1
|
7-Epitaxol Induces Apoptosis and Autophagy in Head and Neck Squamous Cell Carcinoma through Inhibition of the ERK Pathway. Cells 2021; 10:cells10102633. [PMID: 34685613 PMCID: PMC8534141 DOI: 10.3390/cells10102633] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 01/10/2023] Open
Abstract
As the main derivative of paclitaxel, 7-Epitaxol is known to a have higher stability and cytotoxicity. However, the anticancer effect of 7-Epitaxol is still unclear. The purpose of this study was to explore the anticancer effects of 7-Epitaxol in squamous cell carcinoma of the head and neck (HNSCC). Our study findings revealed that 7-Epitaxol potently suppressed cell viability in SCC-9 and SCC-47 cells by inducing cell cycle arrest. Flow cytometry and DAPI staining demonstrated that 7-Epitaxol treatment induced cell death, mitochondrial membrane potential and chromatin condensation in OSCC cell lines. The compound regulated the proteins of extrinsic and intrinsic pathways at the highest concentration, and also increased the activation of caspases 3, 8, 9, and PARP in OSCC cell lines. Interestingly, a 7-Epitaxol-mediated induction of LC3-I/II expression and suppression of p62 expression were observed in OSCC cells lines. Furthermore, the MAPK inhibitors indicated that 7-Epitaxol induces apoptosis and autophagy marker proteins (cleaved-PARP and LC3-I/II) by reducing the phosphorylation of ERK1/2. In conclusion, these findings indicate the involvement of 7-Epitaxol in inducing apoptosis and autophagy through ERK1/2 signaling pathway, which identify 7-Epitaxol as a potent cytotoxic agent in HNSCC.
Collapse
|
2
|
A Hopeful Natural Product, Pristimerin, Induces Apoptosis, Cell Cycle Arrest, and Autophagy in Esophageal Cancer Cells. Anal Cell Pathol (Amst) 2019; 2019:6127169. [PMID: 31218209 PMCID: PMC6536960 DOI: 10.1155/2019/6127169] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 04/18/2019] [Indexed: 02/07/2023] Open
Abstract
Esophageal cancer is one of the most common malignant digestive diseases worldwide. Although many approaches have been established for the treatment of esophageal cancer, the survival outcome has not improved. Pristimerin is a quinone methide triterpenoid with anticancer, antiangiogenic, anti-inflammatory, and antiprotozoal activities. However, the role of pristimerin in cancers such as esophageal cancer is unclear. In this study, we investigated the role and mechanisms of action of pristimerin in esophageal cancer. First, we found that pristimerin can induce apoptosis in esophageal cancer in vivo and in vitro. CCK-8 and clonogenic assays showed that pristimerin decreased the growth of Eca109 cells. In addition, we found that pristimerin decreased the protein expression of CDK2, CDK4, cyclin E, and BCL-2 and increased the expression of CDKN1B. Meanwhile, pristimerin elevated the ratio of LC3-II/LC3-I. Otherwise, downregulation of CDKN1B can reduce the esophageal cancer tumor growth induced by pristimerin. In conclusion, our findings revealed an important role of pristimerin in esophageal cancer and suggest that pristimerin might be a potential therapeutic agent for this cancer.
Collapse
|
3
|
Downregulation of G2/mitotic-specific cyclinB1 triggers autophagy via AMPK-ULK1-dependent signal pathway in nasopharyngeal carcinoma cells. Cell Death Dis 2019; 10:94. [PMID: 30700698 PMCID: PMC6353984 DOI: 10.1038/s41419-019-1369-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 01/14/2019] [Indexed: 12/19/2022]
Abstract
CyclinB1 is a regulatory protein involved in mitosis. Multiple lines of evidence indicate that cyclinB1 depletion constrains proliferation and induces apoptosis in human tumor cells. The cells become susceptible to suffer a critical situation when cyclinB1 is downregulated. Autophagy is a major intracellular degradation system that recycles nutrients, removes damaged organelles, and promotes cell survival under stressful conditions, whereas the role of autophagy in cyclinB1-deprived neoplastic cell as well as the underlying molecular mechanism remains obscure. Here we pioneeringly elaborated that specific knockdown of cyclinB1 triggered autophagy via AMPK-ULK1-dependent signal pathway through the elevation of ROS, rather than ATP in the cell lines of CNE-1 and CNE-2. Moreover, ROS scavengers demonstrated that the observed effect of cyclinB1 silencing on AMPK phosphorylation was ROS dependent. Additionally, double knockdown of AMPK and cyclinB1 evidently abrogated cyclinB1 silencing-induced autophagy. Summarily, this study first revealed that downregulation of cyclinB1 induced autophagy via AMPK-ULK1-dependent signal pathway, which represents a key step toward unveiling the mechanism how cell cycle checkpoint proteins regulate autophagy.
