1
|
Diakite M, Shaw-Saliba K, Lau CY. Malignancy and viral infections in Sub-Saharan Africa: A review. FRONTIERS IN VIROLOGY (LAUSANNE, SWITZERLAND) 2023; 3:1103737. [PMID: 37476029 PMCID: PMC10358275 DOI: 10.3389/fviro.2023.1103737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
The burden of malignancy related to viral infection is increasing in Sub-Saharan Africa (SSA). In 2018, approximately 2 million new cancer cases worldwide were attributable to infection. Prevention or treatment of these infections could reduce cancer cases by 23% in less developed regions and about 7% in developed regions. Contemporaneous increases in longevity and changes in lifestyle have contributed to the cancer burden in SSA. African hospitals are reporting more cases of cancer related to infection (e.g., cervical cancer in women and stomach and liver cancer in men). SSA populations also have elevated underlying prevalence of viral infections compared to other regions. Of 10 infectious agents identified as carcinogenic by the International Agency for Research on Cancer, six are viruses: hepatitis B and C viruses (HBV and HCV, respectively), Epstein-Barr virus (EBV), high-risk types of human papillomavirus (HPV), Human T-cell lymphotropic virus type 1 (HTLV-1), and Kaposi's sarcoma herpesvirus (KSHV, also known as human herpesvirus type 8, HHV-8). Human immunodeficiency virus type 1 (HIV) also facilitates oncogenesis. EBV is associated with lymphomas and nasopharyngeal carcinoma; HBV and HCV are associated with hepatocellular carcinoma; KSHV causes Kaposi's sarcoma; HTLV-1 causes T-cell leukemia and lymphoma; HPV causes carcinoma of the oropharynx and anogenital squamous cell cancer. HIV-1, for which SSA has the greatest global burden, has been linked to increasing risk of malignancy through immunologic dysregulation and clonal hematopoiesis. Public health approaches to prevent infection, such as vaccination, safer injection techniques, screening of blood products, antimicrobial treatments and safer sexual practices could reduce the burden of cancer in Africa. In SSA, inequalities in access to cancer screening and treatment are exacerbated by the perception of cancer as taboo. National level cancer registries, new screening strategies for detection of viral infection and public health messaging should be prioritized in SSA's battle against malignancy. In this review, we discuss the impact of carcinogenic viruses in SSA with a focus on regional epidemiology.
Collapse
Affiliation(s)
- Mahamadou Diakite
- University Clinical Research Center, University of Sciences, Techniques, and Technologies, Bamako, Mali
| | - Kathryn Shaw-Saliba
- Collaborative Clinical Research Branch, Division of Clinical Research, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Chuen-Yen Lau
- HIV Dynamics and Replication Program, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, United States
| |
Collapse
|
2
|
Yamagishi M, Fujikawa D, Watanabe T, Uchimaru K. HTLV-1-Mediated Epigenetic Pathway to Adult T-Cell Leukemia-Lymphoma. Front Microbiol 2018; 9:1686. [PMID: 30087673 PMCID: PMC6066519 DOI: 10.3389/fmicb.2018.01686] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 07/06/2018] [Indexed: 11/13/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1), the first reported human oncogenic retrovirus, is the etiologic agent of highly aggressive, currently incurable diseases such as adult T-cell leukemia-lymphoma (ATL) and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). HTLV-1 proteins, including Tax and HBZ, have been shown to have critical roles in HTLV-1 pathogenicity, yet the underlying mechanisms of HTLV-1-driven leukemogenesis are unclear. The frequent disruption of genetic and epigenetic gene regulation in various types of malignancy, including ATL, is evident. In this review, we illustrate a focused range of topics about the establishment of HTLV-1 memory: (1) genetic lesion in the Tax interactome pathway, (2) gene regulatory loop/switch, (3) disordered chromatin regulation, (4) epigenetic lock by the modulation of epigenetic factors, (5) the loss of gene fine-tuner microRNA, and (6) the alteration of chromatin regulation by HTLV-1 integration. We discuss the persistent influence of Tax-dependent epigenetic changes even after the disappearance of HTLV-1 gene expression due to the viral escape from the immune system, which is a remaining challenge in HTLV-1 research. The summarized evidence and conceptualized description may provide a better understanding of HTLV-1-mediated cellular transformation and the potential therapeutic strategies to combat HTLV-1-associated diseases.
Collapse
Affiliation(s)
- Makoto Yamagishi
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Dai Fujikawa
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Toshiki Watanabe
- The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Kaoru Uchimaru
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
3
|
Kuribayashi W, Takizawa K, Sugata K, Kuramitsu M, Momose H, Sasaki E, Hiradate Y, Furuhata K, Asada Y, Iwama A, Matsuoka M, Mizukami T, Hamaguchi I. Impact of the SCF signaling pathway on leukemia stem cell-mediated ATL initiation and progression in an HBZ transgenic mouse model. Oncotarget 2018; 7:51027-51043. [PMID: 27340921 PMCID: PMC5239456 DOI: 10.18632/oncotarget.10210] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 06/01/2016] [Indexed: 12/31/2022] Open
Abstract
Adult T-cell leukemia (ATL) is a malignant disease caused by human T-lymphotropic virus type 1. In aggressive ATL, the response to chemotherapy is extremely poor. We hypothesized that this poor response is due to the existence of chemotherapy-resistant cells, such as leukemic stem cells. Previously, we successfully identified an ATL stem cell (ATLSC) candidate as the c-kit+/CD38−/CD71− cells in an ATL mouse model using Tax transgenic mice. Here, with a new ATL mouse model using HBZ-transgenic mice, we further discovered that the functional ATLSC candidate, which commonly expresses c-kit, is drug-resistant and has the ability to initiate tumors and reconstitute lymphomatous cells. We characterized the ATLSCs as c-kit+/CD4−/CD8− cells and found that they have a similar gene expression profile as T cell progenitors. Additionally, we found that AP-1 gene family members, including Junb, Jund, and Fosb, were up-regulated in the ATLSC fraction. The results of an in vitro assay showed that ATLSCs cultured with cytokines known to promote stem cell expansion, such as stem cell factor (SCF), showed highly proliferative activity and maintained their stem cell fraction. Inhibition of c-kit–SCF signaling with the neutralizing antibody ACK2 affected ATLSC self-renewal and proliferation. Experiments in Sl/Sld mice, which have a mutation in the membrane-bound c-kit ligand, found that ATL development was completely blocked in these mice. These results clearly suggest that the c-kit–SCF signal plays a key role in ATLSC self-renewal and in ATL initiation and disease progression.
