Pandey V. Predictionof Environmental FateandToxicityofInsecticidesUsing Multi-Target QSAR Approach.
Chem Biodivers 2024;
21:e202301213. [PMID:
38109053 DOI:
10.1002/cbdv.202301213]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 12/03/2023] [Indexed: 12/19/2023]
Abstract
Ecotoxicological risk assessments form the foundation of regulatory decisions for industrial chemicals used in various sectors. In this study, a multi-target-QSAR model established by a backpropagation neural network trained with the Levenberg-Marquardt (LM) algorithm was used to construct a statistically robust and easily interpretable Mt-QSAR model with high external predictability for the simultaneous prediction of the environmental fate in form of octanol-water partition coefficient (LogP), (BCF) and acute oral toxicity in mammals and birds (LD50rat ) and (LD50bird ) for a wide range of chemical structural classes of insecticides. Principal component analysis was performed on descriptors selected by the SW-MLR method, and the selected PCs were used for constructing the SW-MLR-PCA-ANN model. The developed well-trained model (RMSE=0.83, MPE=0.004, CCC=0.82, IIC=0.78, R2 =0.69) was statistically robust as indicated by the external validation parameters (RMSE=0.93, MPE=0.008, CCC=0.77, IIC=0.68, R2 =0.61). The AD of the developed Mt-QSAR model was also defined to identify the most reliable predictions. Finally, the missing values in the dataset for the aforementioned targets were predicted using the constructed Mt-QSAR model. The proposed approach can be used for simultaneous prediction of the environmental fate of new insecticides, especially ones that haven't been tested yet.
Collapse