1
|
Xu F, Guan Y, Zhang P, Xue L, Ma Y, Gao M, Chong T, Ren BC. Tumor mutational burden presents limiting effects on predicting the efficacy of immune checkpoint inhibitors and prognostic assessment in adrenocortical carcinoma. BMC Endocr Disord 2022; 22:130. [PMID: 35568842 PMCID: PMC9107278 DOI: 10.1186/s12902-022-01017-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 04/08/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Adrenocortical carcinoma (ACC) is a highly malignant urologic cancer and tends to metastasize. Although immune checkpoint inhibitors (ICIs) bring a glimmer of light to conquer ACC, only a fraction of patients have benefit from ICIs treatment. It is well known that tumor mutational burden (TMB) is closely associated with the efficacy and response rate of immunotherapy. However, its roles in ACC were not investigated. METHODS Using somatic mutations data of 92 ACC samples in TCGA database, we calculated their TMB values by the 'maftools' package in R software (Ver 3.6.3). To explore the roles of TMB in ICIs therapy, we have addressed this issue from three perspectives. First, the effects of TMB levels on tumor immune microenvironment (TIM) were analyzed through CIBERSORT algorithm, ssGSEA method and TIMER web server. Second, we investigated the expressive correlations between TMB level and five pivotal immune checkpoints based on Pearson coefficient. Third, the difference in TIDE score between high- and low-TMB groups was compared. The prognostic value of TMB was also evaluated. Besides, GSEA was performed to determine the changes in the activities of signaling pathways caused by TMB. RESULTS TMB values in ACC samples were not high. The average of total mutation counts in each sample was only 21.5. High TMB could lead metabolic reprogramming and poor survival outcomes. However, it was unable to affect the infiltration levels of lymphocytes, and failed to facilitate the activities of immune-related pathways. Regarding immune checkpoints (ICs), only PD-L1 upregulation could result in a good prognosis, and TMB level did not correlate with the expressions of other ICs except for LAG3. There was no significant difference in TIDE score between high- and low-TMB groups. Combining the present results and previous study, we speculated that inadequate stimulation for neoantigens formation, intrinsic immune-resistance and special genomic alterations were three possible reasons for TMB limiting functions in TIM and ICIs. Besides, TMB was toughly applied in clinical practice due to its high cost of determination and non-universal definition of high TMB. CONCLUSIONS TMB presents limiting effects on prediction for ICIs efficacy and prognostic assessment for ACC patients.
Collapse
Affiliation(s)
- Fangshi Xu
- Department of Medicine, Xi'an Jiaotong University, No. 76, Yanta West Road, Xi'an, 710061, Shaanxi, China
- Department of Urology, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157, West Five Road, Xi'an, 710000, Shaanxi Province, China
| | - Yibing Guan
- Department of Medicine, Xi'an Jiaotong University, No. 76, Yanta West Road, Xi'an, 710061, Shaanxi, China
- Department of Urology, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157, West Five Road, Xi'an, 710000, Shaanxi Province, China
| | - Peng Zhang
- Department of Urology, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157, West Five Road, Xi'an, 710000, Shaanxi Province, China
| | - Li Xue
- Department of Urology, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157, West Five Road, Xi'an, 710000, Shaanxi Province, China
| | - Yubo Ma
- Department of Medicine, Xi'an Jiaotong University, No. 76, Yanta West Road, Xi'an, 710061, Shaanxi, China
- Department of Urology, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157, West Five Road, Xi'an, 710000, Shaanxi Province, China
| | - Mei Gao
- Department of Urology, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157, West Five Road, Xi'an, 710000, Shaanxi Province, China
| | - Tie Chong
- Department of Urology, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157, West Five Road, Xi'an, 710000, Shaanxi Province, China
| | - Bin-Cheng Ren
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157, West Five Road, Xi'an, 710000, Shaanxi Province, China.
| |
Collapse
|
2
|
Orienti I, Cripe TP, Currier MA, Cavallari C, Teti G, Falconi M. A Cationic Nanomicellar Complex of the Quaternary Amphiphilic Amine RC16+ with Fenretinide as a New Multitasking System for Antitumor Therapy. Curr Drug Deliv 2020; 16:807-817. [PMID: 31577206 DOI: 10.2174/1567201816666191002100745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 07/27/2019] [Accepted: 09/09/2019] [Indexed: 11/22/2022]
Abstract
OBJECTIVES This study investigated the antitumor effect of a new nanomicellar complex obtained by combining the antitumor agent fenretinide with a quaternary amphiphilic amine RC16+ also endowed with antitumor activity. METHODS The complex (Fen-RC16+) strongly improved the aqueous solubility of fenretinide (from 1,71 ± 0.08 µg/ml, pure fenretinide to 1500 ± 164 µg /ml, Fen-RC16+ complex) and provided a cytotoxic effect on SH-SY5Y neuroblastoma cell lines resulting from the intrinsic activity of both the complex components. Moreover, the mean size of the nanomicellar complex (ranging from 20 ± 1.97 nm to 40 ± 3.05 nm) was suitable for accumulation to the tumor site by the enhanced permeability and retention effect and the positive charge provided by the quaternary RC16+ induced adsorption of the complex on the tumor cell surface improving the intracellular concentration of fenretinide. RESULTS All these characteristics made the Fen-RC16+ complex a multitasking system for antitumor therapy. CONCLUSION Indeed its in vivo activity, evaluated on SH-SY5Y xenografts, was strong, and the tumor growth did not resume after the treatment withdrawal.