Collapse
Affiliation(s)
- Wakako Kuribayashi
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Disease, Tokyo, Japan.,Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan.,Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Kazuya Takizawa
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Disease, Tokyo, Japan
| | - Kenji Sugata
- Laboratory of Virus Control, Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Madoka Kuramitsu
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Disease, Tokyo, Japan
| | - Haruka Momose
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Disease, Tokyo, Japan
| | - Eita Sasaki
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Disease, Tokyo, Japan
| | - Yuki Hiradate
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Disease, Tokyo, Japan
| | - Keiko Furuhata
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Disease, Tokyo, Japan
| | - Yoshihisa Asada
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Atsushi Iwama
- Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Masao Matsuoka
- Laboratory of Virus Control, Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Takuo Mizukami
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Disease, Tokyo, Japan
| | - Isao Hamaguchi
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Disease, Tokyo, Japan
| |
Collapse
|
4
|
Oliveira PD, Farre L, Bittencourt AL. Adult T-cell leukemia/lymphoma. Rev Assoc Med Bras (1992) 2016; 62:691-700. [DOI: 10.1590/1806-9282.62.07.691] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 09/15/2015] [Indexed: 12/21/2022] Open
Abstract
Summary Adult T-cell leukemia/lymphoma (ATL) is a malignancy of mature CD4+ T-cells caused by human T-cell lymphotropic virus type 1 (HTLV-1). Twenty million people are believed to be infected throughout the world, mostly in Japan, Africa, the Caribbean, and South America, particularly in Brazil and Peru. ATL affects about 5% of infected individuals and is classified in the following clinical forms: acute, lymphoma, primary cutaneous tumoral, chronic (favorable and unfavorable), and smoldering (leukemic and non-leukemic). Although it is considered an aggressive disease, there are cases with a long progression. We emphasize the importance of clinical classification as an indispensable element for evaluating prognosis and appropriate therapeutic approach. Since several cases have been published in Brazil and this disease is still poorly known, we decided to make a review paper for dissemination of clinical, hematological and pathological aspects, diagnosis, and therapy. The best way to reduce the occurrence of ATL would be halting the transmission of the virus through breastfeeding.
Collapse
|
5
|
Okada F, Sato H, Omeri AK, Ono A, Tokuyama K, Ando Y, Matsumoto A, Ogata M, Kohno K, Takano K, Mori H. Chest HRCT findings in acute transformation of adult T-cell lymphoma/leukemia. Eur Radiol 2015; 25:1607-13. [PMID: 25576228 DOI: 10.1007/s00330-014-3565-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 10/24/2014] [Accepted: 12/11/2014] [Indexed: 12/29/2022]
Abstract
OBJECTIVES To assess chest high-resolution computed tomography (HRCT) findings in patients with acute transformation of adult T cell leukaemia/lymphoma (ATLL). METHODS We retrospectively identified 72 consecutive patients at our institution with ATLL between October 2000 and March 2014. The cases included acute type (n = 20), lymphoma type (n = 21), smouldering type (n = 24) and chronic type (n = 7). Sixteen (7 men, 9 women; aged 36-85 years, mean 63.3 years) of 31 patients (24 with smouldering and seven with chronic type; 51.6 %) developed acute transformation of ATLL, and had undergone chest HRCT examinations. Parenchymal abnormalities, enlarged lymph nodes, pericardial effusion, pleural effusion and skin lesions were evaluated on HRCT. RESULTS Chest HRCT of 15 of the 16 patients showed abnormal findings, including ground-glass opacity (GGO) (n = 8), consolidation (n = 5), interlobular septal thickening (n = 5) and nodules (n = 5). Pleural effusion was found in five patients, lymph node enlargement in 10 patients and multiple skin thickening in two patients. CONCLUSIONS Almost all patients with acute transformation of ATLL had abnormal findings on chest HRCT, which consisted mainly of lymph node enlargement, GGO, interlobular septal thickening, nodules and bilateral pleural effusions. KEY POINTS • The recognition of CT findings of acute transformation is important • Almost all patients with acute transformation have abnormal findings on HRCT • Characteristic CT features are present in acute transformation of indolent ATLL.
Collapse
Affiliation(s)
- Fumito Okada
- Department of Radiology, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasama-machi, Yufu, Oita, 879-5593, Japan,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Thénoz M, Vernin C, Mortada H, Karam M, Pinatel C, Gessain A, Webb TR, Auboeuf D, Wattel E, Mortreux F. HTLV-1-infected CD4+ T-cells display alternative exon usages that culminate in adult T-cell leukemia. Retrovirology 2014; 11:119. [PMID: 25519886 PMCID: PMC4293115 DOI: 10.1186/s12977-014-0119-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 12/02/2014] [Indexed: 12/18/2022] Open
Abstract
Background Reprogramming cellular gene transcription sustains HTLV-1 viral persistence that ultimately leads to the development of adult T-cell leukemia/lymphoma (ATLL). We hypothesized that besides these quantitative transcriptional effects, HTLV-1 qualitatively modifies the pattern of cellular gene expression. Results Exon expression analysis shows that patients’ untransformed and malignant HTLV-1+ CD4+ T-cells exhibit multiple alternate exon usage (AEU) events. These affect either transcriptionally modified or unmodified genes, culminate in ATLL, and unveil new functional pathways involved in cancer and cell cycle. Unsupervised hierarchical clustering of array data permitted to isolate exon expression patterns of 3977 exons that discriminate uninfected, infected, and transformed CD4+ T-cells. Furthermore, untransformed infected CD4+ clones and ATLL samples shared 486 exon modifications distributed in 320 genes, thereby indicating a role of AEUs in HTLV-1 leukemogenesis. Exposing cells to splicing modulators revealed that Sudemycin E reduces cell viability of HTLV-1 transformed cells without affecting primary control CD4+ cells and HTLV-1 negative cell lines, suggesting that the huge excess of AEU might provide news targets for treating ATLL. Conclusions Taken together, these data reveal that HTLV-1 significantly modifies the structure of cellular transcripts and unmask new putative leukemogenic pathways and possible therapeutic targets. Electronic supplementary material The online version of this article (doi:10.1186/s12977-014-0119-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Morgan Thénoz
- Université de Lyon 1, CNRS UMR5239, Oncovirologie et Biothérapies, Laboratoire de Biologie Moléculaire de la Cellule, Faculté de Médecine Lyon Sud, Pierre Bénite, France.
