1
|
Yang J, Lv Y, Zhu Y, Song J, Zhu M, Wu C, Fu Y, Zhao W, Zhao Y. Optimizing sheep B-cell epitopes in Echinococcus granulosus recombinant antigen P29 for vaccine development. Front Immunol 2024; 15:1451538. [PMID: 39206186 PMCID: PMC11349700 DOI: 10.3389/fimmu.2024.1451538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
Background Echinococcus granulosus is a widespread zoonotic parasitic disease, significantly impacting human health and livestock development; however, no vaccine is currently available for humans. Our preliminary studies indicate that recombinant antigen P29 (rEg.P29) is a promising candidate for vaccine. Methods Sheep were immunized with rEg.P29, and venous blood was collected at various time points. Serum was isolated, and the presence of specific antibodies was detected using ELISA. We designed and synthesized a total of 45 B cell monopeptides covering rEg.P29 using the overlap method. ELISA was employed to assess the serum antibodies of the immunized sheep for recognition of these overlapping peptides, leading to the preliminary identification of B cell epitopes. Utilizing these identified epitopes, new single peptides were designed, synthesized, and used to optimize and confirm B-cell epitopes. Results rEg.P29 effectively induces a sustained antibody response in sheep, particularly characterized by high and stable levels of IgG. Eight B-cell epitopes of were identified, which were mainly distributed in three regions of rEg.P29. Finally, three B cell epitopes were identified and optimized: rEg.P2971-90, rEg.P29151-175, and rEg.P29211-235. These optimized epitopes were well recognized by antibodies in sheep and mice, and the efficacy of these three epitopes significantly increased when they were linked in tandem. Conclusion Three B-cell epitopes were identified and optimized, and the efficacy of these epitopes was significantly enhanced by tandem connection, which indicated the feasibility of tandem peptide vaccine research. This laid a solid foundation for the development of epitope peptide vaccine for Echinococcus granulosus.
Collapse
Affiliation(s)
- Jihui Yang
- Center of Scientific Technology, Ningxia Medical University, Yinchuan, China
- Ningxia Key Laboratory of Prevention and Treatment of Common Infectious Diseases, Ningxia Medical University, Yinchuan, China
| | - Yongxue Lv
- Ningxia Key Laboratory of Prevention and Treatment of Common Infectious Diseases, Ningxia Medical University, Yinchuan, China
- School of Basic Medicine, Ningxia Medical University, Yinchuan, China
| | - Yazhou Zhu
- Ningxia Key Laboratory of Prevention and Treatment of Common Infectious Diseases, Ningxia Medical University, Yinchuan, China
- School of Basic Medicine, Ningxia Medical University, Yinchuan, China
| | - Jiahui Song
- Center of Scientific Technology, Ningxia Medical University, Yinchuan, China
- Ningxia Key Laboratory of Prevention and Treatment of Common Infectious Diseases, Ningxia Medical University, Yinchuan, China
| | - Mingxing Zhu
- Center of Scientific Technology, Ningxia Medical University, Yinchuan, China
- Ningxia Key Laboratory of Prevention and Treatment of Common Infectious Diseases, Ningxia Medical University, Yinchuan, China
| | - Changyou Wu
- Institute of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yong Fu
- Qinghai Academy of Animal Sciences and Veterinary Medicine, Qinghai University, Xining, China
| | - Wei Zhao
- Center of Scientific Technology, Ningxia Medical University, Yinchuan, China
- Ningxia Key Laboratory of Prevention and Treatment of Common Infectious Diseases, Ningxia Medical University, Yinchuan, China
| | - Yinqi Zhao
- Center of Scientific Technology, Ningxia Medical University, Yinchuan, China
- Ningxia Key Laboratory of Prevention and Treatment of Common Infectious Diseases, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
2
|
Yang J, Zhao Y, Fu Y, Lv Y, Zhu Y, Zhu M, Zhao J, Wang Y, Wu C, Zhao W. Recombinant antigen P29 of Echinococcus granulosus induces Th1, Tc1, and Th17 cell immune responses in sheep. Front Immunol 2023; 14:1243204. [PMID: 38187382 PMCID: PMC10768560 DOI: 10.3389/fimmu.2023.1243204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 11/22/2023] [Indexed: 01/09/2024] Open
Abstract
Echinococcosis is a common human and animal parasitic disease that seriously endangers human health and animal husbandry. Although studies have been conducted on vaccines for echinococcosis, to date, there is no human vaccine available for use. One of the main reasons for this is the lack of in-depth research on basic immunization with vaccines. Our previous results confirmed that recombinant antigen P29 (rEg.P29) induced more than 90% immune protection in both mice and sheep, but data on its induction of sheep-associated cellular immune responses are lacking. In this study, we investigated the changes in CD4+ T cells, CD8+ T cells, and antigen-specific cytokines IFN-γ, IL-4, and IL-17A after rEg.P29 immunization using enzyme-linked immunospot assay (ELISPOT), enzyme-linked immunosorbent assay (ELISA), and flow cytometry to investigate the cellular immune response induced by rEg.P29 in sheep. It was found that rEg.P29 immunization did not affect the percentage of CD4+ and CD8+ T cells in peripheral blood mononuclear cells (PBMCs), and was able to stimulate the proliferation of CD4+ and CD8+ T cells after immunization in vitro. Importantly, the results of both ELISPOT and ELISA showed that rEg.P29 can induce the production of the specific cytokines IFN-γ and IL-17A, and flow cytometry verified that rEg.P29 can induce the expression of IFN-γ in CD4+ and CD8+ T cells and IL-17A in CD4+ T cells; however, no IL-4 expression was observed. These results indicate that rEg.P29 can induce Th1, Th17, and Tc1 cellular immune responses in sheep against echinococcosis infection, providing theoretical support for the translation of rEg.P29 vaccine applications.
