1
|
Shahid A, Chambers S, Scott-Thomas A, Bhatia M. Gut Microbiota and Liver Dysfunction in Sepsis: The Role of Inflammatory Mediators and Therapeutic Approaches. Int J Mol Sci 2024; 25:13415. [PMID: 39769181 PMCID: PMC11678143 DOI: 10.3390/ijms252413415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/12/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
Sepsis is a life-threatening complication caused by an uncontrolled immune response to infection that can lead to multi-organ dysfunction, including liver injury. Recent research has shown the critical role of gut microbiota in sepsis pathogenesis, with the gut-liver axis playing a crucial role in disease progression. Mechanisms such as the disruption of the gut barrier and liver injury pathways mediated by cytokines, chemokines, adhesion molecules, hydrogen sulfide (H2S). and substance P (SP) have been the focus of recent studies. Some potential biomarkers and gut microbiota-targeted therapies have shown promise as emerging tools for predicting and managing sepsis. This review describes the role of the gut-liver axis in sepsis and the potential of microbiota-targeted therapies and biomarker-driven interventions to improve sepsis outcomes.
Collapse
Affiliation(s)
| | | | | | - Madhav Bhatia
- Department of Pathology and Biomedical Science, University of Otago, Christchurch 8140, New Zealand; (A.S.); (S.C.); (A.S.-T.)
| |
Collapse
|
2
|
Ma Y, Zhao Y, Zhang X. Factors affecting neutrophil functions during sepsis: human microbiome and epigenetics. J Leukoc Biol 2024; 116:672-688. [PMID: 38734968 DOI: 10.1093/jleuko/qiae107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/02/2024] [Accepted: 04/11/2024] [Indexed: 05/13/2024] Open
Abstract
Sepsis is a severe disease that occurs when the body's immune system reacts excessively to infection. The body's response, which includes an intense antibacterial reaction, can damage its tissues and organs. Neutrophils are the major components of white blood cells in circulation, play a vital role in innate immunity while fighting against infections, and are considered a feature determining sepsis classification. There is a plethora of basic research detailing neutrophil functioning, among which, the study of neutrophil extracellular traps is providing novel insights into mechanisms and treatments of sepsis. This review explores their functions, dysfunctions, and influences in the context of sepsis. The interplay between neutrophils and the human microbiome and the impact of DNA methylation on neutrophil function in sepsis are crucial areas of study. The interaction between neutrophils and the human microbiome is complex, particularly in the context of sepsis, where dysbiosis may occur. We highlight the importance of deciphering neutrophils' functional alterations and their epigenetic features in sepsis because it is critical for defining sepsis endotypes and opening up the possibility for novel diagnostic methods and therapy. Specifically, epigenetic signatures are pivotal since they will provide a novel implication for a sepsis diagnostic method when used in combination with the cell-free DNA. Research is exploring how specific patterns of DNA methylation in neutrophils, detectable in cell-free DNA, could serve as biomarkers for the early detection of sepsis.
Collapse
Affiliation(s)
- Yina Ma
- Department of Urology Surgery, Beijing Chaoyang Hospital, Capital Medical University, Shijingshan District, Beijing 100043, China
| | - Yu Zhao
- Department of Urology Surgery, Beijing Chaoyang Hospital, Capital Medical University, Shijingshan District, Beijing 100043, China
| | - Xin Zhang
- Department of Urology Surgery, Beijing Chaoyang Hospital, Capital Medical University, Shijingshan District, Beijing 100043, China
| |
Collapse
|
3
|
Gao Y, Liu L, Cui Y, Zhang J, Wu X. The causality of gut microbiota on onset and progression of sepsis: a bi-directional Mendelian randomization analysis. Front Immunol 2024; 15:1266579. [PMID: 38698853 PMCID: PMC11063379 DOI: 10.3389/fimmu.2024.1266579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 03/29/2024] [Indexed: 05/05/2024] Open
Abstract