| | - Céline Vernin
- Université de Lyon 1, CNRS UMR5239, Oncovirologie et Biothérapies, Laboratoire de Biologie Moléculaire de la Cellule, Faculté de Médecine Lyon Sud, Pierre Bénite, France.
| | - Hussein Mortada
- Centre de Recherche sur le Cancer de Lyon, France Epissage alternatif et progression tumorale, Lyon, France.
| | - Maroun Karam
- Université de Lyon 1, CNRS UMR5239, Oncovirologie et Biothérapies, Laboratoire de Biologie Moléculaire de la Cellule, Faculté de Médecine Lyon Sud, Pierre Bénite, France.
| | - Christiane Pinatel
- Centre de Recherche sur le Cancer de Lyon, France Epissage alternatif et progression tumorale, Lyon, France.
| | - Antoine Gessain
- Institut Pasteur, Unité d'Epidémiologie et Physiopathologie des Virus Oncogènes, Paris, France.
| | - Thomas R Webb
- SRI International, 333 Ravenswood Avenue, Menlo Park, CA, 94025-3493, USA.
| | - Didier Auboeuf
- Centre de Recherche sur le Cancer de Lyon, France Epissage alternatif et progression tumorale, Lyon, France.
| | - Eric Wattel
- Université de Lyon 1, CNRS UMR5239, Oncovirologie et Biothérapies, Laboratoire de Biologie Moléculaire de la Cellule, Faculté de Médecine Lyon Sud, Pierre Bénite, France. .,Université Lyon I, Service d'Hématologie, Pavillon Marcel Bérard, Centre Hospitalier Lyon-Sud, Pierre Bénite, France. .,Oncovirologie et Biotherapies, Laboratoire de Biologie Moléculaire de la Cellule, UMR5239 CNRS/ENS, Lyon/UCBL/HCL; Ecole normale supérieure de Lyon, 46, allée d'Italie; 69364, Lyon cedex 07, France.
| | - Franck Mortreux
- Université de Lyon 1, CNRS UMR5239, Oncovirologie et Biothérapies, Laboratoire de Biologie Moléculaire de la Cellule, Faculté de Médecine Lyon Sud, Pierre Bénite, France. .,Oncovirologie et Biotherapies, Laboratoire de Biologie Moléculaire de la Cellule, UMR5239 CNRS/ENS, Lyon/UCBL/HCL; Ecole normale supérieure de Lyon, 46, allée d'Italie; 69364, Lyon cedex 07, France.
| |
Collapse
|
7
|
Barrios CS, Castillo L, Zhi H, Giam CZ, Beilke MA. Human T cell leukaemia virus type 2 tax protein mediates CC-chemokine expression in peripheral blood mononuclear cells via the nuclear factor kappa B canonical pathway. Clin Exp Immunol 2014; 175:92-103. [PMID: 24116893 DOI: 10.1111/cei.12213] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2013] [Indexed: 12/22/2022] Open
Abstract
Retroviral co-infections with human immunodeficiency virus type-1 (HIV-1) and human T cell leukaemia virus type 1 (HTLV-1) or type 2 (HTLV-2) are prevalent in many areas worldwide. It has been observed that HIV-1/HTLV-2 co-infections are associated with slower rates of CD4(+) T cell decline and delayed progression to AIDS. This immunological benefit has been linked to the ability of Tax2, the transcriptional activating protein of HTLV-2, to induce the expression of macrophage inflammatory protein (MIP)-1α/CCL3, MIP-1β/CCL4 and regulated upon activation normal T cell expressed and secreted (RANTES)/CCL5 and to down-regulate the expression of the CCR5 co-receptor in peripheral blood mononuclear cells (PBMCs). This study aimed to assess the role of Tax2-mediated activation of the nuclear factor kappa B (NF-κB) signalling pathway on the production of the anti-viral CC-chemokines MIP-1α, MIP-1β and RANTES. Recombinant Tax1 and Tax2 proteins, or proteins expressed via adenoviral vectors used to infect cells, were tested for their ability to activate the NF-κB pathway in cultured PBMCs in the presence or absence of NF-κB pathway inhibitors. Results showed a significant release of MIP-1α, MIP-1β and RANTES by PBMCs after the activation of p65/RelA and p50. The secretion of these CC-chemokines was significantly reduced (P < 0·05) by canonical NF-κB signalling inhibitors. In conclusion, Tax2 protein may promote innate anti-viral immune responses through the activation of the canonical NF-κB pathway.
Collapse
Affiliation(s)
- C S Barrios
- Infectious Diseases Division, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA; Research Service 151-I, Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, WI, USA
| | | | | | | | | |
Collapse
|
8
|
Examination of a Reporter Vector for HTLV-1 Infectivity Using MT2, a HTLV-1 Producer Cell Line. Jundishapur J Microbiol 2013. [DOI: 10.5812/jjm.8257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
9
|
Yamagishi M, Watanabe T. Molecular hallmarks of adult T cell leukemia. Front Microbiol 2012; 3:334. [PMID: 23060864 PMCID: PMC3444139 DOI: 10.3389/fmicb.2012.00334] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 08/29/2012] [Indexed: 12/20/2022] Open
Abstract
The molecular hallmarks of adult T cell leukemia (ATL) comprise outstanding deregulations of signaling pathways that control the cell cycle, resistance to apoptosis, and proliferation of leukemic cells, all of which have been identified by early excellent studies. Nevertheless, we are now confronted the therapeutic difficulties of ATL that is a most aggressive T cell leukemia/lymphoma. Using next-generation strategies, emerging molecular characteristics such as specific surface markers and an additional catalog of signals affecting the fate of leukemic cells have been added to the molecular hallmarks that constitute an organizing principle for rationalizing the complexities of ATL. Although human T cell leukemia virus type 1 is undoubtedly involved in ATL leukemogenesis, most leukemic cells do not express the viral protein Tax. Instead, cellular gene expression changes dominate homeostasis disorders of infected cells and characteristics of ATL. In this review, we summarize the state of the art of ATL molecular pathology, which supports the biological properties of leukemic cells. In addition, we discuss the recent discovery of two molecular hallmarks of potential generality; an abnormal microRNA pattern and epigenetic reprogramming, which strongly involve the imbalance of the molecular network of lymphocytes. Global analyses of ATL have revealed the functional impact of crosstalk between multifunctional pathways. Clinical and biological studies on signaling inhibitory agents have also revealed novel oncogenic drivers that can be targeted in future. ATL cells, by deregulation of such pathways and their interconnections, may become masters of their own destinies. Recognizing and understanding of the widespread molecular applicability of these concepts will increasingly affect the development of novel strategies for treating ATL.
