1
|
Cencic R, Im YK, Naineni SK, Moustafa-Kamal M, Jovanovic P, Sabourin V, Annis MG, Robert F, Schmeing TM, Koromilas A, Paquet M, Teodoro JG, Huang S, Siegel PM, Topisirovic I, Ursini-Siegel J, Pelletier J. A second-generation eIF4A RNA helicase inhibitor exploits translational reprogramming as a vulnerability in triple-negative breast cancer. Proc Natl Acad Sci U S A 2024; 121:e2318093121. [PMID: 38232291 PMCID: PMC10823175 DOI: 10.1073/pnas.2318093121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/15/2023] [Indexed: 01/19/2024] Open
Abstract
In this study, we aimed to address the current limitations of therapies for macro-metastatic triple-negative breast cancer (TNBC) and provide a therapeutic lead that overcomes the high degree of heterogeneity associated with this disease. Specifically, we focused on well-documented but clinically underexploited cancer-fueling perturbations in mRNA translation as a potential therapeutic vulnerability. We therefore developed an orally bioavailable rocaglate-based molecule, MG-002, which hinders ribosome recruitment and scanning via unscheduled and non-productive RNA clamping by the eukaryotic translation initiation factor (eIF) 4A RNA helicase. We demonstrate that MG-002 potently inhibits mRNA translation and primary TNBC tumor growth without causing overt toxicity in mice. Importantly, given that metastatic spread is a major cause of mortality in TNBC, we show that MG-002 attenuates metastasis in pre-clinical models. We report on MG-002, a rocaglate that shows superior properties relative to existing eIF4A inhibitors in pre-clinical models. Our study also paves the way for future clinical trials exploring the potential of MG-002 in TNBC and other oncological indications.
Collapse
Affiliation(s)
- Regina Cencic
- Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QCH3A 1A3, Canada
| | - Young K. Im
- Lady Davis Institute for Medical Research, Montreal, QCH3T 1E2, Canada
| | - Sai Kiran Naineni
- Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QCH3A 1A3, Canada
| | - Mohamed Moustafa-Kamal
- Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QCH3A 1A3, Canada
| | - Predrag Jovanovic
- Lady Davis Institute for Medical Research, Montreal, QCH3T 1E2, Canada
- Division of Experimental Medicine, McGill University, Montreal, QCH4A 3J1, Canada
| | - Valerie Sabourin
- Lady Davis Institute for Medical Research, Montreal, QCH3T 1E2, Canada
| | - Matthew G. Annis
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QCH3A 1A3, Canada
| | - Francis Robert
- Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QCH3A 1A3, Canada
| | - T. Martin Schmeing
- Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QCH3A 1A3, Canada
| | - Antonis Koromilas
- Lady Davis Institute for Medical Research, Montreal, QCH3T 1E2, Canada
- Division of Experimental Medicine, McGill University, Montreal, QCH4A 3J1, Canada
- Gerald Bronfman Department of Oncology, McGill University, Montreal, QCH4A 3T2, Canada
| | - Marilène Paquet
- Département de pathologie et de microbiologie, Faculté de médecine vétérinaire, Université de Montréal, Montréal, QCH3C 3J7, Canada
| | - Jose G. Teodoro
- Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QCH3A 1A3, Canada
| | - Sidong Huang
- Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QCH3A 1A3, Canada
| | - Peter M. Siegel
- Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QCH3A 1A3, Canada
- Division of Experimental Medicine, McGill University, Montreal, QCH4A 3J1, Canada
- Gerald Bronfman Department of Oncology, McGill University, Montreal, QCH4A 3T2, Canada
- Department of Medicine, McGill University, Montreal, QCH4A 3J1, Canada
| | - Ivan Topisirovic
- Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
- Lady Davis Institute for Medical Research, Montreal, QCH3T 1E2, Canada
- Division of Experimental Medicine, McGill University, Montreal, QCH4A 3J1, Canada
- Gerald Bronfman Department of Oncology, McGill University, Montreal, QCH4A 3T2, Canada
| | - Josie Ursini-Siegel
- Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
- Lady Davis Institute for Medical Research, Montreal, QCH3T 1E2, Canada
- Division of Experimental Medicine, McGill University, Montreal, QCH4A 3J1, Canada
- Gerald Bronfman Department of Oncology, McGill University, Montreal, QCH4A 3T2, Canada
| | - Jerry Pelletier
- Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QCH3A 1A3, Canada
- Division of Experimental Medicine, McGill University, Montreal, QCH4A 3J1, Canada
- Gerald Bronfman Department of Oncology, McGill University, Montreal, QCH4A 3T2, Canada
| |
Collapse
|
2
|
Saini M, Julius Ngwa C, Marothia M, Verma P, Ahmad S, Kumari J, Anand S, Vandana V, Goyal B, Chakraborti S, Pandey KC, Garg S, Pati S, Ranganathan A, Pradel G, Singh S. Characterization of Plasmodium falciparum prohibitins as novel targets to block infection in humans by impairing the growth and transmission of the parasite. Biochem Pharmacol 2023; 212:115567. [PMID: 37088154 DOI: 10.1016/j.bcp.2023.115567] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/04/2023] [Accepted: 04/17/2023] [Indexed: 04/25/2023]
Abstract
Prohibitins (PHBs) are highly conserved pleiotropic proteins as they have been shown to mediate key cellular functions. Here, we characterize PHBs encoding putative genes of Plasmodium falciparum by exploiting different orthologous models. We demonstrated that PfPHB1 (PF3D7_0829200) and PfPHB2 (PF3D7_1014700) are expressed in asexual and sexual blood stages of the parasite. Immunostaining indicated these proteins as mitochondrial residents as they were found to be localized as branched structures. We further validated PfPHBs as organellar proteins residing in Plasmodium mitochondria, where they interact with each other. Functional characterization was done in Saccharomyces cerevisiae orthologous model by expressing PfPHB1 and PfPHB2 in cells harboring respective mutants. The PfPHBs functionally complemented the yeast PHB1 and PHB2 mutants, where the proteins were found to be involved in stabilizing the mitochondrial DNA, retaining mitochondrial integrity and rescuing yeast cell growth. Further, Rocaglamide (Roc-A), a known inhibitor of PHBs and anti-cancerous agent, was tested against PfPHBs and as an antimalarial. Roc-A treatment retarded the growth of PHB1, PHB2, and ethidium bromide petite yeast mutants. Moreover, Roc-A inhibited growth of yeast PHBs mutants that were functionally complemented with PfPHBs, validating P. falciparum PHBs as one of the molecular targets for Roc-A. Roc-A treatment led to growth inhibition of artemisinin-sensitive (3D7), artemisinin-resistant (R539T) and chloroquine-resistant (RKL-9) parasites in nanomolar ranges. The compound was able to retard gametocyte and oocyst growth with significant morphological aberrations. Based on our findings, we propose the presence of functional mitochondrial PfPHB1 and PfPHB2 in P. falciparum and their druggability to block parasite growth.
