1
|
Vadon C, Magiera MM, Cimarelli A. TRIM Proteins and Antiviral Microtubule Reorganization: A Novel Component in Innate Immune Responses? Viruses 2024; 16:1328. [PMID: 39205302 DOI: 10.3390/v16081328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
TRIM proteins are a family of innate immune factors that play diverse roles in innate immunity and protect the cell against viral and bacterial aggression. As part of this special issue on TRIM proteins, we will take advantage of our findings on TRIM69, which acts by reorganizing the microtubules (MTs) in a manner that is fundamentally antiviral, to more generally discuss how host-pathogen interactions that take place for the control of the MT network represent a crucial facet of the struggle that opposes viruses to their cell environment. In this context, we will present several other TRIM proteins that are known to interact with microtubules in situations other than viral infection, and we will discuss evidence that may suggest a possible contribution to viral control. Overall, the present review will highlight the importance that the control of the microtubule network bears in host-pathogen interactions.
Collapse
Affiliation(s)
- Charlotte Vadon
- Centre International de Recherche en Infectiologie (CIRI), Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69364 Lyon, France
| | - Maria Magda Magiera
- Institut Curie, CNRS, UMR3348, Centre Universitaire, Bat 110, F-91405 Orsay, France
| | - Andrea Cimarelli
- Centre International de Recherche en Infectiologie (CIRI), Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69364 Lyon, France
| |
Collapse
|
2
|
Wei Y, Li W, Huang J, Braunstein Z, Liu X, Li X, Deiuliis J, Chen J, Min X, Yang H, Gong Q, He L, Liu Z, Dong L, Zhong J. Midline-1 regulates effector T cell motility in experimental autoimmune encephalomyelitis via mTOR/microtubule pathway. Theranostics 2024; 14:1168-1180. [PMID: 38323310 PMCID: PMC10845203 DOI: 10.7150/thno.87130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 01/03/2024] [Indexed: 02/08/2024] Open
Abstract
Background: Effector T cell activation, migration, and proinflammatory cytokine production are crucial steps in autoimmune disorders such as multiple sclerosis (MS). While several therapeutic approaches targeting T cell activation and proinflammatory cytokines have been developed for the treatment of autoimmune diseases, there are no therapeutic agents targeting the migration of effector T cells, largely due to our limited understanding of regulatory mechanisms of T cell migration in autoimmune disease. Here we reported that midline-1 (Mid1) is a key regulator of effector T cell migration in experimental autoimmune encephalomyelitis (EAE), a widely used animal model of MS. Methods: Mid1-/- mice were generated by Crispr-Cas9 technology. T cell-specific Mid1 knockout chimeric mice were generated by adoptive transfer of Mid1-/- T cells into lymphocyte deficient Rag2-/- mice. Mice were either immunized with MOG35-55 (active EAE) or received adoptive transfer of pathogenic T cells (passive EAE) to induce EAE. In vitro Transwell® assay or in vivo footpad injection were used to assess the migration of T cells. Results: Mid1 was significantly increased in the spinal cord of wild-type (Wt) EAE mice and disruption of Mid1 in T cells markedly suppressed the development of both active and passive EAE. Transcriptomic and flow cytometric analyses revealed a marked reduction in effector T cell number in the central nervous system of Mid1-/- mice after EAE induction. Conversely, an increase in the number of T cells was observed in the draining lymph nodes of Mid1-/- mice. Mice that were adoptively transferred with pathogenic Mid1-/- T cells also exhibited milder symptoms of EAE, along with a lower T cell count in the spinal cord. Additionally, disruption of Mid1 significantly inhibited T-cell migration both in vivo and in vitro. RNA sequencing suggests a suppression in multiple inflammatory pathways in Mid1-/- mice, including mTOR signaling that plays a critical role in cell migration. Subsequent experiments confirmed the interaction between Mid1 and mTOR. Suppression of mTOR with rapamycin or microtubule spindle formation with colcemid blunted the regulatory effect of Mid1 on T cell migration. In addition, mTOR agonists MHY1485 and 3BDO restored the migratory deficit caused by Mid1 depletion. Conclusion: Our data suggests that Mid1 regulates effector T cell migration to the central nervous system via mTOR/microtubule pathway in EAE, and thus may serve as a potential therapeutic target for the treatment of MS.