Collapse
Affiliation(s)
- Makoto Yamagishi
- Laboratory of Tumor Cell Biology, Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo Minato-ku, Tokyo, Japan
| | | |
Collapse
|
10
|
Abstract
Posttranscriptional mechanisms are now widely acknowledged to play a central role in orchestrating gene-regulatory networks in hematopoietic cell growth, differentiation, and tumorigenesis. Although much attention has focused on microRNAs as regulators of mRNA stability/translation, recent data have highlighted the role of several diverse classes of AU-rich RNA-binding protein in the regulation of mRNA decay/stabilization. AU-rich elements are found in the 3'-untranslated region of many mRNAs that encode regulators of cell growth and survival, such as cytokines and onco/tumor-suppressor proteins. These are targeted by a burgeoning number of different RNA-binding proteins. Three distinct types of AU-rich RNA binding protein (ARE poly-U-binding degradation factor-1/AUF1, Hu antigen/HuR/HuA/ELAVL1, and the tristetraprolin/ZFP36 family of proteins) are essential for normal hematopoiesis. Together with 2 further AU-rich RNA-binding proteins, nucleolin and KHSRP/KSRP, the functions of these proteins are intimately associated with pathways that are dysregulated in various hematopoietic malignancies. Significantly, all of these AU-rich RNA-binding proteins function via an interconnected network that is integrated with microRNA functions. Studies of these diverse types of RNA binding protein are providing novel insight into gene-regulatory mechanisms in hematopoiesis in addition to offering new opportunities for developing mechanism-based targeted therapeutics in leukemia and lymphoma.
Collapse
|
11
|
Abstract
NF-κB is a pivotal transcription factor that controls cell survival and proliferation in diverse physiological processes. The activity of NF-κB is tightly controlled through its cytoplasmic sequestration by specific inhibitors, IκBs. Various cellular stimuli induce the activation of an IκB kinase, which phosphorylates IκBs and triggers their proteasomal degradation, causing nuclear translocation of activated NF-κB. Under normal conditions, the activation of NF-κB occurs transiently, thus ensuring rapid but temporary induction of target genes. Deregulated NF-κB activation contributes to the development of various diseases, including cancers and immunological disorders. Accumulated studies demonstrate that the NF-κB signaling pathway is a target of several human oncogenic viruses, including the human T cell leukemia virus type 1, the Kaposi sarcoma-associated herpesvirus, and the Epstein-Bar virus. These viruses encode specific oncoproteins that target different signaling components of the NF-κB pathway, leading to persistent activation of NF-κB. This chapter will discuss the molecular mechanisms by which NF-κB is activated by the viral oncoproteins.
Collapse
Affiliation(s)
- Shao-Cong Sun
- Department of Immunology, The University of Texas MD Anderson Cancer Center and The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas 77030
| | - Ethel Cesarman
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, 1300 York Ave, New York, NY 10065
| |
Collapse
|
12
|
Alizadeh AA, Bohen SP, Lossos C, Martinez-Climent JA, Ramos JC, Cubedo-Gil E, Harrington WJ, Lossos IS. Expression profiles of adult T-cell leukemia-lymphoma and associations with clinical responses to zidovudine and interferon alpha. Leuk Lymphoma 2010; 51:1200-16. [PMID: 20370541 DOI: 10.3109/10428191003728628] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Adult T-cell leukemia-lymphoma (ATLL) is an HTLV-1-associated lymphoproliferative malignancy that is frequently fatal. We compared gene expression profiles (GEPs) of leukemic specimens from nine patients with ATLL at the time of diagnosis and immediately after combination therapy with zidovudine (AZT) and interferon alpha (IFNalpha). GEPs were also related to genetic aberrations determined by comparative genomic hybridization. We identified several genes anomalously over-expressed in the ATLL leukemic cells at the mRNA level, including LYN, CSPG2, and LMO2, and confirmed LMO2 expression in ATLL cells at the protein level. In vivo AZT-IFNalpha therapy evoked a marked induction of interferon-induced genes accompanied by repression of cell-cycle regulated genes, including those encoding ribosomal proteins. Remarkably, patients not responding to AZT-IFNalpha differed most from responding patients in lower expression of these same IFN-responsive genes, as well as components of the antigen processing and presentation apparatus. Demonstration of specific gene expression signatures associated with response to AZT-IFNalpha therapy may provide novel insights into the mechanisms of action in ATLL.
Collapse
Affiliation(s)
- Ash A Alizadeh
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Zámecníkova A, Al Bahar S, Elshinnawy SE. Genomic instability and rapid clinical course in adult T-cell lymphoma/leukemia patient. Leuk Res 2010; 34:1617-21. [PMID: 20211490 PMCID: PMC7112430 DOI: 10.1016/j.leukres.2010.02.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Revised: 02/10/2010] [Accepted: 02/10/2010] [Indexed: 11/15/2022]
Abstract
Adult T-cell leukemia/lymphoma is a distinct clinical entity characterized by a clonal proliferation of malignant T-lymphocytes. The etiologic agent of the disease is a Human T-cell lymphotropic virus type I. It occurs almost exclusively in areas where the virus is endemic; however the disease develops only in the minority of patients who are virus carriers. Karyotyping findings and their correlation with clinical features are still limited in T-cell malignancies, complicated by clinical heterogeneity and a plethora of secondary abnormalities. This study describes detailed chromosomal and fluorescence in situ hybridization results observed in a patient with adult T-cell leukemia/lymphoma and correlates them with clinical characteristics.