Background Several observational studies have proposed a potential link between gut microbiota and the onset and progression of sepsis. Nevertheless, the causality of gut microbiota and sepsis remains debatable and warrants more comprehensive exploration. Methods We conducted a two-sample Mendelian randomization (MR) analysis to test the causality between gut microbiota and the onset and progression of sepsis. The genome-wide association study (GWAS) summary statistics for 196 bacterial traits were extracted from the MiBioGen consortium, whereas the GWAS summary statistics for sepsis and sepsis-related outcomes came from the UK Biobank. The inverse-variance weighted (IVW) approach was the primary method used to examine the causal association. To complement the IVW method, we utilized four additional MR methods. We performed a series of sensitivity analyses to examine the robustness of the causal estimates. Results We assessed the causality of 196 bacterial traits on sepsis and sepsis-related outcomes. Genus Coprococcus2 [odds ratio (OR) 0.81, 95% confidence interval (CI) (0.69-0.94), p = 0.007] and genus Dialister (OR 0.85, 95% CI 0.74-0.97, p = 0.016) had a protective effect on sepsis, whereas genus Ruminococcaceae UCG011 (OR 1.10, 95% CI 1.01-1.20, p = 0.024) increased the risk of sepsis. When it came to sepsis requiring critical care, genus Anaerostipes (OR 0.49, 95% CI 0.31-0.76, p = 0.002), genus Coprococcus1 (OR 0.65, 95% CI 0.43-1.00, p = 0.049), and genus Lachnospiraceae UCG004 (OR 0.51, 95% CI 0.34-0.77, p = 0.001) emerged as protective factors. Concerning 28-day mortality of sepsis, genus Coprococcus1 (OR 0.67, 95% CI 0.48-0.94, p = 0.020), genus Coprococcus2 (OR 0.48, 95% CI 0.27-0.86, p = 0.013), genus Lachnospiraceae FCS020 (OR 0.70, 95% CI 0.52-0.95, p = 0.023), and genus Victivallis (OR 0.82, 95% CI 0.68-0.99, p = 0.042) presented a protective effect, whereas genus Ruminococcus torques group (OR 1.53, 95% CI 1.00-2.35, p = 0.049), genus Sellimonas (OR 1.25, 95% CI 1.04-1.50, p = 0.019), and genus Terrisporobacter (OR 1.43, 95% CI 1.02-2.02, p = 0.040) presented a harmful effect. Furthermore, genus Coprococcus1 (OR 0.42, 95% CI 0.19-0.92, p = 0.031), genus Coprococcus2 (OR 0.34, 95% CI 0.14-0.83, p = 0.018), and genus Ruminiclostridium6 (OR 0.43, 95% CI 0.22-0.83, p = 0.012) were associated with a lower 28-day mortality of sepsis requiring critical care. Conclusion This MR analysis unveiled a causality between the 21 bacterial traits and sepsis and sepsis-related outcomes. Our findings may help the development of novel microbiota-based therapeutics to decrease the morbidity and mortality of sepsis.
Collapse
Affiliation(s)
| | | | | | | | - Xiuying Wu
- Department of Anesthesia, ShengJing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
4
|
Xu H, You J, He W, Pei L, Han Y, Wang X, Tian Z, Zheng X, Wu E, Ling Y. Dynamic changes in the migratory microbial components of colon tissue during different periods of sepsis in an LPS-induced rat model. Front Cell Infect Microbiol 2024; 13:1330087. [PMID: 38287976 PMCID: PMC10822926 DOI: 10.3389/fcimb.2023.1330087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/26/2023] [Indexed: 01/31/2024] Open
Abstract
Previous studies have shown that bacterial translocation may play an important role in worsening gastrointestinal injury during sepsis. However, the dynamics of specific microbiota components in intestinal tissues at different sepsis stages remain unclear. Rats receiving intraperitoneal lipopolysaccharide (LPS) were sacrificed at 12 h and 48 h post-injection. Routine blood, serum cytokines, and microbiota in colon tissue, colonic contents, and lung tissue at different time points were assessed. Migratory microbial components in colonic tissue at 12 h and 48 h post-LPS were identified using source tracking, characteristic component identification, and abundance difference analyses. Colonic tissue microbiota changed dynamically over time after LPS injection, involving translocation of microbial components from colon contents and lung tissue at different time points. Bacteria migrating to colon tissue at 12 h sepsis were mainly from colonic contents, while those at 48 h were predominantly from the lung tissue. The migratory microbial components in colon tissue were widely associated with blood indicators and colonizing genus abundance and microbiota functionality in colon tissue. In this study, the temporal dynamics of bacterial translocation from various sources into colon tissues at different sepsis progression stages were characterized for the first time, and the species composition of these migrating microbes was delineated. These bacterial migrants may contribute to the pathophysiological processes in sepsis through direct interactions or indirectly by modulating colonic microbiota community structure and function.