Collapse
Affiliation(s)
- Monika Saini
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Delhi NCR, India; Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University, Aachen, Germany; Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Che Julius Ngwa
- Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University, Aachen, Germany
| | - Manisha Marothia
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Pritee Verma
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Shakeel Ahmad
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Jyoti Kumari
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Delhi NCR, India; Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Sakshi Anand
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Vandana Vandana
- ICMR-National Institute of Malaria Research, New Delhi, India
| | - Bharti Goyal
- ICMR-National Institute of Malaria Research, New Delhi, India
| | | | - Kailash C Pandey
- ICMR-National Institute of Malaria Research, New Delhi, India; Academic Council of Scientific and Innovative Research, Faridabad, India
| | - Swati Garg
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Soumya Pati
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Delhi NCR, India
| | - Anand Ranganathan
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Gabriele Pradel
- Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University, Aachen, Germany
| | - Shailja Singh
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Delhi NCR, India; Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
3
|
Yang X, Wu X, Wu X, Huang L, Song J, Yuan C, He Z, Li Y. The Flavagline Compound 1-(2-(dimethylamino)acetyl)-Rocaglaol Induces Apoptosis in K562 Cells by Regulating the PI3K/Akt/mTOR, JAK2/STAT3, and MAPK Pathways. Drug Des Devel Ther 2022; 16:2545-2557. [PMID: 35959422 PMCID: PMC9359389 DOI: 10.2147/dddt.s357891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 06/27/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose Methods Results Conclusion
Collapse
Affiliation(s)
- Xinmei Yang
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, People’s Republic of China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guizhou Medical University, Guiyang, 550014, People’s Republic of China
- Stem Cell and Tissue Engineering Research Center, Guizhou Medical University, Guiyang, 550004, People’s Republic of China
| | - Xijun Wu
- Department of Laboratory, The Affiliated Jinyang Hospital of Guizhou Medical University, Guiyang, 550023, People’s Republic of China
| | - Xiaosen Wu
- FuRong Tobacco Research Station, Xiangxi Autonomous Prefecture Tobacco Company Yongshun Branch, Yongshun, 416700, People’s Republic of China
| | - Lei Huang
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, People’s Republic of China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guizhou Medical University, Guiyang, 550014, People’s Republic of China
| | - Jingrui Song
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, People’s Republic of China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guizhou Medical University, Guiyang, 550014, People’s Republic of China
| | - Chunmao Yuan
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, People’s Republic of China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guizhou Medical University, Guiyang, 550014, People’s Republic of China
| | - Zhixu He
- Stem Cell and Tissue Engineering Research Center, Guizhou Medical University, Guiyang, 550004, People’s Republic of China
- Department of Pediatrics, Affiliated Hospital of Guizhou Medical University, Guiyang, 550001, People’s Republic of China
- Zhixu He, Stem Cell and Tissue Engineering Research Center, Guizhou Medical University, Guiyang, 550004, People’s Republic of China, Tel/Fax +86 13595019670, Email
| | - Yanmei Li
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, People’s Republic of China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guizhou Medical University, Guiyang, 550014, People’s Republic of China
- Correspondence: Yanmei Li, State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, People’s Republic of China, Tel/Fax +86 85183805081, Email
| |
Collapse
|
4
|
Greger H. Comparative phytochemistry of flavaglines (= rocaglamides), a group of highly bioactive flavolignans from Aglaia species (Meliaceae). PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2022; 21:725-764. [PMID: 34104125 PMCID: PMC8176878 DOI: 10.1007/s11101-021-09761-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 05/17/2021] [Indexed: 05/07/2023]
Abstract
Flavaglines are formed by cycloaddition of a flavonoid nucleus with a cinnamic acid moiety representing a typical chemical character of the genus Aglaia of the family Meliaceae. Based on biosynthetic considerations 148 derivatives are grouped together into three skeletal types representing 77 cyclopenta[b]benzofurans, 61 cyclopenta[bc]benzopyrans, and 10 benzo[b]oxepines. Apart from different hydroxy, methoxy, and methylenedioxy groups of the aromatic rings, important structural variation is created by different substitutions and stereochemistries of the central cyclopentane ring. Putrescine-derived bisamides constitute important building blocks occurring as cyclic 2-aminopyrrolidines or in an open-chained form, and are involved in the formation of pyrimidinone flavaglines. Regarding the central role of cinnamic acid in the formation of the basic skeleton, rocagloic acid represents a biosynthetic precursor from which aglafoline- and rocaglamide-type cyclopentabenzofurans can be derived, while those of the rocaglaol-type are the result of decarboxylation. Broad-based comparison revealed characteristic substitution trends which contribute as chemical markers to natural delimitation and grouping of taxonomically problematic Aglaia species. A wide variety of biological activities ranges from insecticidal, antifungal, antiprotozoal, and anti-inflammatory properties, especially to pronounced anticancer and antiviral activities. The high insecticidal activity of flavaglines is comparable with that of the well-known natural insecticide azadirachtin. Comparative feeding experiments informed about structure-activity relationships and exhibited different substitutions of the cyclopentane ring essential for insecticidal activity. Parallel studies on the antiproliferative activity of flavaglines in various tumor cell lines revealed similar structural prerequisites that let expect corresponding molecular mechanisms. An important structural modification with very high cytotoxic potency was found in the benzofuran silvestrol characterized by an unusual dioxanyloxy subunit. It possessed comparable cytotoxicity to that of the natural anticancer compounds paclitaxel (Taxol®) and camptothecin without effecting normal cells. The primary effect was the inhibition of protein synthesis by binding to the translation initiation factor eIF4A, an ATP-dependent DEAD-box RNA helicase. Flavaglines were also shown to bind to prohibitins (PHB) responsible for regulation of important signaling pathways, and to inhibit the transcriptional factor HSF1 deeply involved in metabolic programming, survival, and proliferation of cancer cells. Flavaglines were shown to be not only promising anticancer agents but gained now also high expectations as agents against emerging RNA viruses like SARS-CoV-2. Targeting the helicase eIF4A with flavaglines was recently described as pan-viral strategy for minimizing the impact of future RNA virus pandemics.
Collapse
Affiliation(s)
- Harald Greger
- Chemodiversity Research Group, Faculty of Life Sciences, University of Vienna, Rennweg 14, 1030 Wien, Austria
| |
Collapse
|
5
|
Yang HJ, Li YN, Yan C, Yang J, Zeng YR, Yi P, Li YM, Hao XJ, Yuan CM. Discovery and synthesis of rocaglaol derivatives inducing apoptosis in HCT116 cells via suppression of MAPK signaling pathway. Fitoterapia 2021; 151:104876. [PMID: 33675885 DOI: 10.1016/j.fitote.2021.104876] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 02/24/2021] [Accepted: 02/28/2021] [Indexed: 11/26/2022]
Abstract
Six rocaglaol derivatives were isolated from Dysoxylum gotadhora, and those compounds showed good cytotoxic activity with IC50 values ranging from 10 to 350 ng/mL against five different cancer cells. Obviously, further total synthesis of rocaglaol derivatives for medical chemistry study is of great significance. Then, twenty six rocaglaol derivatives including 25 new compounds were designed, synthesized, and evaluated for their cytotoxic activities against three human cancer cell lines: human colon cancer cells (HCT116), colorectal cancer stem cells (P6C), and human red leukocyte leukemia cells (HEL), using MTT assay. Most of derivatives showed good cytotoxic activities, with the lowest IC50 being 3.2 nM for HEL cells, which was 169 times stronger than that of the positive control (doxorubicin). Further mechanism study indicated that 11k could significantly suppress MAPK pathway in HCT116 cells, which may responsible for induction of apoptosis and cell cycle arrest.
Collapse
Affiliation(s)
- Hao-Jie Yang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; Key Laboratory of Chemistry for Natural Products of Guizhou Province, Chinese Academy of Sciences, Guiyang 550014, China
| | - Ya-Nan Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; Key Laboratory of Chemistry for Natural Products of Guizhou Province, Chinese Academy of Sciences, Guiyang 550014, China
| | - Chen Yan
- An Shun City People's Hospital, Anshun 561000, China
| | - Jue Yang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; Key Laboratory of Chemistry for Natural Products of Guizhou Province, Chinese Academy of Sciences, Guiyang 550014, China
| | - Yan-Rong Zeng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; Key Laboratory of Chemistry for Natural Products of Guizhou Province, Chinese Academy of Sciences, Guiyang 550014, China
| | - Ping Yi
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; Key Laboratory of Chemistry for Natural Products of Guizhou Province, Chinese Academy of Sciences, Guiyang 550014, China
| | - Yan-Mei Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; Key Laboratory of Chemistry for Natural Products of Guizhou Province, Chinese Academy of Sciences, Guiyang 550014, China.
| | - Xiao-Jiang Hao
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; Key Laboratory of Chemistry for Natural Products of Guizhou Province, Chinese Academy of Sciences, Guiyang 550014, China; State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.
| | - Chun-Mao Yuan
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; Key Laboratory of Chemistry for Natural Products of Guizhou Province, Chinese Academy of Sciences, Guiyang 550014, China.
| |
Collapse
|
6
|
Tabti R, Lamoureux F, Charrier C, Ory B, Heymann D, Bentouhami E, Désaubry L. Development of prohibitin ligands against osteoporosis. Eur J Med Chem 2020; 210:112961. [PMID: 33129591 DOI: 10.1016/j.ejmech.2020.112961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/17/2020] [Accepted: 10/17/2020] [Indexed: 10/23/2022]
Abstract
Current therapeutic approaches to osteoporosis display some potential adverse effects and a limited efficacy on non-vertebral fracture reduction. Some sulfonylamidines targeting the scaffold proteins prohibitins-1 and 2 (PHB1/2) have been showed to inhibit the formation of osteoclasts in charge of bone resorption. Herein, we report the development of a second generation of anti-osteoclastic PHB ligands. The most potent compound, IN45, showed 88% inhibition at the low concentration of 5 μM, indicates that it might serve as a basis for the development of new antiosteoporotic drugs.