Collapse
Affiliation(s)
- Yingying Wei
- Department of Rheumatology and Immunology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- Cardiovascular Research Institute, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Wenjuan Li
- Department of Rheumatology and Immunology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Jie Huang
- Department of Rheumatology and Immunology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Zachary Braunstein
- Wexner Medical Center, The Ohio State University, Columbus, Ohio 43210, USA
| | - Xinxin Liu
- Department of Rheumatology and Immunology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Xinlu Li
- Department of Rheumatology and Immunology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Jeffrey Deiuliis
- Cardiovascular Research Institute, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Jun Chen
- Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Hubei Key Laboratory of Wudang Local Chinese Medicine Research (Hubei University of Medicine), Shiyan, Hubei 442008, China
| | - Xinwen Min
- Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Hubei Key Laboratory of Wudang Local Chinese Medicine Research (Hubei University of Medicine), Shiyan, Hubei 442008, China
| | - Handong Yang
- Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Hubei Key Laboratory of Wudang Local Chinese Medicine Research (Hubei University of Medicine), Shiyan, Hubei 442008, China
| | - Quan Gong
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, Hubei 434023, China
| | - Leya He
- Department of Gastrointestinal Surgery, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Zheng Liu
- Institute of Allergy and Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Lingli Dong
- Department of Rheumatology and Immunology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Jixin Zhong
- Department of Rheumatology and Immunology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- Cardiovascular Research Institute, Case Western Reserve University, Cleveland, Ohio 44106, USA
- Institute of Allergy and Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- Key Laboratory of Vascular Aging (HUST), Ministry of Education, Wuhan, Hubei 430030, China
| |
Collapse
|
3
|
Preiss NK, Kamal Y, Wilkins OM, Li C, Kolling FW, Trask HW, Usherwood YK, Cheng C, Frost HR, Usherwood EJ. Characterizing control of memory CD8 T cell differentiation by BTB-ZF transcription factor Zbtb20. Life Sci Alliance 2023; 6:e202201683. [PMID: 37414528 PMCID: PMC10326419 DOI: 10.26508/lsa.202201683] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 07/08/2023] Open
Abstract
Members of the BTB-ZF transcription factor family regulate the immune system. Our laboratory identified that family member Zbtb20 contributes to the differentiation, recall responses, and metabolism of CD8 T cells. Here, we report a characterization of the transcriptional and epigenetic signatures controlled by Zbtb20 at single-cell resolution during the effector and memory phases of the CD8 T cell response. Without Zbtb20, transcriptional programs associated with memory CD8 T cell formation were up-regulated throughout the CD8 T response. A signature of open chromatin was associated with genes controlling T cell activation, consistent with the known impact on differentiation. In addition, memory CD8 T cells lacking Zbtb20 were characterized by open chromatin regions with overrepresentation of AP-1 transcription factor motifs and elevated RNA- and protein-level expressions of the corresponding AP-1 components. Finally, we describe motifs and genomic annotations from the DNA targets of Zbtb20 in CD8 T cells identified by cleavage under targets and release under nuclease (CUT&RUN). Together, these data establish the transcriptional and epigenetic networks contributing to the control of CD8 T cell responses by Zbtb20.