Collapse
Affiliation(s)
- Hao Xu
- School of Pharmacy, Minzu University of China, Beijing, China
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, China
| | - Jia You
- Department of Obstetrics and Gynecology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Wenqin He
- School of Pharmacy, Minzu University of China, Beijing, China
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, China
| | - Lingpeng Pei
- School of Pharmacy, Minzu University of China, Beijing, China
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, China
| | - Yue Han
- School of Pharmacy, Minzu University of China, Beijing, China
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, China
| | - Xueer Wang
- School of Pharmacy, Minzu University of China, Beijing, China
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, China
| | - Zhigang Tian
- Department of Respiratory and Critical Care Medicine, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Xiwei Zheng
- Department of Respiratory and Critical Care Medicine, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Enqi Wu
- School of Pharmacy, Minzu University of China, Beijing, China
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, China
| | - Yaqin Ling
- School of Pharmacy, Minzu University of China, Beijing, China
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, China
| |
Collapse
|
5
|
Lee T, Lee J, Shin DH, Lee H, Kim SK. Prognostic and Diagnostic Power of Delta Neutrophil Index and Mean Platelet Component in Febrile Patients with Suspected Sepsis. Biomedicines 2023; 11:3190. [PMID: 38137411 PMCID: PMC10740452 DOI: 10.3390/biomedicines11123190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/22/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND The delta neutrophil index (DNI), a prognostic and diagnostic marker for sepsis, is based on the leukocyte count. Platelet activation, similar to leukocyte activation, plays a crucial role in host defense against pathogens and may serve as a predictor of sepsis outcome. However, the combined evaluation of mean platelet component (MPC) and DNI has rarely been used to assess sepsis. METHODS To assess the prognostic and diagnostic validity of the simultaneous evaluation of DNI and MPC in cases of human febrile sepsis, we conducted measurements of cellular indices, including DNI and MPC, as well as molecular biomarkers, including procalcitonin (PCT) and C-reactive protein (CRP). This study was carried out in patients admitted to the emergency department with suspected sepsis. RESULTS Using a cutoff value of 2.65%, the sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of the DNI in sepsis were found to be 69%, 73.9%, 77.9%, and 64.1%, respectively. Furthermore, significant differences in DNI and MPC levels were observed between the sepsis and non-sepsis groups (6.7 ± 7.8% versus 2.1 ± 2.2% (p = 0.000) and 26.0 ± 1.9 g/dL versus 26.8 ± 1.4 g/dL (p = 0.002), respectively). Notably, there was a negative correlation between DNI and MPC, with the strength of the correlation varying based on the cause of sepsis. By setting the cutoff value of the DNI to 6.2%, its sensitivity, specificity, and NPV improved to 100%, 80.3%, and 100%, respectively, although the PPV remained at 10.6%. CONCLUSIONS In our study, the DNI demonstrates superior effectiveness compared with other molecular biomarkers, such as CRP and procalcitonin, in distinguishing septic febrile patients from non-septic febrile patients. Additionally, a negative correlation exists between MPC and DNI, making MPC a valuable marker for differentiating the etiology of sepsis. These findings hold significant clinical implications, as DNI/MPC evaluation is a cost-effective and readily applicable approach in various impending sepsis scenarios. Notably, this study represents the first examination of the prognostic and diagnostic validity of employing the simultaneous evaluation of DNI and MPC in human cases of febrile sepsis.
Collapse
Affiliation(s)
- Taehun Lee
- Department of Emergency Medicine, College of Medicine, Hallym University, Chuncheon Sacred Heart Hospital, Chuncheon 24253, Republic of Korea;
| | - Jongwook Lee
- Department of Laboratory Medicine, Konyang University Hospital, Daejeon 35465, Republic of Korea;
| | - Dong Hoon Shin
- Department of Laboratory Medicine, College of Medicine, Hallym University, Chuncheon Sacred Heart Hospital, Chuncheon 24253, Republic of Korea;
| | - Hyungdon Lee
- Department of Internal Medicine, College of Medicine, Hallym University, Chuncheon Sacred Heart Hospital, Chuncheon 24253, Republic of Korea
| | - Soo-Ki Kim
- Department of Microbiology, Wonju College of Medicine, Research Institute of Metabolism and Inflammation Research, Yonsei University, Wonju 26426, Republic of Korea
| |
Collapse
|
6
|
Garcia‐Serrano A, Mukhedkar D, Hultin E, Rudsander U, Wettergren Y, Ure AE, Dillner J, Arroyo‐Mühr LS. Assessment of bacterial and viral gut communities in healthy and tumoral colorectal tissue using RNA and DNA deep sequencing. Cancer Med 2023; 12:19291-19300. [PMID: 37641475 PMCID: PMC10557870 DOI: 10.1002/cam4.6483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/15/2023] [Accepted: 08/17/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is known to present a distinct microbiome profile compared to healthy mucosa. Non-targeted deep-sequencing strategies enable nowadays full microbiome characterization up to species level. AIM We aimed to analyze both bacterial and viral communities in CRC using these strategies. MATERIALS & METHODS We analyzed bacterial and viral communities using both DNA and RNA deep-sequencing (Novaseq) in colorectal tissue specimens from 10 CRC patients and 10 matched control patients. Following taxonomy classification using Kraken 2, different metrics for alpha and beta diversities as well as relative and differential abundance were calculated to compare tumoral and healthy samples. RESULTS No viral differences were identified between tissue types, but bacterial species Polynucleobacter necessarius had a highly increased presence for DNA in tumors (p = 0.001). RNA analyses showed that bacterial species Arabia massiliensis had a highly decreased transcription in tumors (p = 0.002) while Fusobacterium nucleatum transcription was highly increased in tumors (p = 0.002). DISCUSSION Sequencing of both DNA and RNA enables a wider perspective of micriobiome profiles. Lack of RNA transcription (Polynucleobacter necessarius) casts doubt on possible role of a microorganism in CRC. The association of F. nucleatum mainly with transcription, may provide further insights on its role in CRC. CONCLUSION Joint assessment of the metagenome (DNA) and the metatranscriptome (RNA) at the species level provided a huge coverage for both bacteria and virus and identifies differential specific bacterial species as tumor associated.