Collapse
Affiliation(s)
- Jihui Yang
- Center of Scientific Technology of Ningxia Medical University, Yinchuan, China
- Ningxia Key Laboratory of Prevention and Treatment of Common Infectious Diseases of Ningxia Medical University, Yinchuan, China
| | - Yinqi Zhao
- Center of Scientific Technology of Ningxia Medical University, Yinchuan, China
- Ningxia Key Laboratory of Prevention and Treatment of Common Infectious Diseases of Ningxia Medical University, Yinchuan, China
| | - Yong Fu
- Qinghai Academy of Animal Sciences and Veterinary Medicine, Qinghai University, Xining, China
| | - Yongxue Lv
- Ningxia Key Laboratory of Prevention and Treatment of Common Infectious Diseases of Ningxia Medical University, Yinchuan, China
- School of Basic Medicine, Ningxia Medical University, Yinchuan, China
| | - Yazhou Zhu
- Ningxia Key Laboratory of Prevention and Treatment of Common Infectious Diseases of Ningxia Medical University, Yinchuan, China
- School of Basic Medicine, Ningxia Medical University, Yinchuan, China
| | - Mingxing Zhu
- Center of Scientific Technology of Ningxia Medical University, Yinchuan, China
- Ningxia Key Laboratory of Prevention and Treatment of Common Infectious Diseases of Ningxia Medical University, Yinchuan, China
| | - Jiaqing Zhao
- Center of Scientific Technology of Ningxia Medical University, Yinchuan, China
- Ningxia Key Laboratory of Prevention and Treatment of Common Infectious Diseases of Ningxia Medical University, Yinchuan, China
| | - Yana Wang
- Ningxia Key Laboratory of Prevention and Treatment of Common Infectious Diseases of Ningxia Medical University, Yinchuan, China
- School of Basic Medicine, Ningxia Medical University, Yinchuan, China
| | - Changyou Wu
- Institute of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Wei Zhao
- Center of Scientific Technology of Ningxia Medical University, Yinchuan, China
- Ningxia Key Laboratory of Prevention and Treatment of Common Infectious Diseases of Ningxia Medical University, Yinchuan, China
| |
Collapse
|
3
|
Lv Y, Chang L, Yang J, Wen J, Zhao Y, Zhu M, Wu C, Zhao W. Immunogenicity of peptide-based vaccine composed of epitopes from Echinococcus granulosus rEg.P29. FASEB J 2023; 37:e22819. [PMID: 36848174 DOI: 10.1096/fj.202201636r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/29/2022] [Accepted: 01/30/2023] [Indexed: 03/01/2023]
Abstract
Echinococcus granulosus is one of the main causes of economic loss in the livestock industry because of its food-borne transmission. Cutting off the transmission route is a valid prevention method, and vaccines are the most effective means of controlling and eliminating infectious diseases. However, no human-related vaccine has been yet marketed. As a genetic engineering vaccine, recombinant protein P29 of E. granulosus (rEg.P29) could provide protection against deadly challenges. In this study, we generated peptide vaccines (rEg.P29T , rEg.P29B , and rEg.P29T+B ) based on rEg.P29 and an immunized model was established by subcutaneous immunization. Further evaluation showed that peptide vaccine immunization in mice induced T helper type 1 (Th1)-mediated cellular immune responses, leading to high levels of rEg.P29 or rEg.P29B -specific antibodies. In addition, rEg.P29T+B immunization can induce a higher antibody and cytokine production level than single-epitope vaccines, and immune memory is also longer. Collectively, these results suggest that rEg.P29T+B has the potential to be developed as an efficient subunit vaccine for use in areas where E. granulosus is endemic.
Collapse
Affiliation(s)
- Yongxue Lv
- School of Basic Medicine, Ningxia Medical University, Yinchuan, China.,Ningxia Key Laboratory of Prevention and Control of Common Infectious Diseases, Ningxia Hui Autonomous Region, Yinchuan, China
| | - Liangliang Chang
- School of Basic Medicine, Ningxia Medical University, Yinchuan, China.,Ningxia Key Laboratory of Prevention and Control of Common Infectious Diseases, Ningxia Hui Autonomous Region, Yinchuan, China
| | - Jihui Yang
- Ningxia Key Laboratory of Prevention and Control of Common Infectious Diseases, Ningxia Hui Autonomous Region, Yinchuan, China
| | - Jia Wen
- School of Basic Medicine, Ningxia Medical University, Yinchuan, China.,Ningxia Key Laboratory of Prevention and Control of Common Infectious Diseases, Ningxia Hui Autonomous Region, Yinchuan, China
| | - Yinqi Zhao
- Ningxia Key Laboratory of Prevention and Control of Common Infectious Diseases, Ningxia Hui Autonomous Region, Yinchuan, China
| | - Mingxing Zhu
- Ningxia Key Laboratory of Prevention and Control of Common Infectious Diseases, Ningxia Hui Autonomous Region, Yinchuan, China
| | - Changyou Wu
- Institute of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Wei Zhao
- School of Basic Medicine, Ningxia Medical University, Yinchuan, China.,Ningxia Key Laboratory of Prevention and Control of Common Infectious Diseases, Ningxia Hui Autonomous Region, Yinchuan, China
| |
Collapse
|