1
|
Li K, Jin J, Yang Y, Luo X, Wang Y, Xu A, Hao K, Wang Z. Application of Nanoparticles for Immunotherapy of Allergic Rhinitis. Int J Nanomedicine 2024; 19:12015-12037. [PMID: 39583318 PMCID: PMC11584337 DOI: 10.2147/ijn.s484327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 11/07/2024] [Indexed: 11/26/2024] Open
Abstract
Allergen Immunotherapy (AIT) is the only etiological therapeutic method available for allergic rhinitis (AR). Currently, several options for AIT in the market, such as subcutaneous immunotherapy (SCIT) and sublingual immunotherapy (SLIT), have different routes of administration. These traditional methods have achieved encouraging outcomes in clinic. However, the side effects associated with these methods have raised the need for innovative approaches for AIT that improve safety, shorten the course of treatment and increase local drug concentration. Nanoparticles (NPs) are particles ranging in size from 1 to 100 nm, which have been hired as potential adjuvants for AIT. NPs can be employed as agents for modulating immune responses in AR or/and carriers for loading proteins, peptides or DNA molecules. This review focuses on different kinds of nanoparticle delivery systems, including chitosan nanoparticles, exosomes, metal nanoparticles, and viral nanoparticles. We summarized the advantages and limitations of NPs for the treatment of allergic rhinitis. Overall, NPs are expected to be a therapeutic option for AR, which requires more in-depth studies and long-term therapeutic validation.
Collapse
Affiliation(s)
- Kaiqiang Li
- Laboratory Medicine Center, Allergy Center, Department of Transfusion Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, People’s Republic of China
- Key Laboratory of Biomarkers and In Vitro Diagnosis Translation of Zhejiang Province, Hangzhou, Zhejiang, 310063, People’s Republic of China
| | - Jing Jin
- Laboratory Medicine Center, Zhejiang Center for Clinical Laboratories, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, People’s Republic of China
| | - Yimin Yang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, People’s Republic of China
| | - Xuling Luo
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, People’s Republic of China
| | - Yaling Wang
- Laboratory Medicine Center, Allergy Center, Department of Transfusion Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, People’s Republic of China
| | - Aibo Xu
- Laboratory Medicine Center, Allergy Center, Department of Transfusion Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, People’s Republic of China
| | - Ke Hao
- Laboratory Medicine Center, Allergy Center, Department of Transfusion Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, People’s Republic of China
- Key Laboratory of Biomarkers and In Vitro Diagnosis Translation of Zhejiang Province, Hangzhou, Zhejiang, 310063, People’s Republic of China
| | - Zhen Wang
- Laboratory Medicine Center, Allergy Center, Department of Transfusion Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, People’s Republic of China
- Key Laboratory of Biomarkers and In Vitro Diagnosis Translation of Zhejiang Province, Hangzhou, Zhejiang, 310063, People’s Republic of China
| |
Collapse
|
2
|
Spiewak R, Gregorius A, Ostrowski G, Czarnobilska E. Optimization of Basophil Activation Test in the Diagnosis and Qualification for Allergen-Specific Immunotherapy in Children with Respiratory Allergy to the House Dust Mite Dermatophagoides pteronyssinus. Int J Mol Sci 2024; 25:9959. [PMID: 39337447 PMCID: PMC11432158 DOI: 10.3390/ijms25189959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/13/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
The aim of this study was to optimize a basophil activation test in the detection of allergy to the house dust mite Dermatophagoides pteronyssinus in children with allergic respiratory diseases. This study involved 32 cases, 13 girls and 19 boys aged 4-17 years, with perennial asthma or allergic rhinitis caused by D. pteronyssinus. The control group consisted of 13 girls and 19 boys aged 4-17 years with seasonal allergic asthma or rhinitis provoked by Timothy or birch pollen. House dust mite (HDM) allergy was excluded in the controls based on their medical history, skin prick test (SPT) results and sIgE determination. In all patients, a basophil activation test (BAT) was performed with five dilutions of D. pteronyssinus allergen (the dilution series ranged from 22.5 to 0.00225 ng/mL). The results were analyzed by using the receiver operating characteristics (ROC) to determine the optimal allergen concentrations, outcome measures and cut-off points that would differentiate most accurately between HDM-allergic and non-allergic patients. As a "gold standard", criteria for allergen-specific immunotherapy with D. pteronyssinus or respective pollens were applied by an experienced pediatric allergist following the guidelines of the European Academy of Allergy and Clinical Immunology. The highest diagnostic efficiency was yielded by the protocol assuming a cut-off value of 9.76% activated basophils after activation with a single allergen concentration of 2.25 ng/mL (sensitivity 90.6%, specificity 100%). This protocol yielded 3 (4.7%) misclassifications, all false negative, when compared with the "gold standard". There was a strong correlation with the BAT results at 22.5, 2.25 and 0.225 ng/mL (respectively r = 0.90 and r = 0.78, p < 0.001), as well as between the BAT at 2.25 ng/mL and SPT (r = 0.82, p < 0.001) and between the SPT and sIgE levels (r = 0.78, p < 0.001). High cross-reactivity between D. pteronyssinus and D. farinae was confirmed based on the BAT at 22.5 ng/mL (r = 0.82, p < 0.001). In conclusion, the BAT showed very good concordance with the result of a meticulous process of decision-making that combined validated allergy tests (SPT, sIgE) with expert guidelines, specialist knowledge and experience. Facing the risk of the incorrect qualification of patients for costly, long-lasting and potentially risky allergen-specific immunotherapy, the inclusion of a basophil activation test into diagnostic process seems fully justified.