Collapse
|
14
|
Endogenous HIV-1 Vpr-mediated apoptosis and proteome alteration of human T-cell leukemia virus-1 transformed C8166 cells. Apoptosis 2010; 14:1212-26. [PMID: 19655254 DOI: 10.1007/s10495-009-0380-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
HIV-1 viral protein R (Vpr) can induce cell cycle arrest and cell death, and may be beneficial in cancer therapy to suppress malignantly proliferative cell types, such as adult T-cell leukemia (ATL) cells. In this study, we examined the feasibility of employing the HIV-vpr gene, via targeted gene transfer, as a potential new therapy to kill ATL cells. We infected C8166 cells with a recombinant adenovirus carrying both vpr and GFP genes (rAd-vpr), as well as the vector control virus (rAd-vector). G(2)/M phase cell cycle arrest was observed in the rAd-vpr infected cells. Typical characteristics of apoptosis were detected in rAd-vpr infected cells, including sub-diploid peak exhibition in DNA content assay, the Hoechst 33342 accumulation, apoptotic body formation, mitochondrial membrane potential and plasma membrane integrity loss. The proteomic assay revealed apoptosis related protein changes, exhibiting the regulation of caspase-3 activity indicator proteins (vimentin and Rho GDP-dissociation inhibitor 2), mitochondrial protein (prohibitin) and other regulatory proteins. In addition, the up-regulation of anti-inflammatory redox protein, thioredoxin, was identified in the rAd-vpr infected group. Further supporting these findings, the increase of caspase 3&7 activity in the rAd-vpr infected group was observed. In conclusion, endogenous Vpr is able to kill HTLV-1 transformed C8166 cells, and may avoid the risks of inducing severe inflammatory responses through apoptosis-inducing and anti-inflammatory activities.
Collapse
|
15
|
Taylor JM, Ghorbel S, Nicot C. Genome wide analysis of human genes transcriptionally and post-transcriptionally regulated by the HTLV-I protein p30. BMC Genomics 2009; 10:311. [PMID: 19602286 PMCID: PMC2723137 DOI: 10.1186/1471-2164-10-311] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2009] [Accepted: 07/14/2009] [Indexed: 11/16/2022] Open
Abstract
Background Human T-cell leukemia virus type 1 (HTLV-I) is a human retrovirus that is etiologically linked to adult T-cell leukemia (ATL), an aggressive and fatal lymphoproliferative disease. The viral transactivator, Tax, is thought to play an important role during the initial stages of CD4+ T-cell immortalization by HTLV-1. Tax has been shown to activate transcription through CREB/ATF and NF-KB, and to alter numerous signaling pathways. These pleiotropic effects of Tax modify the expression of a wide array of cellular genes. Another viral protein encoded by HTLV-I, p30, has been shown to affect virus replication at the transcriptional and posttranscriptional levels. Little is currently known regarding the effect of p30 on the expression and nuclear export of cellular host mRNA transcripts. Identification of these RNA may reveal new targets and increase our understanding of HTLV-I pathogenesis. In this study, using primary peripheral blood mononuclear cells, we report a genome wide analysis of human genes transcriptionally and post-transcriptionally regulated by the HTLV-I protein p30. Results Using microarray analysis, we analyzed total and cytoplasmic cellular mRNA transcript levels isolated from PBMCs to assess the effect of p30 on cellular RNA transcript expression and their nuclear export. We report p30-dependent transcription resulting in the 2.5 fold up-regulation of 15 genes and the down-regulation of 65 human genes. We further tested nuclear export of cellular mRNA and found that p30 expression also resulted in a 2.5 fold post-transcriptional down-regulation of 90 genes and the up-regulation of 33 genes. Conclusion Overall, our study describes that expression of the HTLV-I protein p30 both positively and negatively alters the expression of cellular transcripts. Our study identifies for the first time the cellular genes for which nuclear export is affected by p30. These results suggest that p30 may possess a more global function with respect to mRNA transcription and the nuclear shuttling of cellular mRNA transcripts. In addition, these alterations in gene expression may play a role in cell transformation and the onset of leukemia.
Collapse
Affiliation(s)
- John M Taylor
- Center for Viral Oncology, Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160, USA.
| | | | | |
Collapse
|
16
|
Vajente N, Trevisan R, Saggioro D. HTLV-1 Tax protein cooperates with Ras in protecting cells from apoptosis. Apoptosis 2009; 14:153-63. [PMID: 19089619 DOI: 10.1007/s10495-008-0289-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Tax protein of the human T-cell leukemia virus type 1 (HTLV-1) plays a critical role in HTLV-I-correlated diseases through its ability to deregulate the expression of a vast array of cellular genes. We have previously shown that Tax counteracts apoptosis induced by stimuli triggering mitochondria apoptotic pathway, most likely by activating CREB-mediated transcription and affecting the phosphorylation levels of CREB at Ser-133. Here, we report data that indicate the oncoprotein Ras as a possible mediator of Tax-induced apoptosis protection and suggest a possible role of Tax in Ras activation. In addition, using inhibitors of down stream effectors of Ras, we found that ERK signaling is the most relevant for Tax-mediated apoptosis protection. As a whole, our findings provide intriguing evidence of a possible link between Ras signaling and Tax capability to counteract apoptosis and to enhance P-CREB levels, and implicates a potential role for Ras in HTLV-1-induced diseases.
Collapse
Affiliation(s)
- Nicola Vajente
- Department of Oncology and Surgical Sciences, Oncology Section, University of Padova, via Gattamelata 64, 35128 Padova, Italy
| | | | | |
Collapse
|
17
|
Gene expression profiling of ATL patients: compilation of disease-related genes and evidence for TCF4 involvement in BIRC5 gene expression and cell viability. Blood 2009; 113:4016-26. [PMID: 19131553 DOI: 10.1182/blood-2008-08-175901] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Adult T-cell leukemia/lymphoma (ATL) is an aggressive and fatal disease. We have examined 32 patients with smoldering, chronic, lymphoma and acute leukemia using Affymetrix HG-U133A2.0 arrays. Using the BRB array program, we identified genes differentially expressed in leukemia cells compared with normal lymphocytes. Several unique genes were identified that were overexpressed in leukemic cells, including TNFSF11, RGS13, MAFb, CSPG2, C/EBP-alpha, and TCF4; 200 of the most highly overexpressed ATL genes were analyzed by the Pathway Studio, version 4.0 program. ATL leukemia cells were characterized by an increase in genes linked to "central" genes CDC2/cyclin B1, SYK/LYN, proliferating cell nuclear antigen, and BIRC5. Because of its potential therapeutic importance, we focused our studies on the regulation and function of BIRC5, whose expression was increased in 13 of 14 leukemia samples. TCF4 reporter assays and transfection of DN-TCF4 demonstrated that TCF4 regulates BIRC5 gene expression. Functionally, transfection of ATL cells with BIRC5 shRNA decreased BIRC5 expression and cell viability 80%. Clinical treatment of ATL patients with Zenapax or bortezomib decreased BIRC5 expression and cell viability. These experiments represent the first direct experimental evidence that BIRC5 plays an important role in ATL cell viability and provides important insight into ATL genesis and potential targeted therapies.
