1
|
Song W, Yuan Y, Tan X, Gu Y, Zeng J, Song W, Xin Z, Fang D, Guan R. Icariside II induces rapid phosphorylation of endothelial nitric oxide synthase via multiple signaling pathways. PeerJ 2022; 10:e14192. [PMID: 36312762 PMCID: PMC9615964 DOI: 10.7717/peerj.14192] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 09/15/2022] [Indexed: 01/24/2023] Open
Abstract
Icariside II, as a favonoid compound derived from epimedium, has been proved to involed in a variety of biological and pharmacological effects such as anti-inflammatory, anti-osteoporosis, anti-oxidation, anti-aging, and anti-cancer but its mechanism is unclear, especially in terms of its effect on post-transcriptional modification of endothelial nitric oxide synthase (eNOS). Phosphorylation of eNOS plays an important role in the synthesis of nitric oxide in endothelial cells, which is closely related to erectile dysfunction, atherosclerosis, Alzheimer's disease, and other diseases. Our study aims to investigate the effect and mechanism of Icariside II on the rapid phosphorylation of eNOS. In this study, human umbilical vein endothelial cells (HUVECs) were stimulated with Icariside II in the presence or absence of multiple inhibitors (1 µM), including LY294002 (PI3K-inhibitor), MK-2206 (AKT-inhibitor), Bisindolylmaleimide X (AMPK-inhibitor), H-89 (CaMKII-inhibitor), KN-62 (PKA-inhibitor), Dorsomorphin (PKC-inhibitor). The proliferation of HUVECs was assessed using cell counting kit-8 (CCK-8). The release of nitric oxide (NO) within HUVECs was detected via fluorescence probe (DAF-FM). Western blot was used to examine the effect of Icariside II on the expression of eNOS, phosphorylation of eNOS, and common signaling pathways proteins. In this study, Icariside II was found to promote the cell proliferation and rapid NO release in HUVECs. The phosphorylation of eNOS-Ser1177 was significantly increased after Icariside II stimulation and reached a peak at 10 min (p < 0.05). Meanwhile, the phosphorylation of eNOS-Thr495 was significantly decreased after 45 min of stimulation (p < 0.05). Following the intervention with multiple inhibitors, it was found that MK-2206 (AKT inhibitor), LY294002 (PI3K inhibitor), KN-62 (AMPK inhibitor), and Bisindolylmaleimide X (PKC inhibitor) could significantly inhibit the phosphorylation of eNOS-Ser1177 caused by Icariside II (p < 0.05), while MK-2206, LY294002, and Bisindolylmaleimide X reversed the alleviated phosphorylation of eNOS-Thr495. We concluded that Icariside can regulate rapid phosphorylation of eNOS- Ser1177 and eNOS-Thr495 via multiple signaling pathways, resulting in the up-regulation of eNOS and the increased release of NO.
Collapse
Affiliation(s)
- Wenpeng Song
- Department of Urology, Peking University First Hospital, Beijing, China,Institute of Urology, Peking University, Beijing, China,Beijing Key Laboratory of Urogenital Diseases (male) Molecular Diagnosis and Treatment Center, Beijing, China,Department of Dental Implant Center, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Yiming Yuan
- Department of Urology, Peking University First Hospital, Beijing, China,Institute of Urology, Peking University, Beijing, China,Beijing Key Laboratory of Urogenital Diseases (male) Molecular Diagnosis and Treatment Center, Beijing, China
| | - Xiaohui Tan
- Department of Urology, Peking University First Hospital, Beijing, China,Institute of Urology, Peking University, Beijing, China,Beijing Key Laboratory of Urogenital Diseases (male) Molecular Diagnosis and Treatment Center, Beijing, China
| | - Yangyang Gu
- Department of Urology, Peking University First Hospital, Beijing, China,Department of Radiation Medicine, Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Jianyu Zeng
- Department of Dental Implant Center, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Weidong Song
- Department of Urology, Peking University First Hospital, Beijing, China,Institute of Urology, Peking University, Beijing, China,Beijing Key Laboratory of Urogenital Diseases (male) Molecular Diagnosis and Treatment Center, Beijing, China
| | - Zhongcheng Xin
- Department of Urology, Peking University First Hospital, Beijing, China,Institute of Urology, Peking University, Beijing, China,Beijing Key Laboratory of Urogenital Diseases (male) Molecular Diagnosis and Treatment Center, Beijing, China
| | - Dong Fang
- Department of Urology, Peking University First Hospital, Beijing, China,Institute of Urology, Peking University, Beijing, China,Beijing Key Laboratory of Urogenital Diseases (male) Molecular Diagnosis and Treatment Center, Beijing, China
| | - Ruili Guan
- Department of Urology, Peking University First Hospital, Beijing, China,Institute of Urology, Peking University, Beijing, China,Beijing Key Laboratory of Urogenital Diseases (male) Molecular Diagnosis and Treatment Center, Beijing, China
| |
Collapse
|
2
|
Georgaki M, Theofilou VI, Pettas E, Stoufi E, Younis RH, Kolokotronis A, Sauk JJ, Nikitakis NG. Understanding the complex pathogenesis of oral cancer: A comprehensive review. Oral Surg Oral Med Oral Pathol Oral Radiol 2021; 132:566-579. [PMID: 34518141 DOI: 10.1016/j.oooo.2021.04.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/27/2021] [Accepted: 04/18/2021] [Indexed: 01/08/2023]
Abstract
The pathogenesis of oral cancer is a complex and multifactorial process that requires a deep understanding of the underlying mechanisms involved in the development and progress of malignancy. The ever-improving comprehension of the diverse molecular characteristics of cancer, the genetic and epigenetic alterations of tumor cells, and the complex signaling pathways that are activated and frequently cross talk open up promising horizons for the discovery and application of diagnostic molecular markers and set the basis for an era of individualized management of the molecular defects underlying and governing oral premalignancy and cancer. The purpose of this article is to review the key molecular concepts that are implicated in oral carcinogenesis, especially focusing on oral squamous cell carcinoma, and to review selected biomarkers that play a substantial role in controlling the so-called "hallmarks of cancer," with special reference to recent advances that shed light on their deregulation during the different steps of oral cancer development and progression.
