Zhou M, Liu L, Tan Y, Huang R, Yang Z. The mechanism of Taohong Siwu decoction in treating chemotherapy-induced peripheral neuropathy: a network pharmacology and molecular docking study.
Transl Cancer Res 2024;
13:3842-3853. [PMID:
39145055 PMCID:
PMC11319946 DOI:
10.21037/tcr-24-1019]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 07/19/2024] [Indexed: 08/16/2024]
Abstract
Background
Taohong Siwu decoction (THSWD) is a classic traditional Chinese medicine (TCM) formula known for its effects in promoting blood circulation, removing blood stasis, and rejuvenating energy. There have been clinical reports of THSWD treating chemotherapy-induced peripheral neuropathy (CIPN) caused by paclitaxel. We conducted a network pharmacology and molecular docking analysis to further clarify the molecular mechanisms by which THSWD exerts its protective effects against CIPN.
Methods
Chemical components of THSWD and their corresponding targets were obtained through the traditional Chinese medicine systems pharmacology database and analysis platform (TCMSP), and related targets of CIPN were searched in disease databases including Online Mendelian Inheritance in Man (OMIM), Therapeutic Target Database (TTD), GeneCards, and DrugBank. Common targets between THSWD and CIPN were identified using Venn diagrams. A protein-protein interaction (PPI) network was constructed using Search Tool for the Retrieval of Interacting Genes/Proteins (STRING), which was followed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. AutoDock and PyMOL were used for the molecular docking validation of the key components of THSWD with core targets.
Results
At total of 69 chemical components of THSWD were identified, corresponding to 856 targets; 2,297 targets were associated with CIPN, with an intersection of 105 common targets. PPI analysis identified eight core targets: MYC, TNF, MAPK14, AKT1, ESR1, RELA, TP53, and HSP90AA1; KEGG enrichment analysis implicated signaling pathways such as PI3K-Akt, NF-κB, and HIF-1, etc. Molecular docking results indicated that the selected active components and their corresponding target proteins have good binding activity.
Conclusions
Through network pharmacology, this study found that THSWD has significant advantages in treating CIPN. By analyzing potential core targets, biological functions, and involved signaling pathways, we clarified the potential molecular biological mechanisms involved in THSWD's treatment effect. This study provides a theoretical basis for the clinical application of THSWD in treating CIPN.
Collapse