Collapse
Affiliation(s)
- Nicholas K Preiss
- Microbiology and Immunology Department, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Yasmin Kamal
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Owen M Wilkins
- Department of Biomedical Data Science, Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
- Genomics and Molecular Biology Shared Resource, Dartmouth Cancer Center, Geisel School of Medicine, Lebanon, NH, USA
| | - Chenyang Li
- Genomic Medicine Department, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center UTHealth Houston, Houston, TX, USA
| | - Fred W Kolling
- Genomics and Molecular Biology Shared Resource, Dartmouth Cancer Center, Geisel School of Medicine, Lebanon, NH, USA
| | - Heidi W Trask
- Genomics and Molecular Biology Shared Resource, Dartmouth Cancer Center, Geisel School of Medicine, Lebanon, NH, USA
| | - Young-Kwang Usherwood
- Microbiology and Immunology Department, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Chao Cheng
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- The Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA
| | - Hildreth R Frost
- Department of Biomedical Data Science, Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
| | - Edward J Usherwood
- Microbiology and Immunology Department, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| |
Collapse
|
4
|
Baldini R, Mascaro M, Meroni G. The MID1 gene product in physiology and disease. Gene 2020; 747:144655. [PMID: 32283114 PMCID: PMC8011326 DOI: 10.1016/j.gene.2020.144655] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/22/2020] [Accepted: 04/06/2020] [Indexed: 12/23/2022]
Abstract
MID1 is an E3 ubiquitin ligase of the Tripartite Motif (TRIM) subfamily of RING-containing proteins, hence also known as TRIM18. MID1 is a microtubule-binding protein found in complex with the catalytic subunit of PP2A (PP2Ac) and its regulatory subunit alpha 4 (α4). To date, several substrates and interactors of MID1 have been described, providing evidence for the involvement of MID1 in a plethora of essential biological processes, especially during embryonic development. Mutations in the MID1 gene are responsible of the X-linked form of Opitz syndrome (XLOS), a multiple congenital disease characterised by defects in the development of midline structures during embryogenesis. Here, we review MID1-related physiological mechanisms as well as the pathological implication of the MID1 gene in XLOS and in other clinical conditions.
Collapse
Affiliation(s)
- Rossella Baldini
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Martina Mascaro
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Germana Meroni
- Department of Life Sciences, University of Trieste, Trieste, Italy.
| |
Collapse
|
5
|
Nguyen D, Stutz R, Schorr S, Lang S, Pfeffer S, Freeze HH, Förster F, Helms V, Dudek J, Zimmermann R. Proteomics reveals signal peptide features determining the client specificity in human TRAP-dependent ER protein import. Nat Commun 2018; 9:3765. [PMID: 30217974 PMCID: PMC6138672 DOI: 10.1038/s41467-018-06188-z] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 08/23/2018] [Indexed: 12/22/2022] Open
Abstract
In mammalian cells, one-third of all polypeptides are transported into or across the ER membrane via the Sec61 channel. While the Sec61 complex facilitates translocation of all polypeptides with amino-terminal signal peptides (SP) or transmembrane helices, the Sec61-auxiliary translocon-associated protein (TRAP) complex supports translocation of only a subset of precursors. To characterize determinants of TRAP substrate specificity, we here systematically identify TRAP-dependent precursors by analyzing cellular protein abundance changes upon TRAP depletion using quantitative label-free proteomics. The results are validated in independent experiments by western blotting, quantitative RT-PCR, and complementation analysis. The SPs of TRAP clients exhibit above-average glycine-plus-proline content and below-average hydrophobicity as distinguishing features. Thus, TRAP may act as SP receptor on the ER membrane’s cytosolic face, recognizing precursor polypeptides with SPs of high glycine-plus-proline content and/or low hydrophobicity, and triggering substrate-specific opening of the Sec61 channel through interactions with the ER-lumenal hinge of Sec61α. While Sec61 enables ER import of all polypeptides with N-terminal signal peptides, only selected clients are accepted for TRAP-assisted ER import. Here, the authors use a proteomics approach to characterize TRAP-dependent clients, identifying signal peptide features that govern recognition by TRAP.
Collapse
Affiliation(s)
- Duy Nguyen
- Center for Bioinformatics, Saarland University, 66041, Saarbrücken, Germany
| | - Regine Stutz
- Medical Biochemistry and Molecular Biology, Saarland University, 66421, Homburg, Germany
| | - Stefan Schorr
- Medical Biochemistry and Molecular Biology, Saarland University, 66421, Homburg, Germany
| | - Sven Lang
- Medical Biochemistry and Molecular Biology, Saarland University, 66421, Homburg, Germany
| | - Stefan Pfeffer
- Max-Planck Institute of Biochemistry, Department of Molecular Structural Biology, 82152, Martinsried, Germany
| | - Hudson H Freeze
- Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - Friedrich Förster
- Bijvoet Center for Biomolecular Research, Utrecht University, 3584, CH, Utrecht, The Netherlands
| | - Volkhard Helms
- Center for Bioinformatics, Saarland University, 66041, Saarbrücken, Germany.
| | - Johanna Dudek
- Medical Biochemistry and Molecular Biology, Saarland University, 66421, Homburg, Germany.