Collapse
Affiliation(s)
- Maria Georgaki
- Department of Oral Medicine and Pathology, School of Dentistry, National and Kapodistrian University of Athens, Athens, Greece.
| | - Vasileios Ionas Theofilou
- Department of Oral Medicine and Pathology, School of Dentistry, National and Kapodistrian University of Athens, Athens, Greece; Department of Oncology and Diagnostic Sciences, School of Dentistry, and Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD, USA
| | - Efstathios Pettas
- Department of Oral Medicine and Pathology, School of Dentistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Eleana Stoufi
- Department of Oral Medicine and Pathology, School of Dentistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Rania H Younis
- Department of Oncology and Diagnostic Sciences, School of Dentistry, and Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD, USA
| | - Alexandros Kolokotronis
- Department of Oral Medicine and Pathology, School of Dentistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - John J Sauk
- Professor Emeritus and Dean Emeritus, University of Louisville, Louisville, KY, USA
| | - Nikolaos G Nikitakis
- Department of Oral Medicine and Pathology, School of Dentistry, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
3
|
Association of circulating angiogenesis inhibitors and asymmetric dimethyl arginine with coronary plaque burden. FIBROGENESIS & TISSUE REPAIR 2015. [PMID: 26213574 DOI: 10.1186/s13069-015-0029-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Chronic kidney disease (CKD) is an independent risk factor for the development and severity of coronary artery disease (CHD) and endothelial dysfunction. There is an increase in the circulating angiogenesis inhibitors endostatin (END), thrombospondin-2 (TSP), angiopoietin-2 (ANG) and the nitric oxide (NO) inhibitor asymmetric dimethyl arginine (ADMA) in CKD patients. The aim of this study was to evaluate associations of the serum level of these factors and of the related angiogenesis inhibitor, endoglin (ENG), with burden of coronary atherosclerosis. METHODS One hundred twenty-two patients undergoing coronary angiography were recruited from the cardiac catheterization lab at a single center. The total burden of coronary plaque (mm(2)) and the presence of coronary collaterals were quantified using quantitative coronary angiography (QCA). Serum levels of angiogenesis inhibitors were measured by ELISA (ENG, END, and ANG), Luminex assay (TSP), or HLPC (ADMA), respectively. Associations with plaque burden and coronary collateral supply were analyzed in multi-variable linear and logistic regression models. RESULTS There was no significant association found between levels of circulating ADMA, ENG, END, ANG, or TSP and coronary plaque burden or collateral formation. CONCLUSIONS Our findings suggest that associations of circulating END, ENG, TSP, and ANG with cardiovascular mortality are unlikely to be mediated via direct effects on coronary plaque formation or by inhibition of collateral formation. Whether associations of these factors with mortality are mediated via local concentrations, myocardial tissue, or intra-plaque expression of these factors or by an effect on plaque vulnerability merits additional investigation.