Collapse
|
4
|
Malki A, Ashry ESE. Quinuclidinone derivative 6 induced apoptosis in human breast cancer cells via sphingomyelinase and JNK signaling. J Chemother 2013. [DOI: 10.1179/1973947812y.0000000035] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
5
|
Ou Y, Ma L, Ma L, Huang Z, Zhou W, Zhao C, Zhang B, Song Y, Yu C, Zhan Q. Overexpression of cyclin B1 antagonizes chemotherapeutic-induced apoptosis through PTEN/Akt pathway in human esophageal squamous cell carcinoma cells. Cancer Biol Ther 2012; 14:45-55. [PMID: 23114644 DOI: 10.4161/cbt.22627] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The role of cyclin B1 in the clinical therapeutic sensitivity of human esophageal squamous cell carcinoma (ESCC) remains to be defined. In this study, we found that elevated cyclin B1 expression attenuated the apoptosis induced by cisplatin or paclitaxel, while knockdown of cyclin B1 enhanced cisplatin or paclitaxel sensitivity in ESCC cells. Cyclin B1-mediated apoptosis may rely on the Bcl-2-dependent mitochondria-regulated intrinsic death pathway, and the antagonizing effect of cyclin B1 on chemotherapeutic agent-induced apoptosis was through PTEN/Akt pathway. Therefore, cyclin B1 might be a therapeutic target for the development of specific and efficient approaches in the treatment of ESCC.
Collapse
Affiliation(s)
- Yunwei Ou
- State Key Laboratory of Molecular Oncology, Cancer Institute and Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Dong XL, Xu PF, Miao C, Fu ZY, Li QP, Tang PY, Wang T. Hypoxia decreased chemosensitivity of breast cancer cell line MCF-7 to paclitaxel through cyclin B1. Biomed Pharmacother 2011; 66:70-5. [PMID: 22264882 DOI: 10.1016/j.biopha.2011.11.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 11/01/2011] [Indexed: 11/28/2022] Open
Abstract
Hypoxia, frequently found in the center of solid tumors, may lead to enhance the production of key factor in cell survival, invasion, angiogenesis and loss of apoptosis. The low oxygen tension in hypoxic tumors is also known to interfere with the efficacy of chemotherapy, but the underlying mechanisms are not very clear. Paclitaxel (PTX) is an active agent used in breast cancer chemotherapy, which disturbs microtubule dynamics and impairs the transition of cells from metaphase to anaphase in mitosis, leading to cell death by apoptosis. In the present study, we try to determine whether hypoxia can decrease the chemosensitivity of human breast carcinoma cells to PTX and elucidate the underlying mechanism. We found that hypoxia could decrease PTX-induced cell death and G(2)/M arrest. Furthermore, our results showed that hypoxia inhibit PTX-induced soluble tubulin polymerized. In addition, we also found hypoxia could suppress PTX-induced cell cycle protein-cyclin B1 expression in MCF-7 cells. To further investigate whether the inhibitory effect of hypoxia on PTX-induced cell death is mediated by decreasing levels of cyclin B1, cyclin B1-transfected MCF-7 cells were used under hypoxic condition. The data showed that the hypoxia-based decreasing chemosensitivity of breast cancer cells to PTX was reversed by cyclin B1. We also found that overexpression of cyclin B1 could significantly increase the sensitivity of MCF-7 cells to PTX by stimulating soluble polymerized tubulin. Overall, hypoxia decreases cyclin B1, which could in turn reverse hypoxia-induced decreasing chemosensitivity to PTX in breast cancer cell line MCF-7.