Collapse
Affiliation(s)
- Redouane Tabti
- Laboratory of Regenerative Nanomedicine (RNM), INSERM U 1260, CRBS, Rue Eugène Boeckel, 67000, Strasbourg, France; LCIMN Laboratory, Faculty of Technology, University Ferhat Abbas, Sétif, Algeria
| | - François Lamoureux
- INSERM, UMR 1238, Nantes, France; Université de Nantes, Nantes Atlantique Universités, Laboratoire « Sarcome Osseux et Remodelage des Tissus Osseux Calcifiés », Faculté de Médecine, Nantes, France
| | - Céline Charrier
- INSERM, UMR 1238, Nantes, France; Université de Nantes, Nantes Atlantique Universités, Laboratoire « Sarcome Osseux et Remodelage des Tissus Osseux Calcifiés », Faculté de Médecine, Nantes, France
| | - Benjamin Ory
- INSERM, UMR 1238, Nantes, France; Université de Nantes, Nantes Atlantique Universités, Laboratoire « Sarcome Osseux et Remodelage des Tissus Osseux Calcifiés », Faculté de Médecine, Nantes, France
| | - Dominique Heymann
- Institut de Cancérologie de L'Ouest, Site René Gauducheau, Boulevard Professeur Jacques Monod, Saint-Herblain, France; Université de Nantes, Faculty of Medicine, Nantes, France; University of Sheffield, Dept of Oncology and Metabolism, Sheffield, UK
| | - Embarek Bentouhami
- LCIMN Laboratory, Faculty of Technology, University Ferhat Abbas, Sétif, Algeria
| | - Laurent Désaubry
- Laboratory of Regenerative Nanomedicine (RNM), INSERM U 1260, CRBS, Rue Eugène Boeckel, 67000, Strasbourg, France; Sino-French Joint Lab of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China.
| |
Collapse
|
7
|
Harmouch E, Seitlinger J, Chaddad H, Ubeaud-Sequier G, Barths J, Saidu S, Désaubry L, Grandemange S, Massfelder T, Fuhrmann G, Fioretti F, Dontenwill M, Benkirane-Jessel N, Idoux-Gillet Y. Flavagline synthetic derivative induces senescence in glioblastoma cancer cells without being toxic to healthy astrocytes. Sci Rep 2020; 10:13750. [PMID: 32792639 PMCID: PMC7426813 DOI: 10.1038/s41598-020-70820-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 07/30/2020] [Indexed: 11/13/2022] Open
Abstract
Glioblastoma (GBM) is one of the most aggressive types of cancer, which begins within the brain. It is the most invasive type of glioma developed from astrocytes. Until today, Temozolomide (TMZ) is the only standard chemotherapy for patients with GBM. Even though chemotherapy extends the survival of patients, there are many undesirable side effects, and most cases show resistance to TMZ. FL3 is a synthetic flavagline which displays potent anticancer activities, and is known to inhibit cell proliferation, by provoking cell cycle arrest, and leads to apoptosis in a lot of cancer cell lines. However, the effect of FL3 in glioblastoma cancer cells has not yet been examined. Hypoxia is a major problem for patients with GBM, resulting in tumor resistance and aggressiveness. In this study, we explore the effect of FL3 in glioblastoma cells under normoxia and hypoxia conditions. Our results clearly indicate that this synthetic flavagline inhibits cell proliferation and induced senescence in glioblastoma cells cultured under both conditions. In addition, FL3 treatment had no effect on human brain astrocytes. These findings support the notion that the FL3 molecule could be used in combination with other chemotherapeutic agents or other therapies in glioblastoma treatments.
Collapse
Affiliation(s)
- Ezeddine Harmouch
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 11 Rue Humann, 67000, Strasbourg, France
- Faculté de Chirurgie Dentaire, Université de Strasbourg, 67000, Strasbourg, France
| | - Joseph Seitlinger
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 11 Rue Humann, 67000, Strasbourg, France
- Faculté de Chirurgie Dentaire, Université de Strasbourg, 67000, Strasbourg, France
- Hôpitaux Universitaire de Strasbourg (HUS), 67000, Strasbourg, France
| | - Hassan Chaddad
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 11 Rue Humann, 67000, Strasbourg, France
- Faculté de Chirurgie Dentaire, Université de Strasbourg, 67000, Strasbourg, France
| | - Geneviève Ubeaud-Sequier
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 11 Rue Humann, 67000, Strasbourg, France
- Faculté de Chirurgie Dentaire, Université de Strasbourg, 67000, Strasbourg, France
| | - Jochen Barths
- Core Facility for Flow Cytometry, Cell Sorting and EliSpot, UMR 1110, INSERM, Strasbourg, France
| | - Sani Saidu
- CNRS UMR 7021, Laboratoire de Bioimagerie et Pathologies, Faculté de Pharmacie, Strasbourg, France
| | - Laurent Désaubry
- Laboratory of Cardio-Oncology and Medicinal Chemistry (FRE 2033), CNRS, Institut Le Bel, Strasbourg, France
- Sino-French Joint Lab of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Stéphanie Grandemange
- CNRS, UMR 7039 CRAN, Université de Lorraine, Campus Sciences, 30 bvd des Aiguillettes, 54505, Vandoeuvre les Nancy Cedex, France
| | - Thierry Massfelder
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 11 Rue Humann, 67000, Strasbourg, France
- Faculté de Chirurgie Dentaire, Université de Strasbourg, 67000, Strasbourg, France
| | - Guy Fuhrmann
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 11 Rue Humann, 67000, Strasbourg, France
- Faculté de Chirurgie Dentaire, Université de Strasbourg, 67000, Strasbourg, France
| | - Florence Fioretti
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 11 Rue Humann, 67000, Strasbourg, France
- Faculté de Chirurgie Dentaire, Université de Strasbourg, 67000, Strasbourg, France
- Hôpitaux Universitaire de Strasbourg (HUS), 67000, Strasbourg, France
| | - Monique Dontenwill
- CNRS UMR 7021, Laboratoire de Bioimagerie et Pathologies, Faculté de Pharmacie, Strasbourg, France
| | - Nadia Benkirane-Jessel
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 11 Rue Humann, 67000, Strasbourg, France.
- Faculté de Chirurgie Dentaire, Université de Strasbourg, 67000, Strasbourg, France.
| | - Ysia Idoux-Gillet
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 11 Rue Humann, 67000, Strasbourg, France.
- Faculté de Chirurgie Dentaire, Université de Strasbourg, 67000, Strasbourg, France.
| |
Collapse
|
8
|
The synthetic flavagline FL3 spares normal human skin cells from its cytotoxic effect via an activation of Bad. Toxicol In Vitro 2019; 60:27-35. [DOI: 10.1016/j.tiv.2019.04.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 04/08/2019] [Accepted: 04/23/2019] [Indexed: 12/18/2022]
|
9
|
Zhao C, He R, Shen M, Zhu F, Wang M, Liu Y, Chen H, Li X, Qin R. PINK1/Parkin-Mediated Mitophagy Regulation by Reactive Oxygen Species Alleviates Rocaglamide A-Induced Apoptosis in Pancreatic Cancer Cells. Front Pharmacol 2019; 10:968. [PMID: 31551778 PMCID: PMC6735223 DOI: 10.3389/fphar.2019.00968] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 07/29/2019] [Indexed: 01/07/2023] Open
Abstract
Pancreatic cancer (PC) is one of the most lethal diseases, and effective treatment of PC patients remains an enormous challenge. Rocaglamide A (Roc-A), a bioactive molecule extracted from the plant Aglaia elliptifolia, has aroused considerable attention as a therapeutic choice for numerous cancer treatments. Nevertheless, the effects and underlying mechanism of Roc-A in PC are still poorly understood. Here, we found that Roc-A inhibited growth and stimulated apoptosis by induction of mitochondria dysfunction in PC. Moreover, Roc-A accelerated autophagosome synthesis and triggered mitophagy involving the PTEN-induced putative kinase 1 (PINK1)/Parkin signal pathway. We also demonstrated that inhibition of autophagy/mitophagy can sensitize PC cells to Roc-A. Finally, Roc-A treatment results in an obvious accumulation of reactive oxygen species (ROS), and pretreatment of cells with the reactive oxygen species scavenger N-acetylcysteine reversed the apoptosis and autophagy/mitophagy induced by Roc-A. Together, our results elucidate the potential mechanisms of action of Roc-A. Our findings indicate Roc-A as a potential therapeutic agent against PC and suggest that combination inhibition of autophagy/mitophagy may be a promising therapeutic strategy in PC.
