involved in autophagy, and HEBP1, encoding a possible mediator of inflammation. Pathway analysis indicated that ARHGEF2 and NSF participate in a molecular network, which also contains VAMP3 (previously associated to CD) and is centered around miR-31 (known to be disregulated in CD). Thus, we show that protozoa-driven selective pressure had a major role in shaping predisposition to CD. We next used this information for the identification of three bona fide novel susceptibility loci.
Collapse
Affiliation(s)
- Rachele Cagliani
- Bioinformatics Laboratory, Scientific Institute IRCCS E Medea, Bosisio Parini, LC, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Mo J, Boyle JP, Howard CB, Monie TP, Davis BK, Duncan JA. Pathogen sensing by nucleotide-binding oligomerization domain-containing protein 2 (NOD2) is mediated by direct binding to muramyl dipeptide and ATP. J Biol Chem 2012; 287:23057-67. [PMID: 22549783 PMCID: PMC3391102 DOI: 10.1074/jbc.m112.344283] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Revised: 04/11/2012] [Indexed: 11/07/2022] Open
Abstract
Nucleotide binding and oligomerization domain-containing protein 2 (NOD2/Card15) is an intracellular protein that is involved in the recognition of bacterial cell wall-derived muramyl dipeptide. Mutations in the gene encoding NOD2 are associated with inherited inflammatory disorders, including Crohn disease and Blau syndrome. NOD2 is a member of the nucleotide-binding domain and leucine-rich repeat-containing protein gene (NLR) family. Nucleotide binding is thought to play a critical role in signaling by NLR family members. However, the molecular mechanisms underlying signal transduction by these proteins remain largely unknown. Mutations in the nucleotide-binding domain of NOD2 have been shown to alter its signal transduction properties in response to muramyl dipeptide in cellular assays. Using purified recombinant protein, we now demonstrate that NOD2 binds and hydrolyzes ATP. Additionally, we have found that the purified recombinant protein is able to bind directly to muramyl dipeptide and can associate with known NOD2-interacting proteins in vitro. Binding of NOD2 to muramyl dipeptide and homo-oligomerization of NOD2 are enhanced by ATP binding, suggesting a model of the molecular mechanism for signal transduction that involves binding of nucleotide followed by binding of muramyl dipeptide and oligomerization of NOD2 into a signaling complex. These findings set the stage for further studies into the molecular mechanisms that underlie detection of muramyl dipeptide and assembly of NOD2-containing signaling complexes.
Collapse
Affiliation(s)
- Jinyao Mo
- From the Department of Medicine, Division of Infectious Diseases, University of North Carolina, Chapel Hill, North Carolina 27599-7030
| | - Joseph P. Boyle
- the Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | | | - Tom P. Monie
- the Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Beckley K. Davis
- the Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599-7295, and
| | - Joseph A. Duncan
- From the Department of Medicine, Division of Infectious Diseases, University of North Carolina, Chapel Hill, North Carolina 27599-7030
- the Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599-7295, and
- the Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina 27599-7365
| |
Collapse
|
34
|
Dietert RR. Inflammatory Bowel Disease and Celiac Disease: Environmental Risks Factors and Consequences. MOLECULAR AND INTEGRATIVE TOXICOLOGY 2012:291-312. [DOI: 10.1007/978-1-61779-812-2_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|