Collapse
Affiliation(s)
- Ainhoa Garcia‐Serrano
- Department of Clinical Science, Intervention and Technology (CLINTEC)Karolinska InstitutetStockholmSweden
| | - Dhananjay Mukhedkar
- Department of Clinical Science, Intervention and Technology (CLINTEC)Karolinska InstitutetStockholmSweden
- Hopsworks ABStockholmSweden
| | - Emilie Hultin
- Department of Clinical Science, Intervention and Technology (CLINTEC)Karolinska InstitutetStockholmSweden
| | - Ulla Rudsander
- Department of Clinical Science, Intervention and Technology (CLINTEC)Karolinska InstitutetStockholmSweden
| | - Yvonne Wettergren
- Department of SurgerySahlgrenska University Hospital, Sahlgrenska Academy at University of GothenburgGothenburgSweden
| | - Agustín Enrique Ure
- Department of Clinical Science, Intervention and Technology (CLINTEC)Karolinska InstitutetStockholmSweden
| | - Joakim Dillner
- Department of Clinical Science, Intervention and Technology (CLINTEC)Karolinska InstitutetStockholmSweden
- Center for Cervical Cancer EliminationForskningsgatan F56 Karolinska University Hospital HuddingeStockholmSweden
| | - Laila Sara Arroyo‐Mühr
- Department of Clinical Science, Intervention and Technology (CLINTEC)Karolinska InstitutetStockholmSweden
- Center for Cervical Cancer EliminationForskningsgatan F56 Karolinska University Hospital HuddingeStockholmSweden
| |
Collapse
|
7
|
Boopathi S, Priya PS, Haridevamuthu B, Nayak SPRR, Chandrasekar M, Arockiaraj J, Jia AQ. Expanding germ-organ theory: Understanding non-communicable diseases through enterobacterial translocation. Pharmacol Res 2023; 194:106856. [PMID: 37460001 DOI: 10.1016/j.phrs.2023.106856] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/02/2023] [Accepted: 07/14/2023] [Indexed: 07/29/2023]
Abstract
Diverse microbial communities colonize different habitats of the human body, including gut, oral cavity, nasal cavity and tissues. These microbial communities are known as human microbiome, plays a vital role in maintaining the health. However, changes in the composition and functions of human microbiome can result in chronic low-grade inflammation, which can damage the epithelial cells and allows pathogens and their toxic metabolites to translocate into other organs such as the liver, heart, and kidneys, causing metabolic inflammation. This dysbiosis of human microbiome has been directly linked to the onset of several non-communicable diseases. Recent metabolomics studies have revealed that pathogens produce several uraemic toxins. These metabolites can serve as inter-kingdom signals, entering the circulatory system and altering host metabolism, thereby aggravating a variety of diseases. Interestingly, Enterobacteriaceae, a critical member of Proteobacteria, has been commonly associated with several non-communicable diseases, and the abundance of this family has been positively correlated with uraemic toxin production. Hence, this review provides a comprehensive overview of Enterobacterial translocation and their metabolites role in non-communicable diseases. This understanding may lead to the identification of novel biomarkers for each metabolic disease as well as the development of novel therapeutic drugs.
Collapse
Affiliation(s)
- Seenivasan Boopathi
- Hainan General Hospital, Hainan affiliated hospital of Hainan Medical University, Haikou 570311, China; Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603 203, Chengalpattu District, Tamil Nadu, India
| | - P Snega Priya
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603 203, Chengalpattu District, Tamil Nadu, India
| | - B Haridevamuthu
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603 203, Chengalpattu District, Tamil Nadu, India
| | - S P Ramya Ranjan Nayak
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603 203, Chengalpattu District, Tamil Nadu, India
| | - Munisamy Chandrasekar
- Department of Veterinary Clinical Medicine, Madras Veterinary College, Chennai, Tamil Nadu, India
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603 203, Chengalpattu District, Tamil Nadu, India.
| | - Ai-Qun Jia
- Hainan General Hospital, Hainan affiliated hospital of Hainan Medical University, Haikou 570311, China.
| |
Collapse
|
8
|
Sciarra F, Franceschini E, Campolo F, Venneri MA. The Diagnostic Potential of the Human Blood Microbiome: Are We Dreaming or Awake? Int J Mol Sci 2023; 24:10422. [PMID: 37445600 DOI: 10.3390/ijms241310422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/01/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Human blood has historically been considered a sterile environment. Recently, a thriving microbiome dominated by Firmicutes, Actinobacteria, Proteobacteria, and Bacteroidetes phyla was detected in healthy blood. The localization of these microbes is restricted to some blood cell populations, particularly the peripheral blood mononuclear cells and erythrocytes. It was hypothesized that the blood microbiome originates from the skin-oral-gut axis. In addition, many studies have evaluated the potential of blood microbiome dysbiosis as a prognostic marker in cardiovascular diseases, cirrhosis, severe liver fibrosis, severe acute pancreatitis, type 2 diabetes, and chronic kidney diseases. The present review aims to summarize current findings and most recent evidence in the field.