Collapse
Affiliation(s)
- Chunle Zhao
- Laboratory of Biliary-Pancreatic Surgery, Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ruizhi He
- Laboratory of Biliary-Pancreatic Surgery, Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ming Shen
- Laboratory of Biliary-Pancreatic Surgery, Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Zhu
- Laboratory of Biliary-Pancreatic Surgery, Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Wang
- Laboratory of Biliary-Pancreatic Surgery, Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuhui Liu
- Laboratory of Biliary-Pancreatic Surgery, Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hua Chen
- Laboratory of Biliary-Pancreatic Surgery, Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xu Li
- Laboratory of Biliary-Pancreatic Surgery, Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Renyi Qin
- Laboratory of Biliary-Pancreatic Surgery, Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
10
|
Uzawa K, Kasamatsu A, Saito T, Kita A, Sawai Y, Toeda Y, Koike K, Nakashima D, Endo Y, Shiiba M, Takiguchi Y, Tanzawa H. Growth suppression of human oral cancer cells by candidate agents for cetuximab-side effects. Exp Cell Res 2019; 376:210-220. [DOI: 10.1016/j.yexcr.2019.01.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 01/15/2019] [Accepted: 01/24/2019] [Indexed: 02/02/2023]
|
11
|
Fibroblast growth factor receptor 4 induced resistance to radiation therapy in colorectal cancer. Oncotarget 2018; 7:69976-69990. [PMID: 27650548 PMCID: PMC5342528 DOI: 10.18632/oncotarget.12099] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 09/12/2016] [Indexed: 12/14/2022] Open
Abstract
In colorectal cancer (CRC), fibroblast growth factor receptor 4 (FGFR4) is upregulated and acts as an oncogene. This study investigated the impact of this receptor on the response to neoadjuvant radiotherapy by analyzing its levels in rectal tumors of patients with different responses to the therapy. Cellular mechanisms of FGFR4-induced radioresistance were analyzed by silencing or over-expressing FGFR4 in CRC cell line models. Our findings showed that the FGFR4 staining score was significantly higher in pre-treatment biopsies of non-responsive than responsive patients. Similarly, high expression of FGFR4 inhibited radiation response in cell line models. Silencing or inhibition of FGFR4 resulted in a reduction of RAD51 levels and decreased survival in radioresistant HT29 cells. Increased RAD51 expression rescued cells in the siFGFR4-group. In radiosensitive SW480 and DLD1 cells, enforced expression of FGFR4 stabilized RAD51 protein levels resulting in enhanced clearance of γ-H2AX foci and increased cell survival in the mismatch repair (MMR)-proficient SW480 cells. MMR-deficient DLD1 cells are defective in homologous recombination repair and no FGFR4-induced radioresistance was observed. Based on our results, FGFR4 may serve as a predictive marker to select CRC patients with MMR-proficient tumors who may benefit from pre-operative radiotherapy.
Collapse
|
12
|
Erdem ZN, Schwarz S, Drev D, Heinzle C, Reti A, Heffeter P, Hudec X, Holzmann K, Grasl-Kraupp B, Berger W, Grusch M, Marian B. Irinotecan Upregulates Fibroblast Growth Factor Receptor 3 Expression in Colorectal Cancer Cells, Which Mitigates Irinotecan-Induced Apoptosis. Transl Oncol 2017; 10:332-339. [PMID: 28340475 PMCID: PMC5367848 DOI: 10.1016/j.tranon.2017.02.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 02/16/2017] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND: Irinotecan (IRI) is an integral part of colorectal cancer (CRC) therapy, but response rates are unsatisfactory and resistance mechanisms are still insufficiently understood. As fibroblast growth factor receptor 3 (FGFR3) mediates essential survival signals in CRC, it is a candidate gene for causing intrinsic resistance to IRI. METHODS: We have used cell line models overexpressing FGFR3 to study the receptor's impact on IRI response. For pathway blockade, a dominant-negative receptor mutant and a small molecule kinase inhibitor were employed. RESULTS: IRI exposure induced expression of FGFR3 as well as its ligands FGF8 and FGF18 both in cell cultures and in xenograft tumors. As overexpression of FGFR3 mitigated IRI-induced apoptosis in CRC cell models, this suggests that the drug itself activated a survival response. On the cellular level, the antiapoptotic protein bcl-xl was upregulated and caspase 3 activation was inhibited. Targeting FGFR3 signaling using a dominant-negative receptor mutant sensitized cells for IRI. In addition, the FGFR inhibitor PD173074 acted synergistically with the chemotherapeutic drug and significantly enhanced IRI-induced caspase 3 activity in vitro. In vivo, PD173074 strongly inhibited growth of IRI-treated tumors. CONCLUSION: Together, our results indicate that targeting FGFR3 can be a promising strategy to enhance IRI response in CRC patients.
Collapse
Affiliation(s)
- Zeynep N Erdem
- Medical University of Vienna, Department of Medicine 1, Institute of Cancer Research and Comprehensive Cancer Center Vienna, Borschkegasse 8a, 1090 Vienna, Austria
| | - Stefanie Schwarz
- Medical University of Vienna, Department of Medicine 1, Institute of Cancer Research and Comprehensive Cancer Center Vienna, Borschkegasse 8a, 1090 Vienna, Austria
| | - Daniel Drev
- Medical University of Vienna, Department of Medicine 1, Institute of Cancer Research and Comprehensive Cancer Center Vienna, Borschkegasse 8a, 1090 Vienna, Austria
| | - Christine Heinzle
- Medical University of Vienna, Department of Medicine 1, Institute of Cancer Research and Comprehensive Cancer Center Vienna, Borschkegasse 8a, 1090 Vienna, Austria
| | - Andrea Reti
- Medical University of Vienna, Department of Medicine 1, Institute of Cancer Research and Comprehensive Cancer Center Vienna, Borschkegasse 8a, 1090 Vienna, Austria
| | - Petra Heffeter
- Medical University of Vienna, Department of Medicine 1, Institute of Cancer Research and Comprehensive Cancer Center Vienna, Borschkegasse 8a, 1090 Vienna, Austria
| | - Xenia Hudec
- Medical University of Vienna, Department of Medicine 1, Institute of Cancer Research and Comprehensive Cancer Center Vienna, Borschkegasse 8a, 1090 Vienna, Austria
| | - Klaus Holzmann
- Medical University of Vienna, Department of Medicine 1, Institute of Cancer Research and Comprehensive Cancer Center Vienna, Borschkegasse 8a, 1090 Vienna, Austria
| | - Bettina Grasl-Kraupp
- Medical University of Vienna, Department of Medicine 1, Institute of Cancer Research and Comprehensive Cancer Center Vienna, Borschkegasse 8a, 1090 Vienna, Austria
| | - Walter Berger
- Medical University of Vienna, Department of Medicine 1, Institute of Cancer Research and Comprehensive Cancer Center Vienna, Borschkegasse 8a, 1090 Vienna, Austria
| | - Michael Grusch
- Medical University of Vienna, Department of Medicine 1, Institute of Cancer Research and Comprehensive Cancer Center Vienna, Borschkegasse 8a, 1090 Vienna, Austria
| | - Brigitte Marian
- Medical University of Vienna, Department of Medicine 1, Institute of Cancer Research and Comprehensive Cancer Center Vienna, Borschkegasse 8a, 1090 Vienna, Austria.
| |
Collapse
|
13
|
Li-Weber M. Molecular mechanisms and anti-cancer aspects of the medicinal phytochemicals rocaglamides (=flavaglines). Int J Cancer 2014; 137:1791-9. [PMID: 24895251 DOI: 10.1002/ijc.29013] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 05/29/2014] [Accepted: 06/02/2014] [Indexed: 01/08/2023]
Abstract
Rocaglamides (= flavaglines) are potent natural anti-cancer phytochemicals that inhibit cancer growth at nanomolar concentrations by the following mechanisms: (1) inhibition of translation initiation via inhibition of phosphorylation of the mRNA cap-binding eukaryotic translation initiation factor eIF4E and stabilization of RNA-binding of the translation initiation factor eIF4A in the eIF4F complex; (2) blocking cell cycle progression by activation of the ATM/ATR-Chk1/Chk2 checkpoint pathway; (3) inactivation of the heat shock factor 1 (HSF1) leading to up-regulation of thioredoxin-interacting protein (TXNIP) and consequent reduction of glucose uptake and (4) induction of apoptosis through activation of the MAPK p38 and JNK and inhibition of the Ras-CRaf-MEK-ERK signaling pathway. Besides the anti-cancer activities, rocaglamides are also shown to protect primary cells from chemotherapy-induced cell death and alleviate inflammation- and drug-induced injury in neuronal tissues. This review will focus on the recently discovered molecular mechanisms of the actions of rocaglamides and highlights the benefits of using rocaglamides in cancer treatment.
