1
|
De Leon-Oliva D, Boaru DL, Minaya-Bravo AM, De Castro-Martinez P, Fraile-Martinez O, Garcia-Montero C, Cobo-Prieto D, Barrena-Blázquez S, Lopez-Gonzalez L, Albillos A, Alvarez-Mon M, Saez MA, Diaz-Pedrero R, Ortega MA. Improving understanding of ferroptosis: Molecular mechanisms, connection with cellular senescence and implications for aging. Heliyon 2024; 10:e39684. [PMID: 39553553 PMCID: PMC11564042 DOI: 10.1016/j.heliyon.2024.e39684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/20/2024] [Accepted: 10/21/2024] [Indexed: 11/19/2024] Open
Abstract
In the face of cell damage, cells can initiate a response ranging from survival to death, the balance being crucial for tissue homeostasis and overall health. Cell death, in both accidental and regulated forms, plays a fundamental role in maintaining tissue homeostasis. Among the regulated mechanisms of cell death, ferroptosis has garnered attention for its iron-dependent phospholipid (PL) peroxidation and its implications in aging and age-related disorders, as well as for its therapeutic relevance. In this review, we provide an overview of the mechanisms, regulation, and physiological and pathological roles of ferroptosis. We present new insights into the relationship between ferroptosis, cellular senescence and aging, emphasizing how alterations in ferroptosis pathways contribute to aging-related tissue dysfunction. In addition, we examine the therapeutic potential of ferroptosis in aging-related diseases, offering innovative insights into future interventions aimed at mitigating the effects of aging and promoting longevity.
Collapse
Affiliation(s)
- Diego De Leon-Oliva
- Department of Medicine and Medical Specialities, (CIBERehd), Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034, Madrid, Spain
| | - Diego Liviu Boaru
- Department of Medicine and Medical Specialities, (CIBERehd), Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034, Madrid, Spain
| | - Ana M. Minaya-Bravo
- Department of Medicine and Medical Specialities, (CIBERehd), Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034, Madrid, Spain
| | - Patricia De Castro-Martinez
- Department of Medicine and Medical Specialities, (CIBERehd), Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034, Madrid, Spain
| | - Oscar Fraile-Martinez
- Department of Medicine and Medical Specialities, (CIBERehd), Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034, Madrid, Spain
| | - Cielo Garcia-Montero
- Department of Medicine and Medical Specialities, (CIBERehd), Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034, Madrid, Spain
| | - David Cobo-Prieto
- Department of Medicine and Medical Specialities, (CIBERehd), Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcala de Henares, Spain
- Immune System Diseases-Rheumatology Service, Central University Hospital of Defence-UAH Madrid, 28801, Alcala de Henares, Spain
| | - Silvestra Barrena-Blázquez
- Department of Medicine and Medical Specialities, (CIBERehd), Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034, Madrid, Spain
- Department of General and Digestive Surgery, General and Digestive Surgery, Príncipe de Asturias Universitary Hospital, Alcala de Henares, Spain
| | - Laura Lopez-Gonzalez
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034, Madrid, Spain
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcala de Henares, Spain
| | - Agustín Albillos
- Department of Medicine and Medical Specialities, (CIBERehd), Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034, Madrid, Spain
- Gastroenterology and Hepatology Service, Ramón y Cajal University Hospital, University of Alcalá, IRYCIS, Network Biomedical Research Center for Liver and Digestive Diseases (CIBERehd), Carlos III Health Institute, Madrid, Spain
| | - Melchor Alvarez-Mon
- Department of Medicine and Medical Specialities, (CIBERehd), Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034, Madrid, Spain
- Immune System Diseases-Rheumatology, Oncology Service an Internal Medicine (CIBEREHD), University Hospital Príncipe de Asturias, 28806, Alcala de Henares, Spain
| | - Miguel A. Saez
- Department of Medicine and Medical Specialities, (CIBERehd), Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034, Madrid, Spain
- Pathological Anatomy Service, Central University Hospital of Defence-UAH Madrid, 28801, Alcala de Henares, Spain
| | - Raul Diaz-Pedrero
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034, Madrid, Spain
- Department of General and Digestive Surgery, General and Digestive Surgery, Príncipe de Asturias Universitary Hospital, Alcala de Henares, Spain
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcala de Henares, Spain
| | - Miguel A. Ortega
- Department of Medicine and Medical Specialities, (CIBERehd), Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034, Madrid, Spain
| |
Collapse
|
2
|
Zhang M, Li H, Ma J, Yang C, Yang Y, Zhao B, Tie Y, Wang S. Effects of Zinc Combined with Metformin on Zinc Homeostasis, Blood-Epididymal Barrier, and Epididymal Absorption in Male Diabetic Mice. Biol Trace Elem Res 2024:10.1007/s12011-024-04171-y. [PMID: 38589680 DOI: 10.1007/s12011-024-04171-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/01/2024] [Indexed: 04/10/2024]
Abstract
Diabetes increases the likelihood of germ cell damage, hypogonadism, and male infertility. Diabetes leads to lower zinc (Zn) levels, an important micronutrient for maintaining male fertility, and zinc deficiency can lead to decreased male fertility through multiple mechanisms. The aim of this study was to investigate the effect of combined metformin and zinc administration on epididymis in diabetic mice; 10 of 50 male mice were randomly selected as the control group (group C), and the remaining 40 mice were randomly divided into untreated diabetes group (group D), diabetes + zinc group (group Z), diabetes + metformin group (group M), and diabetes + metformin + zinc group (group ZM) with 10 mice each. Diabetic mice in group Z received oral zinc (10 mg/kg) once daily for 4 weeks; diabetic mice in group M received oral metformin (200 mg/kg) once daily for 4 weeks; diabetic mice in group ZM received oral metformin and zinc once daily for 4 weeks; and groups C and D received the same amount of sterile water by gavage. Overnight fasted mice were sacrificed, and blood samples, mouse epididymides, and sperm were collected for further experiments. In group D, fasting blood glucose and insulin resistance index increased significantly, semen quality, serum insulin, and testosterone decreased, and epididymal structure was disordered. In group D, epididymal tissue zinc, free zinc ions in the caput, and cauda of epididymis and zinc transporter (ZnT2) decreased significantly, while ZIP12, metallothionein (MT), and metal transcription factor (MTF1) increased significantly. In addition, the expressions of blood-epididymal barrier (BEB)-related molecules (including ZO-1 β-catenin and N-cadherin) and aquaporins (AQPs, including AQP3, AQP9, and AQP11) in the epididymis of mice in group D were significantly decreased. In addition, compared with groups D, Z, and M, in the ZM group, the expression of BEB-related molecules (including ZO-1, β-catenin, and N-cadherin) and aquaporins (AQP3, AQP9, and AQP11) in epididymis tissue were significantly increased, and sperm motility and serum testosterone were significantly increased. It was concluded that male diabetic mice have a disturbed epididymal structure and decreased semen quality by causing an imbalance in epididymal zinc homeostasis, BEB, and impaired absorptive function. The combination of zinc and metformin is an effective and safe alternative treatment and provides additional benefits over metformin alone.