Collapse
Affiliation(s)
- Radoslaw Spiewak
- Department of Experimental Dermatology and Cosmetology, Jagiellonian University Medical College, ul. Medyczna 9, 30-688 Krakow, Poland
- Dermatology & Allergy Practice ‘Dermatolog.eu’ Professor Radoslaw Spiewak, 30-433 Krakow, Poland
| | - Aleksandra Gregorius
- Department of Experimental Dermatology and Cosmetology, Jagiellonian University Medical College, ul. Medyczna 9, 30-688 Krakow, Poland
| | - Grzegorz Ostrowski
- Dermatology & Allergy Practice ‘Dermatolog.eu’ Professor Radoslaw Spiewak, 30-433 Krakow, Poland
| | - Ewa Czarnobilska
- Centre of Clinical and Environmental Allergology, Jagiellonian University Medical College, 31-503 Krakow, Poland;
| |
Collapse
|
3
|
Linn C, O’Malley A, Khatri K, Wright EM, Sebagh D, Grbić M, Kowal K, Chruszcz M. Microscopic Menaces: The Impact of Mites on Human Health. Int J Mol Sci 2024; 25:3675. [PMID: 38612486 PMCID: PMC11011512 DOI: 10.3390/ijms25073675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
Mites are highly prevalent arthropods that infest diverse ecological niches globally. Approximately 55,000 species of mites have been identified but many more are yet to be discovered. Of the ones we do know about, most go unnoticed by humans and animals. However, there are several species from the Acariformes superorder that exert a significant impact on global human health. House dust mites are a major source of inhaled allergens, affecting 10-20% of the world's population; storage mites also cause a significant allergy in susceptible individuals; chiggers are the sole vectors for the bacterium that causes scrub typhus; Demodex mites are part of the normal microfauna of humans and their pets, but under certain conditions populations grow out of control and affect the integrity of the integumentary system; and scabies mites cause one of the most common dermatological diseases worldwide. On the other hand, recent genome sequences of mites provide novel tools for mite control and the development of new biomaterial with applications in biomedicine. Despite the palpable disease burden, mites remain understudied in parasitological research. By better understanding mite biology and disease processes, researchers can identify new ways to diagnose, manage, and prevent common mite-induced afflictions. This knowledge can lead to improved clinical outcomes and reduced disease burden from these remarkably widespread yet understudied creatures.
Collapse
Affiliation(s)
- Christina Linn
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA; (C.L.); (A.O.); (K.K.); (E.M.W.); (D.S.)
| | - Andrea O’Malley
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA; (C.L.); (A.O.); (K.K.); (E.M.W.); (D.S.)
| | - Kriti Khatri
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA; (C.L.); (A.O.); (K.K.); (E.M.W.); (D.S.)
| | - Elaine M. Wright
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA; (C.L.); (A.O.); (K.K.); (E.M.W.); (D.S.)
| | - Dylan Sebagh
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA; (C.L.); (A.O.); (K.K.); (E.M.W.); (D.S.)
| | - Miodrag Grbić
- Department of Biology, University of Western Ontario, London, ON N6A 5B7, Canada;
| | - Krzysztof Kowal
- Department of Allergology and Internal Medicine, Medical University of Bialystok, 15-276 Bialystok, Poland;
- Department of Experimental Allergology and Immunology, Medical University of Bialystok, 15-276 Bialystok, Poland
| | - Maksymilian Chruszcz
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA; (C.L.); (A.O.); (K.K.); (E.M.W.); (D.S.)
| |
Collapse
|
4
|
Takata T, Masauji T, Motoo Y. Potential of the Novel Slot Blot Method with a PVDF Membrane for Protein Identification and Quantification in Kampo Medicines. MEMBRANES 2023; 13:896. [PMID: 38132900 PMCID: PMC10745123 DOI: 10.3390/membranes13120896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/21/2023] [Accepted: 11/29/2023] [Indexed: 12/23/2023]
Abstract
Kampo is a Japanese traditional medicine modified from traditional Chinese medicine. Kampo medicines contain various traditional crude drugs with unknown compositions due to the presence of low-molecular-weight compounds and proteins. However, the proteins are generally rare and extracted with high-polarity solvents such as water, making their identification and quantification difficult. To develop methods for identifying and quantifying the proteins in Kampo medicines, in the current study we employ previous technology (e.g., column chromatography, electrophoresis, and membrane chromatography), focusing on membrane chromatography with a polyvinylidene difluoride (PVDF) membrane. Moreover, we consider slot blot analysis based on the principle of membrane chromatography, which is beneficial for analyzing the proteins in Kampo medicines as the volume of the samples is not limited. In this article, we assess a novel slot blot method developed in 2017 and using a PVDF membrane and special lysis buffer to quantify advanced glycation end products-modified proteins against other slot blots. We consider our slot blot analysis superior for identifying and quantifying proteins in Kampo medicines compared with other methods as the data obtained with our novel slot blot can be shown with both error bars and the statistically significant difference, and our operation step is simpler than those of other methods.
Collapse
Affiliation(s)
- Takanobu Takata
- Division of Molecular and Genetic Biology, Department of Life Science, Medical Research Institute, Kanazawa Medical University, Uchinada 920-0293, Ishikawa, Japan
- Department of Pharmacy, Kanazawa Medical University Hospital, Uchinada 920-0293, Ishikawa, Japan;
| | - Togen Masauji
- Department of Pharmacy, Kanazawa Medical University Hospital, Uchinada 920-0293, Ishikawa, Japan;
| | - Yoshiharu Motoo
- Department of Internal Medicine, Fukui Saiseikai Hospital, Wadanakacho 918-8503, Fukui, Japan
| |
Collapse
|