Collapse
Affiliation(s)
- Min Li-Weber
- Tumorimmunology Program (D030), German Cancer Research Center (DKFZ), D-69120, Heidelberg, Germany
| |
Collapse
|
14
|
Neumann J, Boerries M, Köhler R, Giaisi M, Krammer PH, Busch H, Li-Weber M. The natural anticancer compound rocaglamide selectively inhibits the G1-S-phase transition in cancer cells through the ATM/ATR-mediated Chk1/2 cell cycle checkpoints. Int J Cancer 2013; 134:1991-2002. [PMID: 24150948 DOI: 10.1002/ijc.28521] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 09/19/2013] [Indexed: 02/03/2023]
Abstract
Targeting the cancer cell cycle machinery is an important strategy for cancer treatment. Cdc25A is an essential regulator of cycle progression and checkpoint response. Over-expression of Cdc25A occurs often in human cancers. In this study, we show that Rocaglamide-A (Roc-A), a natural anticancer compound isolated from the medicinal plant Aglaia, induces a rapid phosphorylation of Cdc25A and its subsequent degradation and, thereby, blocks cell cycle progression of tumor cells at the G1-S phase. Roc-A has previously been shown to inhibit tumor proliferation by blocking protein synthesis. In this study, we demonstrate that besides the translation inhibition Roc-A can induce a rapid degradation of Cdc25A by activation of the ATM/ATR-Chk1/Chk2 checkpoint pathway. However, Roc-A has no influence on cell cycle progression in proliferating normal T lymphocytes. Investigation of the molecular basis of tumor selectivity of Roc-A by a time-resolved microarray analysis of leukemic vs. proliferating normal T lymphocytes revealed that Roc-A activates different sets of genes in tumor cells compared with normal cells. In particular, Roc-A selectively stimulates a set of genes responsive to DNA replication stress in leukemic but not in normal T lymphocytes. These findings further support the development of Rocaglamide for antitumor therapy.
Collapse
Affiliation(s)
- Jennifer Neumann
- Tumorimmunology Program (D030), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
15
|
Thuaud F, Ribeiro N, Nebigil CG, Désaubry L. Prohibitin ligands in cell death and survival: mode of action and therapeutic potential. ACTA ACUST UNITED AC 2013; 20:316-31. [PMID: 23521790 PMCID: PMC7111013 DOI: 10.1016/j.chembiol.2013.02.006] [Citation(s) in RCA: 157] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 01/31/2013] [Accepted: 02/06/2013] [Indexed: 12/21/2022]
Abstract
Prohibitins (PHBs) are scaffold proteins that modulate many signaling pathways controlling cell survival, metabolism, and inflammation. Several drugs that target PHBs have been identified and evaluated for various clinical applications. Preclinical and clinical studies indicate that these PHB ligands may be useful in oncology, cardiology, and neurology, as well as against obesity. This review covers the physiological role of PHBs in health and diseases and current developments concerning PHB ligands.
Collapse
Affiliation(s)
- Frédéric Thuaud
- Therapeutic Innovation Laboratory UMR 7200, CNRS/Université de Strasbourg, Faculté de Pharmacie, 67401 Illkirch Cedex, France
| | | | | | | |
Collapse
|
16
|
Kainz KP, Krenn L, Erdem Z, Kaehlig H, Zehl M, Bursch W, Berger W, Marian B. 2-deprenyl-rheediaxanthone B isolated from Metaxya rostrata induces active cell death in colorectal tumor cells. PLoS One 2013; 8:e65745. [PMID: 23776538 PMCID: PMC3679105 DOI: 10.1371/journal.pone.0065745] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 04/26/2013] [Indexed: 12/17/2022] Open
Abstract
Metaxya rostrata C. Presl (Metaxyaceae) is a common tree fern in Central and South America that is used for the treatment of intestinal ulcers and tumours in ethnic medicine. Using a bioactivity-guided strategy 2-deprenyl-rheediaxanthone B (XB) has been isolated as one of the active principles in this plant. XB induced loss of cell viability in colorectal cancer cell lines at IC50 concentrations of 11-23 µM. This was caused by both accumulation of cells in the G2- and S-phase as well as by induction of active cell death in a time and concentration-dependent manner. Cells exposed to XB were incapable of undergoing regular mitosis due to down-regulation of FoxM1 and absence of chromosome condensation. The apoptosis-related proteins Bcl2 and Bclxl were up-regulated so that Caspase 3 was not activated and classical apoptosis was not observed. However, XB triggered damage pathways down-stream of ATR and activated Caspase 2 causing cell death by a mechanism similar to mitotic catastrophe. Our observations are the first to show the cytotoxic activity of 2-deprenyl-rheediaxanthone B and indicate that XB is an interesting new lead compound for cancer therapy that merits further development.
Collapse
Affiliation(s)
- Kerstin P. Kainz
- Medical University Vienna, Department of Medicine 1, Institute of Cancer Research, Vienna, Austria
- University of Vienna, Department of Pharmacognosy, Vienna, Austria
| | - Liselotte Krenn
- University of Vienna, Department of Pharmacognosy, Vienna, Austria
| | - Zeynep Erdem
- Medical University Vienna, Department of Medicine 1, Institute of Cancer Research, Vienna, Austria
| | - Hanspeter Kaehlig
- University of Vienna, Department of Organic Chemistry, Vienna, Austria
| | - Martin Zehl
- University of Vienna, Department of Pharmacognosy, Vienna, Austria
| | - Wilfried Bursch
- Medical University Vienna, Department of Medicine 1, Institute of Cancer Research, Vienna, Austria
| | - Walter Berger
- Medical University Vienna, Department of Medicine 1, Institute of Cancer Research, Vienna, Austria
| | - Brigitte Marian
- Medical University Vienna, Department of Medicine 1, Institute of Cancer Research, Vienna, Austria
- * E-mail:
| |
Collapse
|
17
|
Pan L, Acuña UM, Li J, Jena N, Ninh TN, Pannell CM, Chai H, Fuchs JR, Carcache de Blanco EJ, Soejarto DD, Kinghorn AD. Bioactive flavaglines and other constituents isolated from Aglaia perviridis. JOURNAL OF NATURAL PRODUCTS 2013; 76:394-404. [PMID: 23301897 PMCID: PMC3606667 DOI: 10.1021/np3007588] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Eight new compounds, including two cyclopenta[b]benzopyran derivatives (1, 2), two cyclopenta[b]benzofuran derivatives (3, 4), three cycloartane triterpenoids (5-7), and an apocarotenoid (8), together with 16 known compounds, were isolated from the chloroform-soluble partitions of separate methanol extracts of a combination of the fruits, leaves, and twigs and of the roots of Aglaia perviridis collected in Vietnam. Isolation work was monitored using human colon cancer cells (HT-29) and facilitated with an LC/MS dereplication procedure. The structures of the new compounds (1-8) were determined on the basis of spectroscopic data interpretation. The Mosher ester method was employed to determine the absolute configurations of 5-7, and the absolute configuration of the 9,10-diol unit of compound 8 was established by a dimolybdenum tetraacetate [Mo2(AcO)4] induced circular dichroism procedure. Seven known rocaglate derivatives (9-15) exhibited significant cytotoxicity against the HT-29 cell line, with rocaglaol (9) being the most potent (ED50 0.0007 μM). The new compounds 2-4 were also active against this cell line, with ED50 values ranging from 0.46 to 4.7 μM. The cytotoxic compounds were evaluated against a normal colon cell line, CCD-112CoN. In addition, the new compound perviridicin B (2), three known rocaglate derivatives (9, 11, 12), and a known sesquiterpene, 2-oxaisodauc-5-en-12-al (17), showed significant NF-κB (p65) inhibitory activity in an ELISA assay.