Collapse
|
4
|
Astekar M, Joshi A, Ramesh G, Metgud R. Expression of vascular endothelial growth factor and microvessel density in oral tumorigenesis. J Oral Maxillofac Pathol 2012; 16:22-6. [PMID: 22434941 PMCID: PMC3303517 DOI: 10.4103/0973-029x.92968] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Context: Significant increase in vascularity occurs during the transition from normal oral mucosa, through differing degrees of dysplasia, to invasive squamous cell carcinoma (SCC). Aims: To evaluate microvessel density (MVD) and vascular endothelial growth factor (VEGF) expression in oral tumorigenesis and correlate it with the clinicopathological characteristics. Settings and Design: VEGF expression and MVD were quantified immunohistochemically using anti-VEGF and anti-CD34 antibody. Materials and Methods: For this study we used a total of 60 archival specimens, including 10 normal oral mucosa (NOM), 7 mild epithelial dysplasia (Mild ED), 8 moderate epithelial dysplasia (Mod ED), 5 severe epithelial dysplasia (SED), 14 well-differentiated SCC, 11 moderately-differentiated SCC, and 5 poorly-differentiated SCC. VEGF expression was assessed in relation to the localization, intensity, and area of the immunohistochemically stained cells. MVD was evaluated using the Image-Pro® Plus software. Statistical Analysis: One-way ANOVA (F test) was carried out for comparing the parameters for multiple groups such as different histopathological grades of dysplasia and carcinoma. Comparison between groups was carried out using the Student's ‘t’ test. Correlations between VEGF score and MVD were estimated using the Karl Pearson coefficient of correlation. Results: VEGF and MVD appeared to increase with disease progression and were statistically higher in oral SCC than in epithelial dysplasia and normal buccal mucosa. There was significant correlation between VEGF expression and MVD. Conclusions: These findings indicate that VEGF expression is upregulated during head and neck tumorigenesis.
Collapse
Affiliation(s)
- Madhusudan Astekar
- Department of Oral and Maxillofacial Pathology, Pacific Dental College and Hospital, PAHER University, Udaipur, Rajasthan, India
| | | | | | | |
Collapse
|
5
|
Babykutty S, Suboj P, Srinivas P, Nair AS, Chandramohan K, Gopala S. Insidious role of nitric oxide in migration/invasion of colon cancer cells by upregulating MMP-2/9 via activation of cGMP-PKG-ERK signaling pathways. Clin Exp Metastasis 2012; 29:471-92. [PMID: 22419013 DOI: 10.1007/s10585-012-9464-6] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Accepted: 02/26/2012] [Indexed: 12/16/2022]
Abstract
Nitric oxide (NO), an uncharged free radical is implicated in various physiological and pathological processes. The present study is an investigation on the effect of NO on proliferation, apoptosis and migration of colon cancer cells. Colon adenocarcinoma cells, WiDr, were used for the in vitro experiments. Tissues from colon adenocarcinoma, adjacent normal and inflammatory tissue and lymph node with metastasis were evaluated for iNOS, MMP-2/9 and Fra-1/Fra-2. NO increases the proliferation of cancer cells and simultaneously prevents apoptosis. Expression of MMP-2/9, RhoB and Rac-1 was enhanced by NO in a time dependent manner. Further, NO increased phosphorylation of ERK1/2 and induced nuclear translocation of Fra-1 and Fra-2. Electrophoretic mobility shift analysis and use of deletion mutant promoter constructs identified role of AP-1 in NO-mediated regulation of MMP-2/9. iNOS, MMP-2/9, Fra-1 and Fra-2 in normal and colon adenocarcinoma tissues were analyzed and it was found that increased expression of these proteins in cancer when compared to normal provides support to our in vitro findings. The study showed that the NO-cGMP-PKG promotes MMP-2/9 expression by activating ERK-1/2 and AP-1. This study reveals the insidious role of NO in imparting tumor aggressiveness.
Collapse
Affiliation(s)
- Suboj Babykutty
- Department of Biochemistry, Sree Chitra Tirunal Institute for Medical Sciences and Technology, 695011, Thiruvananthapuram, Kerala, India
| | | | | | | | | | | |
Collapse
|
6
|
Lister strain of vaccinia virus armed with endostatin-angiostatin fusion gene as a novel therapeutic agent for human pancreatic cancer. Gene Ther 2009; 16:1223-33. [PMID: 19587709 PMCID: PMC2762962 DOI: 10.1038/gt.2009.74] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Survival following pancreatic cancer remains poor despite incremental advances in surgical and adjuvant therapy, and new strategies for treatment are needed. Oncolytic virotherapy is an attractive approach for cancer treatment. In this study, we have evaluated the effectiveness of the Lister vaccine strain of vaccinia virus armed with the endostatin-angiostatin fusion gene (VVhEA) as a novel therapeutic approach for pancreatic cancer. The Lister vaccine strain of vaccinia virus was effective against all human pancreatic carcinoma cells tested in vitro, especially those insensitive to oncolytic adenovirus. The virus displayed inherently high selectivity for cancer cells, sparing normal cells both in vitro and in vivo, with effective infection of tumors after both intravenous (IV) and intratumoral (IT) administration. The expression of endostatin-angiostatin fusion protein was confirmed in a pancreatic cancer model both in vitro and in vivo, with evidence of inhibition of angiogenesis. This novel vaccinia virus demonstrated significant antitumor potency in vivo against the Suit-2 model by IT administration. The present study suggests that the novel Lister strain of vaccinia virus armed with the endostatin-angiostatin fusion gene is a potential therapeutic agent for pancreatic cancer.
Collapse
|