Collapse
Affiliation(s)
- Francesca Sciarra
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Edoardo Franceschini
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Federica Campolo
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Mary Anna Venneri
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
9
|
Fronton F, Ferchiou S, Caza F, Villemur R, Robert D, St-Pierre Y. Insights into the circulating microbiome of Atlantic and Greenland halibut populations: the role of species-specific and environmental factors. Sci Rep 2023; 13:5971. [PMID: 37045892 PMCID: PMC10097863 DOI: 10.1038/s41598-023-32690-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 03/31/2023] [Indexed: 04/14/2023] Open
Abstract
Establishing long-term microbiome-based monitoring programs is critical for managing and conserving wild fish populations in response to climate change. In most cases, these studies have been conducted on gut and, to a lesser extent, skin (mucus) microbiomes. Here, we exploited the concept of liquid biopsy to study the circulating bacterial microbiome of two Northern halibut species of economic and ecological importance. Amplification and sequencing of the 16S rRNA gene were achieved using a single drop of blood fixed on FTA cards to identify the core blood microbiome of Atlantic and Greenland halibut populations inhabiting the Gulf of St. Lawrence, Canada. We provide evidence that the circulating microbiome DNA (cmDNA) is driven by genetic and environmental factors. More specifically, we found that the circulating microbiome signatures are species-specific and vary according to sex, size, temperature, condition factor, and geographical localization. Overall, our study provides a novel approach for detecting dysbiosis signatures and the risk of disease in wild fish populations for fisheries management, most notably in the context of climate change.
Collapse
Affiliation(s)
- Fanny Fronton
- INRS-Centre Armand-Frappier Santé Technologie, 531 Boul. des Prairies, Laval, QC, H7V 1B7, Canada
| | - Sophia Ferchiou
- INRS-Centre Armand-Frappier Santé Technologie, 531 Boul. des Prairies, Laval, QC, H7V 1B7, Canada
| | - France Caza
- INRS-Centre Armand-Frappier Santé Technologie, 531 Boul. des Prairies, Laval, QC, H7V 1B7, Canada
| | - Richard Villemur
- INRS-Centre Armand-Frappier Santé Technologie, 531 Boul. des Prairies, Laval, QC, H7V 1B7, Canada
| | - Dominique Robert
- Institut des Sciences de la Mer, Université du Québec à Rimouski, 310, allée des Ursulines, C.P. 3300, Rimouski, QC, G5L 3A1, Canada
| | - Yves St-Pierre
- INRS-Centre Armand-Frappier Santé Technologie, 531 Boul. des Prairies, Laval, QC, H7V 1B7, Canada.
| |
Collapse
|
10
|
Cheng HS, Tan SP, Wong DMK, Koo WLY, Wong SH, Tan NS. The Blood Microbiome and Health: Current Evidence, Controversies, and Challenges. Int J Mol Sci 2023; 24:5633. [PMID: 36982702 PMCID: PMC10059777 DOI: 10.3390/ijms24065633] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/14/2023] [Accepted: 03/14/2023] [Indexed: 03/18/2023] Open
Abstract
Blood is conventionally thought to be sterile. However, emerging evidence on the blood microbiome has started to challenge this notion. Recent reports have revealed the presence of genetic materials of microbes or pathogens in the blood circulation, leading to the conceptualization of a blood microbiome that is vital for physical wellbeing. Dysbiosis of the blood microbial profile has been implicated in a wide range of health conditions. Our review aims to consolidate recent findings about the blood microbiome in human health and to highlight the existing controversies, prospects, and challenges around this topic. Current evidence does not seem to support the presence of a core healthy blood microbiome. Common microbial taxa have been identified in some diseases, for instance, Legionella and Devosia in kidney impairment, Bacteroides in cirrhosis, Escherichia/Shigella and Staphylococcus in inflammatory diseases, and Janthinobacterium in mood disorders. While the presence of culturable blood microbes remains debatable, their genetic materials in the blood could potentially be exploited to improve precision medicine for cancers, pregnancy-related complications, and asthma by augmenting patient stratification. Key controversies in blood microbiome research are the susceptibility of low-biomass samples to exogenous contamination and undetermined microbial viability from NGS-based microbial profiling, however, ongoing initiatives are attempting to mitigate these issues. We also envisage future blood microbiome research to adopt more robust and standardized approaches, to delve into the origins of these multibiome genetic materials and to focus on host-microbe interactions through the elaboration of causative and mechanistic relationships with the aid of more accurate and powerful analytical tools.