Collapse
Affiliation(s)
- Li Pan
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Ulyana Muñoz Acuña
- Division of Pharmacy Practice and Administration, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Jie Li
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Nivedita Jena
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Tran Ngoc Ninh
- Institute of Ecology and Biological Resources, Vietnamese Academy of Science and Technology, Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Caroline M. Pannell
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, U. K
| | - Heebyung Chai
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - James R. Fuchs
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Esperanza J. Carcache de Blanco
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
- Division of Pharmacy Practice and Administration, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Djaja D. Soejarto
- Program for Collaborative Research in the Pharmaceutical Science and Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
- Department of Botany, Field Museum of Natural History, 1400 S. Lake Shore Drive, Chicago, Illinois 60605, United States
| | - A. Douglas Kinghorn
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
18
|
Kainz KP, Virtbauer J, Kählig H, Arion V, Donath O, Reznicek G, Huber W, Marian B, Krenn L. Two Unusual Methylidenecyclopropane Glucosides from Metaxya rostrata C.Presl. Helv Chim Acta 2012; 95:1531-1537. [PMID: 23446492 PMCID: PMC3569612 DOI: 10.1002/hlca.201200111] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2012] [Indexed: 11/25/2022]
Abstract
Two new natural compounds, (1R,2E)-2-(6-hydroxyhexylidene)cyclopropyl-β-D-glucopyranoside (1) and (6E)-6-[(2R)-2-(β-D-glucopyranosyloxy)cyclopropylidene]hexanoic acid (2), glucosides of a very rare methylidenecyclopropane alcohol, as well as two known glycosides of phenolic acids, namely 4-O-β-D-glucopyranosylcaffeic acid (3) and (E)-4-O-β-D-glucopyranosylcoumaric acid (4), and methyl α-fructofuranoside (5) were isolated for the first time from the rhizomes of the tree fern Metaxya rostrata C.Presl. The structures were elucidated on the basis of detailed spectroscopic data analysis, and the structure of 1 was additionally confirmed by X-ray crystal-structure analysis.
Collapse
Affiliation(s)
- Kerstin P Kainz
- Department of Pharmacognosy, University of Vienna Althanstr. 14, AT-1090 Vienna
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Ribeiro N, Thuaud F, Nebigil C, Désaubry L. Recent advances in the biology and chemistry of the flavaglines. Bioorg Med Chem 2011; 20:1857-64. [PMID: 22071525 DOI: 10.1016/j.bmc.2011.10.048] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 10/04/2011] [Accepted: 10/15/2011] [Indexed: 01/03/2023]
Abstract
The flavaglines are a family of plant natural products that induce potent anticancer and neuroprotective activities. This review summarizes recent synthetic approaches to flavaglines and the current status of their pharmacological properties.
Collapse
Affiliation(s)
- Nigel Ribeiro
- Therapeutic Innovation Laboratory, UMR 7200, CNRS/Université de Strasbourg, 67401 Illkirch, France
| | | | | | | |
Collapse
|
20
|
Phongmaykin J, Kumamoto T, Ishikawa T, Saifah E, Suttisri R. Biologically active constituents of Aglaia erythrosperma. Nat Prod Res 2011; 25:1621-8. [PMID: 22011221 DOI: 10.1080/14786419.2010.508038] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
From the fruits and leaves of Aglaia erythrosperma (Meliaceae), 10 chemical constituents were isolated and identified, i.e. the dammarane triterpenoids cabraleadiol (1), cabraleahydroxylactone (2), ethyl eichlerianoate (3), eichlerialactone (4), aglinin A (5), cabralealactone (6), the aglaialactone 5,6-desmethylenedioxy-5-methoxy-aglalactone (7), the flavagline 4'-demethoxy-3',4'-methylenedioxy-methyl rocaglate (8) and two coumarins: scoparone and scopoletin. Flavagline 8 exhibited antimalarial activity with an IC(50) value of 7.30 µg mL(-1) and was strongly cytotoxic against small cell lung cancer (NCI-H187), epidermoid carcinoma (KB) and breast cancer (BC) cell lines, with IC(50) values of 2.17, 2.10 and 0.11 µg mL(-1), respectively. Aglinin A (5) displayed moderate cytotoxicity against all the three cancer cell lines, whereas ethyl eichlerianoate (3), cabralealactone (6) and the aglaialactone 7 were exclusively cytotoxic to NCI-H187 cell line. Cabraleahydroxylactone (2) showed antiviral activity against herpes simplex virus type-1 with an IC(50) value of 3.20 µg mL(-1), in comparison with the standard acyclovir (IC(50) = 1.90 µg mL(-1)). When tested for antimycobacterial activity against Mycobacterium tuberculosis H(37)Ra, compounds 1-4 and 6-8 displayed minimum inhibitory concentration in the range of 25-50 µg mL(-1).
Collapse
Affiliation(s)
- Jarinporn Phongmaykin
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | | | | | | | | |
Collapse
|
21
|
Cai XH, Xie B, Guo H. Progress in the total synthesis of rocaglamide. ISRN ORGANIC CHEMISTRY 2011; 2011:239817. [PMID: 24052818 PMCID: PMC3767207 DOI: 10.5402/2011/239817] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2011] [Accepted: 02/13/2011] [Indexed: 11/23/2022]
Abstract
The first cyclopenta[b]benzofuran derivative, rocaglamide, from Aglaia elliptifolia, was found to exhibit considerable insecticidal activities and excellent potential as a therapeutic agent candidate in cancer chemotherapy; the genus Aglaia has been subjected to further investigation. Both the structural complexity of rocaglamide and its significant activity make it an attractive synthetic target. Stereoselective synthesis of the dense substitution pattern of these targets is a formidable synthetic challenge: the molecules bear five contiguous stereocenters and cis aryl groups on adjacent carbons. In past years of effort, only a handful of completed total syntheses have been reported, evidence of the difficulties associated with the synthesis of rocaglate natural products. The advance on total synthesis of rocaglamide was mainly reviewed from intramolecular cyclization and biomimetic cycloaddition approach.
Collapse
Affiliation(s)
- Xiao-hua Cai
- College of Chemistry and Environmental Science, Guizhou University for Nationalites, Guiyang 550025, China
| | - Bing Xie
- College of Chemistry and Environmental Science, Guizhou University for Nationalites, Guiyang 550025, China
| | - Hui Guo
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
22
|
Astelbauer F, Obwaller A, Raninger A, Brem B, Greger H, Duchêne M, Wernsdorfer W, Walochnik J. Anti-leishmanial activity of plant-derived acridones, flavaglines, and sulfur-containing amides. Vector Borne Zoonotic Dis 2011; 11:793-8. [PMID: 21417924 DOI: 10.1089/vbz.2010.0087] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Visceral and cutaneous leishmaniases are an important public health problem in endemic geographic regions in 88 countries worldwide, with around 12 million infected people. Treatment options are limited due to toxicity and teratogenicity of the available drugs, response problems in HIV/Leishmania co-infections, and upcoming resistances. In this study, we investigated the anti-leishmanial activity of 13 plant-derived compounds in vitro aiming to find new drug candidates. Toxicity of the compounds was evaluated in human primary hepatocytes, and hemolytic activity was examined in freshly isolated erythrocytes. Two acridones, 5-hydroxynoracronycine and yukocitrine, two flavaglines, aglafoline and rocaglamide, and the sulfur-containing amide methyldambullin showed promising anti-leishmanial activities with 50% effective concentrations (EC50s) of 34.84, 29.76, 7.45, 16.45, and 6.29 μM, respectively. Hepatotoxic activities of 5-hydroxynoracronycine, yukocitrine, and methyldambullin were significantly lower compared to miltefosine and lower or equal compared to artesunate, whereas the ones of rocaglamide and aglafoline were slightly higher compared to miltefosine and significantly higher compared to artesunate. None of the compounds showed hemolytic activity.