Collapse
Affiliation(s)
- Isabella Orienti
- Department of Pharmacy and Biotechnology, University of Bologna, Via S. Donato 19/2, Bologna, Italy
| | - Timothy P Cripe
- Center for Childhood Cancer and Blood Diseases, Nationwide Children's Hospital, Columbus, Ohio, United States
| | - Mark A Currier
- Center for Childhood Cancer and Blood Diseases, Nationwide Children's Hospital, Columbus, Ohio, United States
| | - Cristina Cavallari
- Department of Pharmacy and Biotechnology, University of Bologna, Via S. Donato 19/2, Bologna, Italy
| | - Gabriella Teti
- Department for Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, via Irnerio 48, Bologna, Italy
| | - Mirella Falconi
- Department for Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, via Irnerio 48, Bologna, Italy
| |
Collapse
|
3
|
Youn H, Lee HK, Sohn HR, Park UH, Kim EJ, Youn B, Um SJ. RaRF confers RA resistance by sequestering RAR to the nucleolus and regulating MCL1 in leukemia cells. Oncogene 2017; 37:352-362. [PMID: 28945224 DOI: 10.1038/onc.2017.329] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 07/10/2017] [Accepted: 08/06/2017] [Indexed: 01/10/2023]
Abstract
Retinoic acid (RA) has broad clinical applications for the treatment of various cancers, particularly acute promyelocytic leukemia. However, RA-based therapy is limited by relapse in patients associated with RA resistance, the mechanism of which is poorly understood. Here, we suggest a new molecular mechanism of RA resistance by a repressor, named RA resistance factor (RaRF). RaRF suppressed transcriptional activity of the RA receptor (RAR) by directly interacting with and sequestering RAR to the nucleolus in response to RA. RaRF was highly expressed in RA-resistant leukemia cells and its expression was strongly correlated with RA sensitivity. MCL1 was upregulated by RA treatment upon RaRF depletion, accompanying leukemic myeloblast differentiation, which is negatively regulated by ectopic RaRF expression. Collectively, we propose that RaRF may be a factor in the resistance mechanism and thus a potential target for leukemia therapy using RA.
Collapse
Affiliation(s)
- H Youn
- Department of Integrative Bioscience and Biotechnology, Sejong University, Gwangjin-gu, Seoul, Korea
| | - H-K Lee
- Department of Integrative Bioscience and Biotechnology, Sejong University, Gwangjin-gu, Seoul, Korea
| | - H-R Sohn
- Department of Integrative Bioscience and Biotechnology, Sejong University, Gwangjin-gu, Seoul, Korea
| | - U-H Park
- Department of Integrative Bioscience and Biotechnology, Sejong University, Gwangjin-gu, Seoul, Korea
| | - E-J Kim
- Department of Molecular Biology, Dankook University, Cheonan-si, Chungnam, Korea
| | - B Youn
- Department of Biological Sciences, Pusan National University, Gumjeong-gu, Busan 46241, Republic of Korea
| | - S-J Um
- Department of Integrative Bioscience and Biotechnology, Sejong University, Gwangjin-gu, Seoul, Korea
| |
Collapse
|
5
|
Anti-tumor activity of fenretinide complexed with human serum albumin in lung cancer xenograft mouse model. Oncotarget 2015; 5:4811-20. [PMID: 25015569 PMCID: PMC4148101 DOI: 10.18632/oncotarget.2038] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Sufficient knowledge regarding cellular and molecular basis of lung cancer progression and metastasis would help in the development of novel and effective strategies for the treatment of lung cancer. 4HPR is a synthetic retinoid with potential anti-tumor activity but is still limited because of its poor bioavailability. The use of albumin as a complexing agent for a hydrophobic drug is expected to improve the water solubility and consequently their bioavailability.This study investigated the antitumor activity of a novel complex between albumin and 4-HPR in a mouse model of human lung cancer and focuses on role and mechanism of Cav-1 mainly involved in regulating cancer and Acsvl3 mainly connected with tumor growth. Their expressions were assayed by immunohistochemistry and qRT-PCR, to demonstrate the reduction of the tumor growth following the drug treatment. Our results showed a high antitumor activity of 4HPR-HSA by reduction of the volume of tumor mass and the presence of a high level of apoptotic cell by TUNEL assay. The downregulation of Cav-1 and Acsvl3 suggested a reduction of tumor growth. In conclusion, we demonstrated the great potential of 4HPR-HSA in the treatment of lung cancer. More data about the mechanism of drug delivery the 4HPR-HSA are necessary.
Collapse
|
8
|
Abstract
Fenretinide, a synthetic retinoid, has emerged as a promising anticancer agent based on numerous in vitro and animal studies, as well as chemoprevention clinical trials. In vitro observations suggest that the anticancer activity of fenretinide may arise from its ability to induce apoptosis in tumor cells. Diverse signaling molecules including reactive oxygen species, ceramide, and ganglioside GD3 can mediate apoptosis induction by fenretinide in transformed, premalignant, and malignant cells. In many cell types, these signaling intermediates appear to be induced by mechanisms that are independent of retinoic acid receptor activation, and ultimately initiate the intrinsic or mitochondrial-mediated pathway of cell elimination. Numerous investigations conducted during the past 10 years have discovered a great deal about the apoptogenic activity of fenretinide. In this review we explore the mechanisms associated with fenretinide-induced apoptosis and highlight certain mechanistic underpinnings of fenretinide-induced cell death that remain poorly understood and thus warrant further characterization.
Collapse
Affiliation(s)
- N Hail
- Department of Clinical Pharmacy, School of Pharmacy, The University of Colorado at Denver and Health Sciences Center, Box C238, 80262, USA.
| | | | | |
Collapse
|