Collapse
Affiliation(s)
- Hong Sheng Cheng
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore 308232, Singapore; (S.H.W.); (N.S.T.)
| | - Sin Pei Tan
- Radiotherapy and Oncology Department, Hospital Sultan Ismail, Jalan Mutiara Emas Utama, Taman Mount Austin, Johor Bahru 81100, Malaysia
| | - David Meng Kit Wong
- School of Biological Sciences, Nanyang Technological University Singapore, Singapore 637551, Singapore
| | - Wei Ling Yolanda Koo
- School of Biological Sciences, Nanyang Technological University Singapore, Singapore 637551, Singapore
| | - Sunny Hei Wong
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore 308232, Singapore; (S.H.W.); (N.S.T.)
| | - Nguan Soon Tan
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore 308232, Singapore; (S.H.W.); (N.S.T.)
- School of Biological Sciences, Nanyang Technological University Singapore, Singapore 637551, Singapore
| |
Collapse
|
11
|
From Gut to Blood: Spatial and Temporal Pathobiome Dynamics during Acute Abdominal Murine Sepsis. Microorganisms 2023; 11:microorganisms11030627. [PMID: 36985201 PMCID: PMC10054525 DOI: 10.3390/microorganisms11030627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/15/2023] [Accepted: 02/24/2023] [Indexed: 03/05/2023] Open
Abstract
Abdominal sepsis triggers the transition of microorganisms from the gut to the peritoneum and bloodstream. Unfortunately, there is a limitation of methods and biomarkers to reliably study the emergence of pathobiomes and to monitor their respective dynamics. Three-month-old CD-1 female mice underwent cecal ligation and puncture (CLP) to induce abdominal sepsis. Serial and terminal endpoint specimens were collected for fecal, peritoneal lavage, and blood samples within 72 h. Microbial species compositions were determined by NGS of (cell-free) DNA and confirmed by microbiological cultivation. As a result, CLP induced rapid and early changes of gut microbial communities, with a transition of pathogenic species into the peritoneum and blood detected at 24 h post-CLP. NGS was able to identify pathogenic species in a time course-dependent manner in individual mice using cfDNA from as few as 30 microliters of blood. Absolute levels of cfDNA from pathogens changed rapidly during acute sepsis, demonstrating its short half-life. Pathogenic species and genera in CLP mice significantly overlapped with pathobiomes from septic patients. The study demonstrated that pathobiomes serve as reservoirs following CLP for the transition of pathogens into the bloodstream. Due to its short half-life, cfDNA can serve as a precise biomarker for pathogen identification in blood.
Collapse
|
12
|
Szabó BG, Kiss R, Makra N, Pénzes K, Vad E, Kamotsay K, Szabó D, Ostorházi E. Composition and changes of blood microbiota in adult patients with community-acquired sepsis: A pilot study from bench to bedside. Front Cell Infect Microbiol 2022; 12:1067476. [PMID: 36583109 PMCID: PMC9794134 DOI: 10.3389/fcimb.2022.1067476] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/29/2022] [Indexed: 12/14/2022] Open
Abstract
Background Characteristics of the blood microbiota among adult patients with community-acquired sepsis are poorly understood. Our aim was to analyze the composition of blood microbiota in adult patients with community-acquired sepsis, and correlate changes with non-septic control patients. Methods A prospective observational study was carried out by including adult patients hospitalized for community-acquired sepsis at our center between January and November 2019, by random selection from a pool of eligible patients. Study inclusion was done on the day of sepsis diagnosis. Community acquisition was ascertained by a priori exclusion criteria; sepsis was defined according to the SEPSIS-3 definitions. Each included patient was matched with non-septic control patients by age and gender in a 1:1 fashion enrolled from the general population. Conventional culturing with BacT/ALERT system and 16S rRNA microbiota analysis were performed from blood samples taken in a same time from a patient. Abundance data was analyzed by the CosmosID HUB Microbiome software. Results Altogether, 13 hospitalized patients were included, 6/13 (46.2%) with sepsis and 7/13 (53.8%) with septic shock at diagnosis. The most prevalent etiopathogen isolated from blood cultures was Escherichia coli, patients mostly had intraabdominal septic source. At day 28, all-cause mortality was 15.4% (2/13). Compared to non-septic control patients, a relative scarcity of Faecalibacterium, Blautia, Coprococcus and Roseburia genera, with an abundance of Enhydrobacter, Pseudomonas and Micrococcus genera was observed among septic patients. Relative differences between septic vs. non-septic patients were more obvious at the phylum level, mainly driven by Firmicutes (25.7% vs. 63.1%; p<0.01) and Proteobacteria (36.9% vs. 16.6%; p<0.01). The alpha diversity, quantified by the Chao1 index showed statistically significant difference between septic vs. non-septic patients (126 ± 51 vs. 66 ± 26; p<0.01). The Bray-Curtis beta diversity, reported by principal coordinate analysis of total hit frequencies, revealed 2 potentially separate clusters among septic vs. non-septic patients. Conclusion In adult patients with community-acquired sepsis, specific changes in the composition and abundance of blood microbiota could be detected by 16S rRNA metagenome sequencing, compared to non-septic control patients. Traditional blood culture results only partially correlate with microbiota test results.