Collapse
Affiliation(s)
- Florian Astelbauer
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Ebada SS, Lajkiewicz N, Porco JA, Li-Weber M, Proksch P. Chemistry and biology of rocaglamides (= flavaglines) and related derivatives from aglaia species (meliaceae). PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2011; 94:1-58. [PMID: 21833837 PMCID: PMC4157394 DOI: 10.1007/978-3-7091-0748-5_1] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Sherif S. Ebada
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich-Heine University of Duesseldorf, Universitaetsstrasse 1, D-40225, Duesseldorf, Germany. Department of Pharmacognosy and Phytochemistry, Faculty of Pharmacy, Ain-Shams University, Organization of African Unity 1, 11566 Cairo, Egypt
| | - Neil Lajkiewicz
- Department of Chemistry and Center for Chemical Methodology and Library Development (CMLD-BU), Boston University, Commonwealth Avenue 590, Boston, MA 02215, USA
| | - John A. Porco
- Department of Chemistry and Center for Chemical Methodology and Library Development (CMLD-BU), Boston University, Commonwealth Avenue 590, Boston, MA 02215, USA
| | - Min Li-Weber
- Tumor Immunology Program (D030), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, D-69120, Heidelberg, Germany
| | - Peter Proksch
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich-Heine University of Duesseldorf, Universitaetsstrasse 1, D-40225, Duesseldorf, Germany
| |
Collapse
|
24
|
Thuaud F, Ribeiro N, Gaiddon C, Cresteil T, Désaubry L. Novel Flavaglines Displaying Improved Cytotoxicity. J Med Chem 2010; 54:411-5. [DOI: 10.1021/jm101318b] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Frédéric Thuaud
- Therapeutic Innovation Laboratory (UMR 7200), Department of Medicinal Chemistry, Faculté de Pharmacie, CNRS−Université de Strasbourg, 74 Route du Rhin, BP 60024, 67401 Illkirch, France
| | - Nigel Ribeiro
- Therapeutic Innovation Laboratory (UMR 7200), Department of Medicinal Chemistry, Faculté de Pharmacie, CNRS−Université de Strasbourg, 74 Route du Rhin, BP 60024, 67401 Illkirch, France
| | - Christian Gaiddon
- Laboratoire de Signalisation et Neurodégénérescence (UMRS692), INSERM, Faculté de Médecine, Université de Strasbourg, 67085 Strasbourg, France
| | - Thierry Cresteil
- Institut de Chimie des Substances Naturelles (UPR 2301), CNRS, Bâtiment 27, Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | - Laurent Désaubry
- Therapeutic Innovation Laboratory (UMR 7200), Department of Medicinal Chemistry, Faculté de Pharmacie, CNRS−Université de Strasbourg, 74 Route du Rhin, BP 60024, 67401 Illkirch, France
| |
Collapse
|
25
|
Thuaud F, Bernard Y, Türkeri G, Dirr R, Aubert G, Cresteil T, Baguet A, Tomasetto C, Svitkin Y, Sonenberg N, Nebigil CG, Désaubry L. Synthetic analogue of rocaglaol displays a potent and selective cytotoxicity in cancer cells: involvement of apoptosis inducing factor and caspase-12. J Med Chem 2010; 52:5176-87. [PMID: 19655762 DOI: 10.1021/jm900365v] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Flavaglines constitute a family of natural anticancer compounds. We present here 3 (FL3), the first synthetic flavagline that inhibits cell proliferation and viability (IC(50) approximately 1 nM) at lower doses than did the parent compound, racemic rocaglaol. Compound 3 enhanced doxorubicin cytotoxicity in HepG2 cells and retained its potency against adriamycin-resistant cell lines without inducing cardiomyocyte toxicity. Compound 3 induced apoptosis of HL60 and Hela cells by triggering the translocation of Apoptosis Inducing Factor (AIF) and caspase-12 to the nucleus. A fluorescent conjugate of 3 accumulated in endoplasmic reticulum (ER), suggesting that flavaglines bind to their target in the ER, where it triggers a cascade of events that leads to the translocation of AIF and caspase-12 to the nucleus and probably inhibition of eIF4A. Our studies highlight structural features critical to their antineoplastic potential and suggest that these compounds would retain their activity in cells refractory to caspase activation.
Collapse
Affiliation(s)
- Frédéric Thuaud
- Therapeutic Innovation Laboratory, UMR7200, CNRS/Universite de Strasbourg, Illkirch, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Hofer M, Greger H, Mereiter K. 6α-Acetoxy-gedunin. Acta Crystallogr Sect E Struct Rep Online 2009; 65:o1942-3. [PMID: 21583624 PMCID: PMC2977213 DOI: 10.1107/s1600536809027998] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Accepted: 07/16/2009] [Indexed: 11/24/2022]
Abstract
THE TITLE COMPOUND [SYSTEMATIC NAME: (1S,3aS,4aR,4bS,5S,6R,6aR,10aR,10bR,12aS)-5,6-bis-(acet-yloxy)-1-(3-fur-yl)-1,5,6,6a,7,10a,10b,11,12,12a-deca-hydro-4b,7,7,10a,12a-penta-methyl-oxireno[c]phenanthro[1,2-d]pyran-3,8(3aH,4bH)-dione], C(30)H(36)O(9), is a limonoid-type triterpene isolated from Aglaia elaeagnoidea (A. Juss.) Benth. (Meliaceae) from Queensland, northern Australia. It contains the gedunin core of four trans-fused six-membered rings with an oxirane ring annelated to the fourth ring. A terminal 3-furyl unity and two acet-oxy groups in a mutual cis-disposition supplement the mol-ecule. A comparison between the gedunin cores of the title compound, the parent compound gedunin, and three further gedunin derivatives revealed considerable variations in their conformation stemming from the conformational lability of the first screw-boat ring and the third twist-boat ring. A sensitive measure for the third ring is one C-C-C-C torsion angle, which is 14.2 (2)° in the title compound, but varies in other cases from ca 20 to ca -40°. In the crystalline state, 6α-acetoxy-gedunin shows ten comparatively weak C-H⋯O inter-actions, with H⋯O distances in the range of 2.33-2.69 Å.
Collapse
|
27
|
Bordeleau ME, Robert F, Gerard B, Lindqvist L, Chen SMH, Wendel HG, Brem B, Greger H, Lowe SW, Porco JA, Pelletier J. Therapeutic suppression of translation initiation modulates chemosensitivity in a mouse lymphoma model. J Clin Invest 2008; 118:2651-60. [PMID: 18551192 DOI: 10.1172/jci34753] [Citation(s) in RCA: 189] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2007] [Accepted: 05/07/2008] [Indexed: 01/20/2023] Open
Abstract
Disablement of cell death programs in cancer cells contributes to drug resistance and in some cases has been associated with altered translational control. As eukaryotic translation initiation factor 4E (eIF4E) cooperates with c-Myc during lymphomagenesis, induces drug resistance, and is a genetic modifier of the rapamycin response, we have investigated the effect of dysregulation of the ribosome recruitment phase of translation initiation on tumor progression and chemosensitivity. eIF4E is a subunit of eIF4F, a complex that stimulates ribosome recruitment during translation initiation by delivering the DEAD-box RNA helicase eIF4A to the 5' end of mRNAs. eIF4A is thought to prepare a ribosome landing pad on mRNA templates for incoming 40S ribosomes (and associated factors). Using small molecule screening, we found that cyclopenta[b]benzofuran flavaglines, a class of natural products, modulate eIF4A activity and inhibit translation initiation. One member of this class of compounds, silvestrol, was able to enhance chemosensitivity in a mouse lymphoma model in which carcinogenesis is driven by phosphatase and tensin homolog (PTEN) inactivation or elevated eIF4E levels. These results establish that targeting translation initiation can restore drug sensitivity in vivo and provide an approach to modulating chemosensitivity.
Collapse
|
28
|
Li H, Fu B, Wang MA, Li N, Liu WJ, Xie ZQ, Ma YQ, Qin Z. Total Synthesis and Biological Activity of (±)-Rocaglamide and Its 2,3-Di-epi Analogue. European J Org Chem 2008. [DOI: 10.1002/ejoc.200700905] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
29
|
Greger H, Hofer M, Teichmann K, Schinnerl J, Pannell CM, Vajrodaya S, Hofer O. Amide-esters from Aglaia tenuicaulis--first representatives of a class of compounds structurally related to bisamides and flavaglines. PHYTOCHEMISTRY 2008; 69:928-38. [PMID: 18155259 DOI: 10.1016/j.phytochem.2007.10.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2007] [Revised: 10/10/2007] [Accepted: 10/12/2007] [Indexed: 05/13/2023]
Abstract
Six amide-esters and two sulphur-containing bisamides were isolated from the leaves, stem and root bark of Aglaia tenuicaulis together with two bisamides from the leaves of A. spectabilis. Their structures were elucidated by spectroscopic methods. The co-occurrence of amide-esters and bisamides suggests close biosynthetic connections replacing only one nitrogen atom of putrescine with oxygen. Putrescine appears to be the common building block linked to various acids from which the cinnamoyl moiety represents the prerequisite for an incorporation of bisamides into flavaglines. Corresponding amide-esters are apparently not incorporated, but closely related amide-alcohol derivatives were found as part of benzopyran and benzofuran flavaglines. The structure of a amide-alcohol is described, representing an artifact due to hydrolysis of an amide-ester during TLC purification. A hypothetical amide-amine building block is suggested to form the characteristic pyrimidinone structures only found in benzofuran flavaglines. Structural and biosynthetic connections between amide-esters, bisamides and flavaglines are discussed and the chemotaxonomic significance of accumulating specific derivatives within the genus Aglaia is highlighted.