Collapse
Affiliation(s)
- Menghui Zhang
- Graduate School, North China University of Science and Technology, Tangshan, 063210, China
| | - Huanhuan Li
- Hebei Key Laboratory of Reproductive Medicine, Hebei Reproductive Health Hospital, Shijiazhuang, 050071, China
| | - Jing Ma
- Hebei Key Laboratory of Reproductive Medicine, Hebei Reproductive Health Hospital, Shijiazhuang, 050071, China
| | - Chaoju Yang
- Department of Laboratory, Hebei Provincial People's Hospital, Shijiazhuang, 050051, China
| | - Yang Yang
- Hebei Key Laboratory of Reproductive Medicine, Hebei Reproductive Health Hospital, Shijiazhuang, 050071, China
| | - Bangrong Zhao
- Hebei Key Laboratory of Reproductive Medicine, Hebei Reproductive Health Hospital, Shijiazhuang, 050071, China
| | - Yanqing Tie
- Graduate School, North China University of Science and Technology, Tangshan, 063210, China.
- Department of Laboratory, Hebei Provincial People's Hospital, Shijiazhuang, 050051, China.
| | - Shusong Wang
- Hebei Key Laboratory of Reproductive Medicine, Hebei Reproductive Health Hospital, Shijiazhuang, 050071, China.
| |
Collapse
|
3
|
Song S, Yu J. Identification of the shared genes in type 2 diabetes mellitus and osteoarthritis and the role of quercetin. J Cell Mol Med 2024; 28:e18127. [PMID: 38332532 PMCID: PMC10853600 DOI: 10.1111/jcmm.18127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/28/2023] [Accepted: 01/09/2024] [Indexed: 02/10/2024] Open
Abstract
This study investigated the underlying comorbidity mechanism between type 2 diabetes mellitus (T2DM) and osteoarthritis (OA), while also assessing the therapeutic potential of quercetin for early intervention and treatment of these two diseases. The shared genes were obtained through GEO2R, limma and weighted gene co-expression network analysis (WGCNA), and validated using clinical databases and the area under the curves (ROC). Functional enrichment analysis was conducted to elucidate the underlying mechanisms of comorbidity between T2DM and OA. The infiltration of immune cells was analysed using the CIBERSORT algorithm in conjunction with ESTIMATE algorithm. Subsequently, transcriptional regulation analysis, potential chemical prediction, gene-disease association, relationships between the shared genes and ferroptosis as well as immunity-related genes were investigated along with molecular docking. We identified the 12 shared genes (EPHA3, RASIP1, PENK, LRRC17, CEBPB, EFEMP2, UBAP1, PPP1R15A, SPEN, MAFF, GADD45B and KLF4) across the four datasets. Our predictions suggested that targeting these shared genes could potentially serve as therapeutic interventions for both T2DM and OA. Specifically, they are involved in key signalling pathways such as p53, IL-17, NF-kB and MAPK signalling pathways. Furthermore, the regulation of ferroptosis and immunity appears to be interconnected in both diseases. Notably, in this context quercetin emerges as a promising drug candidate for treating T2DM and OA by specifically targeting the shared genes. We conducted a bioinformatics analysis to identify potential therapeutic targets, mechanisms and drugs for T2DM and OA, thereby offering novel insights into molecular therapy for these two diseases.
Collapse
Affiliation(s)
- Siyuan Song
- Affiliated Hospital of Nanjing University of Chinese MedicineNanjingJiangsuChina
- Nanjing University of Chinese MedicineNanjingJiangsuChina
- Department of Endocrinology, Jiangsu Province Hospital of Chinese MedicineAffiliated Hospital of Nanjing University of Chinese MedicineNanjingJiangsuChina
| | - Jiangyi Yu
- Affiliated Hospital of Nanjing University of Chinese MedicineNanjingJiangsuChina
- Nanjing University of Chinese MedicineNanjingJiangsuChina
- Department of Endocrinology, Jiangsu Province Hospital of Chinese MedicineAffiliated Hospital of Nanjing University of Chinese MedicineNanjingJiangsuChina
| |
Collapse
|