Collapse
Affiliation(s)
- Bálint Gergely Szabó
- South Pest Central Hospital, National Institute of Hematology and Infectious Diseases, Budapest, Hungary,Departmental Group of Infectious Diseases, Department of Haematology and Internal Medicine, Semmelweis University, Budapest, Hungary
| | - Rebeka Kiss
- South Pest Central Hospital, National Institute of Hematology and Infectious Diseases, Budapest, Hungary
| | - Nóra Makra
- Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary
| | - Kinga Pénzes
- Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary
| | - Eszter Vad
- South Pest Central Hospital, National Institute of Hematology and Infectious Diseases, Budapest, Hungary
| | - Katalin Kamotsay
- South Pest Central Hospital, National Institute of Hematology and Infectious Diseases, Budapest, Hungary
| | - Dóra Szabó
- Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary
| | - Eszter Ostorházi
- Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary,*Correspondence: Eszter Ostorházi,
| |
Collapse
|
13
|
Sun W, Cui Y, Zhang X, Wang Y, Zhang Z, Ding X, Liang H, Wang D, Sun Y, Liu S, Duan X, Lu Y, Sun T. Effects of Gabexate Mesylate on the Gut Microbiota and Metabolomics in Rats with Sepsis. J Inflamm Res 2022; 15:6581-6594. [PMID: 36506782 PMCID: PMC9733569 DOI: 10.2147/jir.s392060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 11/12/2022] [Indexed: 12/07/2022] Open
Abstract
Background Sepsis is a life-threatening organ dysfunction caused by a dysregulated host response to infection. However, there is still no single drug that could reduce septic mortality. Previous studies have reported gabexate mesylate (GM) significantly reduced serum inflammatory factors, alleviated sepsis-induced lung injury and improved clinical outcomes. This study aimed to combine with microbiome sequencing and metabolomics analysis to explore the effects of GM administration in septic rats. Methods Sixty SD rats were randomly divided into the sham control (SC), cecal ligation and puncture (CLP), and GM injection (GM) groups. The mortality was measured and colonic feces were collected to examine the gut microbiota and metabolism 24 h after the procedure. The lung tissues were collected for hematoxylin-eosin staining. Results We observed the relative abundance of Pygmaiobacter, which contributed to short-chain fatty acids (SCFAs) promotion, Lactobacillus and Erysipelotrichaceae UCG-003 increased in the GM-treated rats, while Escherichia-Shigella and Akkermansia decreased compared to the sepsis-induced lung injury group. Furthermore, these 3 metabolites including Palmitoylethanolamide, Deoxycholic acid and Chenodeoxycholic acid correlated significantly to CLP- and GM-rich genus (P < 0.05). Besides, the lung tissues of CLP group showed more severe inflammatory infiltration and edema, and the mortality rate in the CLP group (10/20) was significantly higher than in the SC group (0/20) (P < 0.001) and GM group (4/20) (P < 0.05). Conclusion Our findings showed that GM attenuated sepsis-induced lung injury rats and regulated metabolites related to gut microbiota, which may provide an effective treatment for sepsis patients.
Collapse
Affiliation(s)
- Wenju Sun
- General ICU, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Critical Care Medicine, Zhengzhou Key Laboratory of Sepsis, Henan Engineering Research Center for Critical Care Medicine, Zhengzhou, 450052, People’s Republic of China
| | - Yuqing Cui
- General ICU, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Critical Care Medicine, Zhengzhou Key Laboratory of Sepsis, Henan Engineering Research Center for Critical Care Medicine, Zhengzhou, 450052, People’s Republic of China
| | - Xiaojuan Zhang
- General ICU, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Critical Care Medicine, Zhengzhou Key Laboratory of Sepsis, Henan Engineering Research Center for Critical Care Medicine, Zhengzhou, 450052, People’s Republic of China
| | - Yuze Wang
- General ICU, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Critical Care Medicine, Zhengzhou Key Laboratory of Sepsis, Henan Engineering Research Center for Critical Care Medicine, Zhengzhou, 450052, People’s Republic of China
| | - Zihao Zhang
- Department of Clinical Medicine, Sanquan College of Xinxiang Medical University, Xinxiang, 453003, People’s Republic of China
| | - Xianfei Ding
- General ICU, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Critical Care Medicine, Zhengzhou Key Laboratory of Sepsis, Henan Engineering Research Center for Critical Care Medicine, Zhengzhou, 450052, People’s Republic of China
| | - Huoyan Liang
- General ICU, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Critical Care Medicine, Zhengzhou Key Laboratory of Sepsis, Henan Engineering Research Center for Critical Care Medicine, Zhengzhou, 450052, People’s Republic of China
| | - Dong Wang
- General ICU, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Critical Care Medicine, Zhengzhou Key Laboratory of Sepsis, Henan Engineering Research Center for Critical Care Medicine, Zhengzhou, 450052, People’s Republic of China
| | - Yali Sun