Collapse
|
18
|
Bogenberger JM, Laybourn PJ. Human T Lymphotropic Virus Type 1 protein Tax reduces histone levels. Retrovirology 2008; 5:9. [PMID: 18237376 PMCID: PMC2276518 DOI: 10.1186/1742-4690-5-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2007] [Accepted: 01/31/2008] [Indexed: 12/21/2022] Open
Abstract
Background Human T-Lymphotropic Virus Type-1 (HTLV-1) is an oncogenic retrovirus that causes adult T-cell leukemia/lymphoma (ATLL). The virally encoded Tax protein is thought to be necessary and sufficient for T-cell leukemogenesis. Tax promotes inappropriate cellular proliferation, represses multiple DNA repair mechanisms, deregulates cell cycle checkpoints, and induces genomic instability. All of these Tax effects are thought to cooperate in the development of ATLL. Results In this study, we demonstrate that histone protein levels are reduced in HTLV-1 infected T-cell lines (HuT102, SLB-1 and C81) relative to uninfected T-cell lines (CEM, Jurkat and Molt4), while the relative amount of DNA per haploid complement is unaffected. In addition, we show that replication-dependent core and linker histone transcript levels are reduced in HTLV-1 infected T-cell lines. Furthermore, we show that Tax expression in Jurkat cells is sufficient for reduction of replication-dependent histone transcript levels. Conclusion These results demonstrate that Tax disrupts the proper regulation of replication-dependent histone gene expression. Further, our findings suggest that HTLV-1 infection uncouples replication-dependent histone gene expression and DNA replication, allowing the depletion of histone proteins with cell division. Histone proteins are involved in the regulation of all metabolic processes involving DNA including transcription, replication, repair and recombination. This study provides a previously unidentified mechanism by which Tax may directly induce chromosomal instability and deregulate gene expression through reduced histone levels.
Collapse
Affiliation(s)
- James M Bogenberger
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, USA.
| | | |
Collapse
|
19
|
Lee SH, Wiernik PH. Adult T-cell leukemia/lymphoma presenting with bilateral hearing loss: a case report. Med Oncol 2007; 24:109-13. [PMID: 17673820 DOI: 10.1007/bf02685911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2006] [Revised: 11/30/1999] [Accepted: 11/20/2006] [Indexed: 11/25/2022]
Abstract
A 44-yr-old Jamaican male who presented only with bilateral hearing loss was found to have hypercalcemia, which, upon further investigation, was found to be due to adult T-cell leukemia/lymphoma (ATLL) syndrome. This is the first case of ATLL presenting with bilateral auditory conduction hearing loss, which responded to combination chemotherapy along with alleviation of other manifestations of ATLL.
Collapse
Affiliation(s)
- Sung Ho Lee
- Department of Medicine and Comprehensive Cancer Center, Our Lady of Mercy Medical Center, New York Medical College, Bronx, New York 10466, USA
| | | |
Collapse
|
20
|
Choi YL, Tsukasaki K, O'Neill MC, Yamada Y, Onimaru Y, Matsumoto K, Ohashi J, Yamashita Y, Tsutsumi S, Kaneda R, Takada S, Aburatani H, Kamihira S, Nakamura T, Tomonaga M, Mano H. A genomic analysis of adult T-cell leukemia. Oncogene 2006; 26:1245-55. [PMID: 16909099 DOI: 10.1038/sj.onc.1209898] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Adult T-cell leukemia (ATL) is an intractable malignancy of CD4+ T cells that is etiologically associated with infection by human T-cell leukemia virus-type I. Most individuals in the chronic stage of ATL eventually undergo progression to a highly aggressive acute stage. To clarify the mechanism responsible for this stage progression, we isolated CD4+ cells from individuals in the chronic (n=19) or acute (n=22) stages of ATL and subjected them to profiling of gene expression with DNA microarrays containing >44,000 probe sets. Changes in chromosome copy number were also examined for 24 cell specimens with the use of microarrays harboring approximately 50,000 probe sets. Stage-dependent changes in gene expression profile and chromosome copy number were apparent. Furthermore, expression of the gene for MET, a receptor tyrosine kinase for hepatocyte growth factor (HGF), was shown to be specific to the acute stage of ATL, and the plasma concentration of HGF was increased in individuals in either the acute or chronic stage. HGF induced proliferation of a MET-positive ATL cell line, and this effect was blocked by antibodies to HGF. The HGF-MET signaling pathway is thus a potential therapeutic target for ATL.
Collapse
Affiliation(s)
- Y L Choi
- Division of Functional Genomics, Jichi Medical University, Shimotsukeshi, Tochigi, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Dunphy CH. Gene expression profiling data in lymphoma and leukemia: review of the literature and extrapolation of pertinent clinical applications. Arch Pathol Lab Med 2006; 130:483-520. [PMID: 16594743 DOI: 10.5858/2006-130-483-gepdil] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
CONTEXT Gene expression (GE) analyses using microarrays have become an important part of biomedical and clinical research in hematolymphoid malignancies. However, the methods are time-consuming and costly for routine clinical practice. OBJECTIVES To review the literature regarding GE data that may provide important information regarding pathogenesis and that may be extrapolated for use in diagnosing and prognosticating lymphomas and leukemias; to present GE findings in Hodgkin and non-Hodgkin lymphomas, acute leukemias, and chronic myeloid leukemia in detail; and to summarize the practical clinical applications in tables that are referenced throughout the text. DATA SOURCE PubMed was searched for pertinent literature from 1993 to 2005. CONCLUSIONS Gene expression profiling of lymphomas and leukemias aids in the diagnosis and prognostication of these diseases. The extrapolation of these findings to more timely, efficient, and cost-effective methods, such as flow cytometry and immunohistochemistry, results in better diagnostic tools to manage the diseases. Flow cytometric and immunohistochemical applications of the information gained from GE profiling assist in the management of chronic lymphocytic leukemia, other low-grade B-cell non-Hodgkin lymphomas and leukemias, diffuse large B-cell lymphoma, nodular lymphocyte-predominant Hodgkin lymphoma, and classic Hodgkin lymphoma. For practical clinical use, GE profiling of precursor B acute lymphoblastic leukemia, precursor T acute lymphoblastic leukemia, and acute myeloid leukemia has supported most of the information that has been obtained by cytogenetic and molecular studies (except for the identification of FLT3 mutations for molecular analysis), but extrapolation of the analyses leaves much to be gained based on the GE profiling data.