Collapse
Affiliation(s)
- Harald Greger
- Comparative and Ecological Phytochemistry, Faculty Center of Botany, University of Vienna, Rennweg 14, A-1030 Wien, Austria.
| | | | | | | | | | | | | |
Collapse
|
30
|
Schulenburg A, Cech P, Herbacek I, Marian B, Wrba F, Valent P, Ulrich-Pur H. CD44-positive colorectal adenoma cells express the potential stem cell markers musashi antigen (msi1) and ephrin B2 receptor (EphB2). J Pathol 2007; 213:152-60. [PMID: 17708598 DOI: 10.1002/path.2220] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The majority of colorectal adenomas contain a mutation in the APC gene activating the wnt pathway. As wnt signalling preserves stem cell functions, it would be expected that stem cells would be enriched in adenomas. We have shown expression of the wnt target gene CD44, which may characterize the expanded stem cell compartment, in colorectal tumours. To investigate this possibility, we performed an immunohistological survey of CD44 expression in relation to the proliferation marker Ki67 and apoptosis in colorectal tumour tissue, and have isolated a CD44-positive subpopulation of the human colorectal adenoma cell line LT97 for cell biological analysis. In tissues, CD44 expression was not related to Ki67, but was associated with lower apoptosis in the CD44-positive areas. CD44-positive and -negative populations isolated from LT97 cultures were identical in their Ki-ras and p53 status but differed in their growth and survival characteristics. While CD44-positive cells attached and grew to reconstitute the original culture, the CD44-negative cells rapidly underwent apoptosis and were unable to resume growth. In comparison to unsorted growing LT97 cells, the CD44-positive cells had shifted beta-catenin into the nucleus and expressed beta-catenin target genes, such as ephrin B receptor (ephB2) and musashi antigen (msi1). By contrast, CD44-negative cultures contained no cells with nuclear beta-catenin. In summary, the CD44-positive cells accumulating in colorectal tumours have increased survival capacity both in vivo and in vitro. They also express markers typical of colorectal progenitor cells, msi1 and ephB2, in the premalignant progenitor population.
Collapse
Affiliation(s)
- A Schulenburg
- Department of Internal Medicine I, Medical University of Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
31
|
Kim S, Chin YW, Su BN, Riswan S, Kardono LBS, Afriastini JJ, Chai H, Farnsworth NR, Cordell GA, Swanson SM, Kinghorn AD. Cytotoxic flavaglines and bisamides from Aglaia edulis. JOURNAL OF NATURAL PRODUCTS 2006; 69:1769-75. [PMID: 17190457 PMCID: PMC2471874 DOI: 10.1021/np060428x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Two new cyclopenta[b]benzofurans, aglaroxin A 1-O-acetate (2) and 3'-methoxyaglaroxin A 1-O-acetate (3), a new benzo[b]oxepine, 19,20-dehydroedulisone A (4), and five new cyclopenta[bc]benzopyrans, edulirin A (5), edulirin A 10-O-acetate (6), 19,20-dehydroedulirin A (7), isoedulirin A (8), and edulirin B (9), were isolated from the bark of Aglaia edulis, along with one known cyclopenta[b]benzofuran, aglaroxin A (1). Additionally, four new amides, aglamides A-D (10-13), as well as three known compounds, aglalactone, scopoletin, and 5-hydroxy-3,6,7,4'-tetramethoxyflavone, were isolated from the leaves and/or twigs of this species. The structures of the new compounds (2-13) were elucidated by interpretation of their spectroscopic data. All isolates obtained in this study were evaluated for cytotoxicity against both several human cancer cell lines (Lu1, LNCaP, and MCF-7) and a nontumorigenic (HUVEC) cell line. Among these isolates, the cyclopenta[b]benzofurans (1-3) exhibited potent in vitro cytotoxic activity (ED50 range 0.001 to 0.8 microg/mL). Aglaroxin A 1-O-acetate (2) was further evaluated in the in vivo P388 lymphocytic leukemia model, by intraperitoneal injection, but found to be inactive in this model.
Collapse
|
32
|
Reyes FJ, Centelles JJ, Lupiáñez JA, Cascante M. (2α,3β)-2,3-Dihydroxyolean-12-en-28-oic acid, a new natural triterpene fromOlea europea, induces caspase dependent apoptosis selectively in colon adenocarcinoma cells. FEBS Lett 2006; 580:6302-10. [PMID: 17083937 DOI: 10.1016/j.febslet.2006.10.038] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2006] [Revised: 10/09/2006] [Accepted: 10/17/2006] [Indexed: 11/21/2022]
Abstract
Triterpenoids are known to induce apoptosis and to be anti-tumoural. Maslinic acid, a pentacyclic triterpene, is present in high concentrations in olive pomace. This study examines the response of HT29 and Caco-2 colon-cancer cell lines to maslinic-acid treatment. At concentrations inhibiting cell growth by 50-80% (IC50HT29=61+/-1 microM, IC80HT29=76+/-1 microM and IC50Caco-2=85+/-5 microM, IC80Caco-2=116+/-5 microM), maslinic acid induced strong G0/G1 cell-cycle arrest and DNA fragmentation, and increased caspase-3 activity. However, maslinic acid did not alter the cell cycle or induce apoptosis in the non-tumoural intestine cell lines IEC-6 and IEC-18. Moreover, maslinic acid induced cell differentiation in colon adenocarcinoma cells. These findings support a role for maslinic acid as a tumour suppressant and as a possible new therapeutic tool for aberrant cell proliferation in the colon. In this report, we demonstrate for the first time that, in tumoural cancer cells, maslinic acid exerts a significant anti-proliferation effect by inducing an apoptotic process characterized by caspase-3 activation by a p53-independent mechanism, which occurs via mitochondrial disturbances and cytochrome c release.
Collapse
Affiliation(s)
- Fernando J Reyes
- Department of Biochemistry and Molecular Biology, University of Granada, Granada, Spain
| | | | | | | |
Collapse
|
33
|
Cragg GM, Newman DJ, Yang SS. Natural product extracts of plant and marine origin having antileukemia potential. The NCI experience. JOURNAL OF NATURAL PRODUCTS 2006; 69:488-98. [PMID: 16562862 DOI: 10.1021/np0581216] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
While effective treatments exist for acute lymphocytic leukemia (ALL), particularly in the case of children, and for chronic mylogenous leukemia (CML), more efficacious treatments for other forms of acute and chronic forms of the disease are still needed. The National Cancer Institute has tested over 90,000 extracts of terrestrial plants and marine plants and invertebrates in its human cancer one-dose/60-cell-line prescreen, and the results for plants and marine organisms meeting criteria established for activity against selected leukemia cell lines are presented. Taxonomic data are limited to family and genus in the case of plants, and phylum for marine organisms, and those groups of organisms exhibiting significant activity (so-called "hot" families and genera) are discussed. The "hot" terrestrial plant families Myrsinaceae and Sapindaceae have not been studied to any extent and appear to merit special attention, although leukemia cell line selectivity is also noted for other families.
Collapse
Affiliation(s)
- Gordon M Cragg
- Natural Products Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, NCI-Frederick, Maryland 21702-1201, USA
| | | | | |
Collapse
|
34
|
Tikhomirov O, Carpenter G. Bax activation and translocation to mitochondria mediate EGF-induced programmed cell death. J Cell Sci 2005; 118:5681-90. [PMID: 16303853 DOI: 10.1242/jcs.02676] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ErbB family of receptor tyrosine kinases is involved in the regulation of cell proliferation, differentiation and apoptosis. Previous studies indicate that cells expressing elevated levels of the EGFR and ErbB-2 undergo programmed cell death in response to EGF or other EGFR ligands. However, the detailed mechanisms of EGF-induced apoptosis are unclear. This report demonstrates that in the cells undergoing EGF-dependent apoptosis Bax changes its conformation and forms multimeric aggregates, which accumulate on the mitochondrial membrane. Bax activation and translocation to the mitochondria induces a loss of mitochondrial transmembrane potential and cell death. Also, during EGF-induced apoptosis there is downregulation of Bcl-xL, an anti-apoptotic protein. Expression of Bcl-xL in cells susceptible to EGF-dependent apoptosis prevents cell death. The data indicate that addition of EGF does not result in a significant release of cytochrome c from mitochondria and EGF-induced apoptosis is mainly caspase independent.
Collapse
Affiliation(s)
- Oleg Tikhomirov
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232-0146, USA
| | | |
Collapse
|
35
|
Souna Sido AS, Boulenger L, Désaubry L. Palladium catalysed arylation of 6,8-dimethoxybenzofuranone. Tetrahedron Lett 2005. [DOI: 10.1016/j.tetlet.2005.09.062] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|