| | - Richard Zimmermann
- Medical Biochemistry and Molecular Biology, Saarland University, 66421, Homburg, Germany.
| |
Collapse
|
6
|
Stage-specific roles for Zmiz1 in Notch-dependent steps of early T-cell development. Blood 2018; 132:1279-1292. [PMID: 30076146 DOI: 10.1182/blood-2018-02-835850] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 07/29/2018] [Indexed: 12/15/2022] Open
Abstract
Notch1 signaling must elevate to high levels in order to drive the proliferation of CD4-CD8- double-negative (DN) thymocytes and progression to the CD4+CD8+ double-positive (DP) stage through β-selection. During this critical phase of pre-T-cell development, which is also known as the DN-DP transition, it is unclear whether the Notch1 transcriptional complex strengthens its signal output as a discrete unit or through cofactors. We previously showed that the protein inhibitor of activated STAT-like coactivator Zmiz1 is a context-dependent cofactor of Notch1 in T-cell leukemia. We also showed that withdrawal of Zmiz1 generated an early T-lineage progenitor (ETP) defect. Here, we show that this early defect seems inconsistent with loss-of-Notch1 function. In contrast, at the later pre-T-cell stage, withdrawal of Zmiz1 impaired the DN-DP transition by inhibiting proliferation, like withdrawal of Notch. In pre-T cells, but not ETPs, Zmiz1 cooperatively regulated Notch1 target genes Hes1, Lef1, and Myc. Enforced expression of either activated Notch1 or Myc partially rescued the Zmiz1-deficient DN-DP defect. We identified residues in the tetratricopeptide repeat (TPR) domain of Zmiz1 that bind Notch1. Mutating only a single residue impaired the Zmiz1-Notch1 interaction, Myc induction, the DN-DP transition, and leukemic proliferation. Similar effects were seen using a dominant-negative TPR protein. Our studies identify stage-specific roles of Zmiz1. Zmiz1 is a context-specific cofactor for Notch1 during Notch/Myc-dependent thymocyte proliferation, whether normal or malignant. Finally, we highlight a vulnerability in leukemic cells that originated from a developmentally important Zmiz1-Notch1 interaction that is hijacked during transformation from normal pre-T cells.
Collapse
|
7
|
Boding L, Hansen AK, Meroni G, Levring TB, Woetmann A, Ødum N, Bonefeld CM, Geisler C. MID2 can substitute for MID1 and control exocytosis of lytic granules in cytotoxic T cells. APMIS 2015; 123:682-7. [PMID: 25924778 DOI: 10.1111/apm.12402] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 04/10/2015] [Indexed: 11/30/2022]
Abstract
We have recently shown that the E3 ubiquitin ligase midline 1 (MID1) is upregulated in murine cytotoxic lymphocytes (CTL), where it controls exocytosis of lytic granules and the killing capacity. Accordingly, CTL from MID1 knock-out (MID1(-/-)) mice have a 25-30% reduction in exocytosis of lytic granules and cytotoxicity compared to CTL from wild-type (WT) mice. We wondered why the MID1 gene knock-out did not affect exocytosis and cytotoxicity more severely and speculated whether MID2, a close homologue of MID1, might partially compensate for the loss of MID1 in MID1(-/-) CTL. Here, we showed that MID2, like MID1, is upregulated in activated murine T cells. Furthermore, MID1(-/-) CTL upregulated MID2 two-twenty-fold stronger than CTL from WT mice, suggesting that MID2 might compensate for MID1. In agreement, transfection of MID2 into MID1(-/-) CTL completely rescued exocytosis of lytic granules in MID1(-/-) CTL, and vice versa, knock-down of MID2 inhibited exocytosis of lytic granules in both WT and MID1(-/-) CTL, demonstrating that both MID1 and MID2 play a central role in the regulation of granule exocytosis and that functional redundancy exists between MID1 and MID2 in CTL.
Collapse
Affiliation(s)
- Lasse Boding
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ann K Hansen
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Germana Meroni
- Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Trieste, Italy
| | - Trine B Levring
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anders Woetmann
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Niels Ødum
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Charlotte M Bonefeld
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Carsten Geisler
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|