Collapse
Affiliation(s)
- Cherie H Dunphy
- Department of Pathology and Laboratory Medicine, The University of North Carolina, Chapel Hill, NC 27599-7525, USA.
| |
Collapse
|
22
|
Ivanov R, Hagenbeek A, Ebeling S. Towards immunogene therapy of hematological malignancies. Exp Hematol 2006; 34:251-63. [PMID: 16543059 DOI: 10.1016/j.exphem.2005.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2005] [Revised: 10/10/2005] [Accepted: 10/11/2005] [Indexed: 11/21/2022]
Affiliation(s)
- Roman Ivanov
- Jordan Laboratory for Haemato-Oncology, Department of Haematology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | | | | |
Collapse
|
23
|
Gombart AF, Borregaard N, Koeffler HP. Human cathelicidin antimicrobial peptide (CAMP) gene is a direct target of the vitamin D receptor and is strongly up-regulated in myeloid cells by 1,25-dihydroxyvitamin D3. FASEB J 2006; 19:1067-77. [PMID: 15985530 DOI: 10.1096/fj.04-3284com] [Citation(s) in RCA: 788] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The innate immune system of mammals provides a rapid response to repel assaults from numerous infectious agents including bacteria, viruses, fungi, and parasites. A major component of this system is a diverse combination of cationic antimicrobial peptides that include the alpha- and beta-defensins and cathelicidins. In this study, we show that 1,25-dihydroxyvitamin D3 and three of its analogs induced expression of the human cathelicidin antimicrobial peptide (CAMP) gene. This induction was observed in acute myeloid leukemia (AML), immortalized keratinocyte, and colon cancer cell lines, as well as normal human bone marrow (BM) -derived macrophages and fresh BM cells from two normal individuals and one AML patient. The induction occurred via a consensus vitamin D response element (VDRE) in the CAMP promoter that was bound by the vitamin D receptor (VDR). Induction of CAMP in murine cells was not observed and expression of CAMP mRNA in murine VDR-deficient bone marrow was similar to wild-type levels. Comparison of mammalian genomes revealed evolutionary conservation of the VDRE in a short interspersed nuclear element or SINE in the CAMP promoter of primates that was absent in the mouse, rat, and canine genomes. Our findings reveal a novel activity of 1,25-dihydroxyvitamin D3 and the VDR in regulation of primate innate immunity.
Collapse
Affiliation(s)
- Adrian F Gombart
- Department of Medicine, Division of Hematology/Oncology, Cedars-Sinai Medical Center, David Geffen School of Medicine at UCLA, Los Angeles, California 90048, USA.
| | | | | |
Collapse
|
24
|
Shuh M, Beilke M. The human T-cell leukemia virus type 1 (HTLV-1): New insights into the clinical aspects and molecular pathogenesis of adult t-cell leukemia/lymphoma (ATLL) and tropical spastic paraparesis/HTLV-associated myelopathy (TSP/HAM). Microsc Res Tech 2005; 68:176-96. [PMID: 16276549 DOI: 10.1002/jemt.20231] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) was the first human retrovirus to be identified in the early 1980s. The isolation and identification of a related virus, HTLV-2, and the distantly related human immunodeficiency virus (HIV) immediately followed. Of the three retroviruses, two are associated definitively with specific diseases, HIV, with acquired immune deficiency syndrome (AIDS) and HTLV-1, with adult T-cell leukemia/lymphoma (ATLL) and tropical spastic paraparesis/HTLV-1-associated myelopathy (TSP/HAM). While an estimated 10-20 million people worldwide are infected with HTLV-I, infection is endemic in the Caribbean, parts of Africa, southwestern Japan, and Italy. Approximately 4% of HTLV-I infected individuals develop ATLL, a disease with a poor prognosis. The clinical manifestations of infection and the current biology of HTLV viruses with emphasis on HTLV-1 are discussed in detail. The implications for improvements in diagnosis, treatment, intervention, and vaccination are included, as well as a discussion of the emergence of HTLV-1 and -2 as copathogens among HIV-1-infected individuals.
Collapse
Affiliation(s)
- Maureen Shuh
- Department of Biological Sciences, Loyola University New Orleans, New Orleans, Louisiana 70118, USA.
| | | |
Collapse
|
25
|
Ståhlberg A, Zoric N, Aman P, Kubista M. Quantitative real-time PCR for cancer detection: the lymphoma case. Expert Rev Mol Diagn 2005; 5:221-30. [PMID: 15833051 DOI: 10.1586/14737159.5.2.221] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Advances in the biologic sciences and technology are providing molecular targets for diagnosis and treatment of cancer. Lymphoma is a group of cancers with diverse clinical courses. Gene profiling opens new possibilities to classify the disease into subtypes and guide a differentiated treatment. Real-time PCR is characterized by high sensitivity, excellent precision and large dynamic range, and has become the method of choice for quantitative gene expression measurements. For accurate gene expression profiling by real-time PCR, several parameters must be considered and carefully validated. These include the use of reference genes and compensation for PCR inhibition in data normalization. Quantification by real-time PCR may be performed as either absolute measurements using an external standard, or as relative measurements, comparing the expression of a reporter gene with that of a presumed constantly expressed reference gene. Sometimes it is possible to compare expression of reporter genes only, which improves the accuracy of prediction. The amount of biologic material required for real-time PCR analysis is much lower than that required for analysis by traditional methods due to the very high sensitivity of PCR. Fine-needle aspirates and even single cells contain enough material for accurate real-time PCR analysis.