- General ICU, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Critical Care Medicine, Zhengzhou Key Laboratory of Sepsis, Henan Engineering Research Center for Critical Care Medicine, Zhengzhou, 450052, People’s Republic of China
| | - Shaohua Liu
- General ICU, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Critical Care Medicine, Zhengzhou Key Laboratory of Sepsis, Henan Engineering Research Center for Critical Care Medicine, Zhengzhou, 450052, People’s Republic of China
| | - Xiaoguang Duan
- General ICU, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Critical Care Medicine, Zhengzhou Key Laboratory of Sepsis, Henan Engineering Research Center for Critical Care Medicine, Zhengzhou, 450052, People’s Republic of China
| | - Yibin Lu
- Department of Critical Care Medicine, Xinyang Hospital Affiliated to Zhengzhou University, Xinyang, 464000, People’s Republic of China
| | - Tongwen Sun
- General ICU, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Critical Care Medicine, Zhengzhou Key Laboratory of Sepsis, Henan Engineering Research Center for Critical Care Medicine, Zhengzhou, 450052, People’s Republic of China,Correspondence: Tongwen Sun, General ICU, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Critical Care Medicine, Zhengzhou Key Laboratory of Sepsis, Henan Engineering Research Center for Critical Care Medicine,Zhengzhou, Henan Province, 450052, People’s Republic of China, Email
| |
Collapse
|
14
|
Human Blood Bacteriome: Eubiotic and Dysbiotic States in Health and Diseases. Cells 2022; 11:cells11132015. [PMID: 35805098 PMCID: PMC9265464 DOI: 10.3390/cells11132015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/07/2022] [Accepted: 06/21/2022] [Indexed: 01/27/2023] Open
Abstract
The human gut microbiome is acknowledged as being associated with homeostasis and the pathogenesis of several diseases. Conventional culture techniques are limited in that they cannot culture the commensals; however, next-generation sequencing has facilitated the discovery of the diverse and delicate microbial relationship in body sites and blood. Increasing evidence regarding the blood microbiome has revolutionized the concept of sterility and germ theory in circulation. Among the types of microbial communities in the blood, bacteriomes associated with many health conditions have been thoroughly investigated. Blood bacterial profiles in healthy subjects are identified as the eubiotic blood bacteriome, whereas the dysbiotic blood bacteriome represents the change in bacterial characteristics in subjects with diseases showing deviations from the eubiotic profiles. The blood bacterial characteristics in each study are heterogeneous; thus, the association between eubiotic and dysbiotic blood bacteriomes and health and disease is still debatable. Thereby, this review aims to summarize and discuss the evidence concerning eubiotic and dysbiotic blood bacteriomes characterized by next-generation sequencing in human studies. Knowledge pertaining to the blood bacteriome will transform the concepts around health and disease in humans, facilitating clinical implementation in the near future.
Collapse
|
15
|
Zenobia C, Darveau RP. Does Oral Endotoxin Contribute to Systemic Inflammation? FRONTIERS IN ORAL HEALTH 2022; 3:911420. [PMID: 35677024 PMCID: PMC9169450 DOI: 10.3389/froh.2022.911420] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 04/29/2022] [Indexed: 12/27/2022] Open
Abstract
The oral microbiome, with a unique emphasis on Porphyromonas gingivalis has been associated with a constellation of inflammatory diseases such as cardiovascular disease, rheumatoid arthritis, Alzheimer's disease, type II diabetes, and non-alcoholic associated fatty liver disease. Periodontal disease has also been shown to induce "leaky gut" leading to metabolic endotoxemia. Several recent studies investigating the habitants of the blood microbiome have found the majority of species appear to be derived from oral and skin bacterial communities in otherwise healthy individuals. Many of the same pathologies associated with perturbations of oral health, such as cardiovascular disease, show alterations to the composition of the blood microbiome as well as circulating neutrophil phenotypes. Gingival inflammation is associated with activated blood neutrophil phenotypes that can exacerbate a distal inflammatory insult which may explain the connection between oral and systemic inflammatory conditions. While in the oral cavity, neutrophils encounter oral microbes that are adept in manipulating neutrophil activity which can re-enter the vasculature thereafter. Endotoxin from oral microbes can differ significantly depending on bacterial community and state of oral health to alter cellular LPS tolerance mechanisms which may contribute to the primed neutrophil phenotype seen in periodontitis and provide a mechanism by which the oral-microbes can affect systemic health outcomes. This review synthesizes the studies between inflammatory diseases and oral health with emphasis on microbiome and corresponding lipopolysaccharides in immune tolerance and activation.
Collapse
Affiliation(s)
| | - Richard P. Darveau
- Departments of Periodontology and Microbiology, University of Washington, Seattle, WA, United States
| |
Collapse
|