Collapse
Affiliation(s)
- X L Dong
- Department of Internal Medicine of the Second Affiliated Hospital, Medical School of Xi'an Jiao Tong University, Xi'an, China
| | | | | | | | | | | | | |
Collapse
|
7
|
Nagaraju GPC, Nalla AK, Gupta R, Mohanam S, Gujrati M, Dinh DH, Rao JS. siRNA-mediated downregulation of MMP-9 and uPAR in combination with radiation induces G2/M cell-cycle arrest in Medulloblastoma. Mol Cancer Res 2010; 9:51-66. [PMID: 21148633 DOI: 10.1158/1541-7786.mcr-10-0399] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Our previous work and that of other investigators strongly suggest a relationship between the upregulation of metalloproteinase-9 (MMP-9) and urokinase-type plasminogen activator receptor (uPAR) in tumor angiogenesis and metastasis. In this study, we evaluated the role of MMP-9 and uPAR in medulloblastoma cancer cell resistance to ionizing irradiation (IR) and tested the antitumor efficacy of siRNA (short interfering RNA) against MMP-9 [plasmid siRNA vector for MMP-9 (pM)] and uPAR [plasmid vector for uPAR (pU)] either alone or in combination [plasmid siRNA vector for both uPAR and MMP-9 (pUM)]. Cell proliferation (BrdU assay), apoptosis (in situ TUNEL for DNA fragmentation), and cell-cycle (FACS) analyses were carried out to determine the effect of siRNA either alone or in combination with IR on G2/M cell-cycle arrest in medulloblastoma cells. IR upregulated MMP-9 and uPAR expression in medulloblastoma cells; pM, pU, and pUM in combination with IR effectively reduced both MMP-9 and uPAR expression, thereby leading to increased radiosensitivity of medulloblastoma cells. siRNA treatments (pM, pU, and pUM) also promoted IR-induced apoptosis and enhanced IR-induced G2/M arrest during cell-cycle progression. While IR induces G2/M cell-cycle arrest through inhibition of the pCdc2- and cyclin B-regulated signaling pathways involving p53, p21/WAF1, and Chk2 gene expression, siRNA (pM, pU, and pUM) alone or in combination with IR induced G2/M arrest mediated through inhibition of the pCdc2- and cyclin B1-regulated signaling pathways involving Chk1 and Cdc25A gene expression. Taken together, our data suggest that downregulation of MMP-9 and uPAR induces Chk1-mediated G2/M cell-cycle arrest, whereas the disruption caused by IR alone is dependent on p53- and Chk2-mediated G2/M cell-cycle arrest.
Collapse
Affiliation(s)
- Ganji Purna Chandra Nagaraju
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine, One Illini Drive, Peoria, IL 61605, USA
| | | | | | | | | | | | | |
Collapse
|
8
|
Bonnefont J, Laforge T, Plastre O, Beck B, Sorce S, Dehay C, Krause KH. Primate-specific RFPL1 gene controls cell-cycle progression through cyclin B1/Cdc2 degradation. Cell Death Differ 2010; 18:293-303. [PMID: 20725088 DOI: 10.1038/cdd.2010.102] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Ret finger protein-like 1 (RFPL1) is a primate-specific target gene of Pax6, a key transcription factor for pancreas, eye and neocortex development. However, its cellular activity remains elusive. In this article, we report that Pax6-elicited expression of the human (h)RFPL1 gene in HeLa cells can be enhanced by in vivo p53 binding to its promoter and therefore investigated the hypothesis that hRFPL1 regulates cell-cycle progression. Upon expression in these cells, hRFPL1 decreased cell number through a kinase-dependent mechanism as PKC activates and Cdc2 inhibits hRFPL1 activity. hRFPL1 antiproliferative activity led to an increased cell population in G(2)/M phase and specific cyclin B1 and Cdc2 downregulations, which were precluded by a proteasome inhibitor. Specifically, cytoplasm-localized hRFPL1 prevented cyclin B1 and Cdc2 accumulation during interphase. Consequently, cells showed a delayed entry into mitosis and cell-cycle lengthening resulting from a threefold increase in G(2) phase duration. Given previous reports that RFPL1 is expressed during cell differentiation, its impact on cell-cycle lengthening therefore provides novel insights into primate-specific development.
Collapse
Affiliation(s)
- J Bonnefont
- Department of Pathology and Immunology, School of Medicine, University of Geneva, Rue Michel-Servet 1, Geneva, Switzerland
| | | | | | | | | | | | | |
Collapse
|
9
|
Yan KH, Yao CJ, Chang HY, Lai GM, Cheng AL, Chuang SE. The synergistic anticancer effect of troglitazone combined with aspirin causes cell cycle arrest and apoptosis in human lung cancer cells. Mol Carcinog 2010; 49:235-46. [PMID: 19908241 DOI: 10.1002/mc.20593] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Troglitazone (TGZ) is a synthetic thiazolidinedione drug belonging to a group of potent peroxisome proliferator-activated receptor gamma (PPAR gamma) agonists known to inhibit proliferation, alter cell cycle regulation, and induce apoptosis in various cancer cell types. TGZ is an oral anti-type II diabetes drug that can reverse insulin resistance. For more then 100 yr, aspirin, a nonselective cyclooxygenase (COX) inhibitor, has been successfully used as an anti-inflammatory drug. Recently, Aspirin (ASA) and some other nonsteroidal anti-inflammatory drugs (NSAIDs) have drawn much attention for their protective effects against colon cancer and cardiovascular disease; it has been observed that ASA's anti-tumor effect can be attributed to inhibition of cell cycle progression, induction of apoptosis, and inhibition of angiogenesis. In this report we demonstrate for the first time that, when administered in combination, TGZ and ASA can produce a strong synergistic effect in growth inhibition and G(1) arrest in lung cancer CL1-0 and A549 cells. Examination by colony formation assay revealed an even more profound synergy. In Western blot, combined TGZ and ASA also could downregulate Cdk2, E2F-1, cyclin B1, cyclin D3 protein, and the ratio of phospho-Rb/Rb. Importantly, apoptosis was synergistically induced by the combination treatment, as evidenced by caspase-3 activation and PARP cleavage. The involvement of PI3K/Akt inhibition and p27 upregulation, as well as hypophosphorylation of Rac1 at ser71, were demonstrated. Taken together, these results suggest that clinically achievable concentrations of TGZ and ASA used in combination may produce a strong anticancer synergy that warrants further investigation for its clinical applications.