Collapse
|
26
|
Nair A, Michael B, Hiraragi H, Fernandez S, Feuer G, Boris-Lawrie K, Lairmore M. Human T lymphotropic virus type 1 accessory protein p12I modulates calcium-mediated cellular gene expression and enhances p300 expression in T lymphocytes. AIDS Res Hum Retroviruses 2005; 21:273-84. [PMID: 15943569 PMCID: PMC2668121 DOI: 10.1089/aid.2005.21.273] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Human T-lymphotropic virus type 1 (HTLV-1) is the etiologic agent of adult T cell leukemia/lymphoma (ATLL), an aggressive CD4+ T lymphocyte malignancy. Activation of T lymphocytes is required for effective retroviral integration into the host cell genome and subsequent viral replication, but the molecular mechanisms involved in HTLV-1-mediated T cell activation remain unclear. HTLV-1 encodes various accessory proteins such as p12I, which has been demonstrated to be critical for HTLV-1 infectivity in vivo in rabbits and in vitro in quiescent primary human T lymphocytes. This hydrophobic protein localizes in the endoplasmic reticulum, increases intracellular calcium, and activates nuclear factor of activated T cell-mediated transcription. To further elucidate the role of p12I in regulation of cellular gene expression, we performed gene array analysis on stable p12I-expressing Jurkat T cells, using Affymetrix U133A arrays. Our data indicate that p12I altered the expression of genes associated with a network of interrelated pathways including T cell signaling, cell proliferation, and apoptosis. Expression of several calcium-regulated genes was found to be altered by p12I, consistent with known properties of the viral protein. Gene array findings were confirmed by semiquantitative RT-PCR in Jurkat T cells and primary CD4+ T lymphocytes. Furthermore, dose-dependent expression of p12I in Jurkat T cells resulted in significant increases in p300 and p300-dependent transcription. This is the first report of a viral protein influencing the transcription of p300, a rate-limiting coadapter critical in HTLV-1-mediated T cell activation. Collectively, our data strongly indicate that HTLV-1 p12I modulates cellular gene expression patterns to hasten the activation of T lymphocytes and thereby promote efficient viral infection.
Collapse
Affiliation(s)
- Amrithraj Nair
- Center for Retrovirus Research and Department of Veterinary Biosciences, Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Ivanov R, Aarts T, Hol S, Doornenbal A, Hagenbeek A, Petersen E, Ebeling S. Identification of a 40S Ribosomal Protein S4–Derived H-Y Epitope Able to Elicit a Lymphoblast-Specific Cytotoxic T Lymphocyte Response. Clin Cancer Res 2005; 11:1694-703. [PMID: 15755990 DOI: 10.1158/1078-0432.ccr-04-1772] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The superior graft-versus-leukemia (GVL) effect of the female-to-male stem cell transplantation is partially independent from the concomitant graft-versus-host reactivity. However, the antigenic basis of this selective GVL response remains enigmatic, because no H-Y antigens with hematopoietic-restricted expression were identified. In this study, we report a novel H-Y epitope that is preferentially recognized on activated proliferating lymphocytes. EXPERIMENTAL DESIGN We generated a CTL clone YKIII.8 that showed reactivity toward male B*5201+ CD40-activated B cells, EBV-lymphoblastoid cell lines, and phytohemagglutinin-activated T-cell blasts but little or no reactivity toward fibroblasts, CD14+ cells, or unstimulated B and T cells. The antigen recognized by YKIII.8 was identified by screening of a cDNA expression library, and its pattern of expression was investigated. RESULTS cDNA of the male isoform of 40S ribosomal protein S4 was found to encode the antigenic peptide TIRYPDPVI, which was recognized by YKIII.8. Western blot analysis showed that rapidly proliferating cells overexpress the RPS4 protein in comparison with nonrecognized cell subsets. Retroviral transfer of YKIII.8 T-cell receptor resulted in preservation of the lymphoblast-specific reactivity pattern. CONCLUSION Our findings suggest that CTL specific to certain epitopes of ubiquitously expressed H-Y antigens may specifically target lymphoblasts, contributing to the selective GVL effect of female-to-male stem cell transplantation.
Collapse
Affiliation(s)
- Roman Ivanov
- Jordan Laboratory for Hemato-oncology, Department of Hematology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
| | | | | | | | | | | | | |
Collapse
|
28
|
Wu Y, de Kievit P, Vahlkamp L, Pijnenburg D, Smit M, Dankers M, Melchers D, Stax M, Boender PJ, Ingham C, Bastiaensen N, de Wijn R, van Alewijk D, van Damme H, Raap AK, Chan AB, van Beuningen R. Quantitative assessment of a novel flow-through porous microarray for the rapid analysis of gene expression profiles. Nucleic Acids Res 2004; 32:e123. [PMID: 15333674 PMCID: PMC516077 DOI: 10.1093/nar/gnh118] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A novel microarray system that utilizes a porous aluminum-oxide substrate and flow-through incubation has been developed for rapid molecular biological testing. To assess its utility in gene expression analysis, we determined hybridization kinetics, variability, sensitivity and dynamic range of the system using amplified RNA. To show the feasibility with complex biological RNA, we subjected Jurkat cells to heat-shock treatment and analyzed the transcriptional regulation of 23 genes. We found that trends (regulation or no change) acquired on this platform are in good agreement with data obtained from real-time quantitative PCR and Affymetrix GeneChips. Additionally, the system demonstrates a linear dynamic range of 3 orders of magnitude and at least 10-fold decreased hybridization time compared to conventional microarrays. The minimum amount of transcript that could be detected in 20 microl volume is 2-5 amol, which enables the detection of 1 in 300,000 copies of a transcript in 1 microg of amplified RNA. Hybridization and subsequent analysis are completed within 2 h. Replicate hybridizations on 24 identical arrays with two complex biological samples revealed a mean coefficient of variation of 11.6%. This study shows the potential of flow-through porous microarrays for the rapid analysis of gene expression profiles in clinical applications.
Collapse
Affiliation(s)
- Ying Wu
- PamGene International BV, Nieuwstraat 30, PO Box 1345, 5200 BJ 's-Hertogenbosch, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Current Awareness on Comparative and Functional Genomics. Comp Funct Genomics 2004. [PMCID: PMC2447433 DOI: 10.1002/cfg.356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|