Collapse
Affiliation(s)
- Kun-Huang Yan
- Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan, ROC
| | | | | | | | | | | |
Collapse
|
10
|
Gomez LA, de Las Pozas A, Reiner T, Burnstein K, Perez-Stable C. Increased expression of cyclin B1 sensitizes prostate cancer cells to apoptosis induced by chemotherapy. Mol Cancer Ther 2007; 6:1534-43. [PMID: 17513602 DOI: 10.1158/1535-7163.mct-06-0727] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Chemotherapeutic drugs ideally should take advantage of the differences between transformed and normal cells and induce apoptosis only in cancer cells. One such difference may be the overexpression of cyclin B1 protein in cancer cells, which is required for the proper progression through mitosis. Previously, we showed that treatment of human prostate cancer cells with 2-methoxyestradiol (2-ME) or docetaxel results in an accumulation of cyclin B1 protein and an increase in cyclin B1 kinase activity, followed by induction of apoptotic cell death. Inhibition of cyclin B1 kinase lowers apoptosis induced by 2-ME and docetaxel. In this study, we established a positive correlation between cyclin B1 protein and apoptosis induced by chemotherapy in prostate cancer cells. There is minimal cyclin B1 and induction of apoptosis by chemotherapy in nontransformed cells. LNCaP and PC-3 prostate cancer cells stably overexpressing cyclin B1 are more sensitive to apoptosis induced by chemotherapy. LNCaP cells expressing cyclin B1 small interfering RNA to lower cyclin B1 protein or dominant negative cyclin-dependent kinase 1 to inhibit cyclin B1 kinase show a decrease in apoptosis. Increased sensitivity to apoptosis by overexpression of cyclin B1 may be due to lower Bcl-2, higher p53, and decreased neuroendocrine differentiation. We suggest that a cancer-specific mechanism whereby 2-ME and docetaxel may exert anti-prostate cancer activity is the deregulated activation of cyclin B1 kinase, leading to the induction of apoptotic cell death. Our results also suggest that higher levels of cyclin B1 in prostate cancer cells may be a good prognostic marker for chemotherapy.
Collapse
Affiliation(s)
- Lourdes A Gomez
- Geriatric Research, Education, and Clinical Center and Research Service, VA Medical Center, University of Miami Miller School of Medicine, 1201 Northwest 16 Street, Miami, FL 33125, USA
| | | | | | | | | |
Collapse
|
11
|
Lin YH, Chiu JH, Tseng WS, Wong TT, Chiou SH, Yen SH. Antiproliferation and radiosensitization of caffeic acid phenethyl ester on human medulloblastoma cells. Cancer Chemother Pharmacol 2005; 57:525-32. [PMID: 16172905 DOI: 10.1007/s00280-005-0066-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2005] [Accepted: 06/09/2005] [Indexed: 11/28/2022]
Abstract
PURPOSE To investigate antiproliferative and radiosensitizing effects of caffeic acid phenethyl ester (CAPE) on medulloblastoma (MB) Daoy cells. METHODS AND MATERIALS Daoy cells were treated with CAPE in different concentrations and assessed for cell viability, apoptosis, cell cycles, cyclin B1 expressions, radiosensitization and chemosensitization. Human astroglia SVGp12 cells were treated with CAPE to present the possible protection or complication effects in normal tissues. RESULTS CAPE inhibited the growth of Daoy cells in a time- and concentration-dependent manner in MTT and Trypan blue exclusion assays. Flow cytometry revealed that CAPE significantly decreased G2/M fraction, and increased the S phase fraction. Western blot demonstrated a down-regulated cyclin B1 protein expression. Pretreatment with CAPE markedly decreased the viability of irradiated Daoy cells. The sensitizer enhancement ratios (SERs) were increased in CAPE-treated Daoy cells. CAPE in doxorubicin and cisplatin did not show chemosensitizing effect. CONCLUSIONS These findings demonstrate the antiproliferative and radiosensitizing effects of CAPE for Daoy cells, which might bring improvement to the treatment of MB. For clinical application, in vivo models are expected.
Collapse
Affiliation(s)
- Yi-Hsien Lin
- Institute of Traditional Medicine, National Yang-Ming University, 155. Sec. 2, Li-Nong St., Peitou, Taipei, 112, Taiwan
| | | | | | | | | | | |
Collapse
|