1
|
Salucci S, Bavelloni A, Stella AB, Fabbri F, Vannini I, Piazzi M, Volkava K, Scotlandi K, Martinelli G, Faenza I, Blalock W. The Cytotoxic Effect of Curcumin in Rhabdomyosarcoma Is Associated with the Modulation of AMPK, AKT/mTOR, STAT, and p53 Signaling. Nutrients 2023; 15:nu15030740. [PMID: 36771452 PMCID: PMC9920154 DOI: 10.3390/nu15030740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/11/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
Approximately 7% of cancers arising in children and 1% of those arising in adults are soft tissue sarcomas (STS). Of these malignancies, rhabdomyosarcoma (RMS) is the most common. RMS survival rates using current therapeutic protocols have remained largely unchanged in the past decade. Thus, it is imperative that the main molecular drivers in RMS tumorigenesis are defined so that more precise, effective, and less toxic therapies can be designed. Curcumin, a common herbal supplement derived from plants of the Curcuma longa species, has an exceptionally low dietary biotoxicity profile and has demonstrated anti-tumorigenic benefits in vitro. In this study, the anti-tumorigenic activity of curcumin was assessed in rhabdomyosarcoma cell lines and used to identify the major pathways responsible for curcumin's anti-tumorigenic effects. Curcumin treatment resulted in cell cycle arrest, inhibited cell migration and colony forming potential, and induced apoptotic cell death. Proteome profiler array analysis demonstrated that curcumin treatment primarily influenced flux through the AKT-mammalian target of rapamycin (mTOR), signal transducer and activator of transcription (STAT), AMP-dependent kinase (AMPK), and p53 associated pathways in a rhabdomyosarcoma subtype-specific manner. Thus, the strategic, combinational therapeutic targeting of these pathways may present the best option to treat this group of tumors.
Collapse
Affiliation(s)
- Sara Salucci
- Dipartimento di Scienze Biomediche e Neuromotorie (DIBINEM), Università di Bologna, 40126 Bologna, Italy
| | - Alberto Bavelloni
- Laboratorio di Oncologia Sperimentale, IRCCS, Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Anna Bartoletti Stella
- Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale (DIMES), Università di Bologna, 40126 Bologna, Italy
| | - Francesco Fabbri
- Laboratorio di Bioscienze, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
| | - Ivan Vannini
- Laboratorio di Bioscienze, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
| | - Manuela Piazzi
- ‘‘Luigi Luca Cavalli-Sforza’’ Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerca (IGM-CNR), 40136 Bologna, Italy
- IRCCS, Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Karyna Volkava
- Dipartimento di Farmacia e Biotecnologie (FABIT), Università di Bologna, 40126 Bologna, Italy
| | - Katia Scotlandi
- Laboratorio di Oncologia Sperimentale, IRCCS, Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Giovanni Martinelli
- Laboratorio di Bioscienze, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
| | - Irene Faenza
- Dipartimento di Scienze Biomediche e Neuromotorie (DIBINEM), Università di Bologna, 40126 Bologna, Italy
- Correspondence: (I.F.); (W.B.)
| | - William Blalock
- ‘‘Luigi Luca Cavalli-Sforza’’ Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerca (IGM-CNR), 40136 Bologna, Italy
- IRCCS, Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
- Correspondence: (I.F.); (W.B.)
| |
Collapse
|
2
|
The Effect of Direct and Indirect EZH2 Inhibition in Rhabdomyosarcoma Cell Lines. Cancers (Basel) 2021; 14:cancers14010041. [PMID: 35008205 PMCID: PMC8750739 DOI: 10.3390/cancers14010041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/12/2021] [Accepted: 12/21/2021] [Indexed: 12/17/2022] Open
Abstract
Simple Summary Rhabdomyosarcoma is the most common soft tissue tumor in children. Its two major subtypes show epigenetic alterations that are associated with poor prognosis. Therefore, targeting these epigenetic alterations by pharmacological intervention could be a therapeutic approach. We investigated two different types of substances that interfere with the epigenetic process of histone methylation. We performed studies in two cell lines that carry characteristics of the major rhabdomyosarcoma subtypes. The aim of this study was to find out if the substances differ in their effect on tumor-related cellular functions and to find out if the tumor subtypes differ in their response to the substances. These findings may contribute to a better assessment of the feasibility of pharmacological intervention directed against histone methylation in subtypes of rhabdomyosarcoma. Abstract Enhancer of Zeste homolog 2 (EZH2) is involved in epigenetic regulation of gene transcription by catalyzing trimethylation of histone 3 at lysine 27. In rhabdomyosarcoma (RMS), increased EZH2 protein levels are associated with poor prognosis and increased metastatic potential, suggesting EZH2 as a therapeutic target. The inhibition of EZH2 can be achieved by direct inhibition which targets only the enzyme activity or by indirect inhibition which also affects activities of other methyltransferases and reduces EZH2 protein abundance. We assessed the direct inhibition of EZH2 by EPZ005687 and the indirect inhibition by 3-deazaneplanocin (DZNep) and adenosine dialdehyde (AdOx) in the embryonal RD and the alveolar RH30 RMS cell line. EPZ005687 was more effective in reducing the cell viability and colony formation, in promoting apoptosis induction, and in arresting cells in the G1 phase of the cell cycle than the indirect inhibitors. DZNep was more effective in decreasing spheroid viability and size in both cell lines than EPZ005687 and AdOx. Both types of inhibitors reduced cell migration of RH30 cells but not of RD cells. The results show that direct and indirect inhibition of EZH2 affect cellular functions differently. The alveolar cell line RH30 is more sensitive to epigenetic intervention than the embryonal cell line RD.
Collapse
|
3
|
Yoshida H, Sato-Dahlman M, Hajeri P, Jacobsen K, Koodie L, Yanagiba C, Shanley R, Yamamoto M. Mutant myogenin promoter-controlled oncolytic adenovirus selectively kills PAX3-FOXO1-positive rhabdomyosarcoma cells. Transl Oncol 2021; 14:100997. [PMID: 33338875 PMCID: PMC7749408 DOI: 10.1016/j.tranon.2020.100997] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 12/09/2020] [Indexed: 11/20/2022] Open
Abstract
The PAX3-FOXO1 fusion gene functions as a transactivator and increases expression of many cancer-related genes. These lead to metastases and other unfavorable outcomes for alveolar rhabdomyosarcoma (ARMS) patients. In order to target ARMS with the PAX3-FOXO1 transactivator, we developed an Oncolytic Adenovirus (OAd) regulated by the myogenin (pMYOG) promoter with a mutation in the Myocyte Enhancer Factor-2 binding site (mMEF2) in this study. The expression of MYOG in the two RMS cell lines (Rh30; PAX3-FOXO1-positive, RD; PAX3-FOXO1-negative) is about 1,000 times higher than normal skeletal muscle cell (SkMC). Ad5/3-pMYOG(S)-mMEF2 (short-length pMYOG-controlled OAd with mMEF2) showed strong replication and cytocidal effect in Rh30, but to a much lesser extent in RD. Ad5/3-pMYOG(S) (pMYOG-controlled OAd with native pMYOG) showed similar effects in RD and Rh30. Neither virus killed SkMC, indicating that Ad5/3-pMYOG(S)-mMEF2 selectively replicates and kills cells with PAX3-FOXO1. Additionally, Ad5/3-pMYOG(S)-mMEF2 showed replication and spread in vitro as well as tumor growth suppression and intratumoral viral spread in vivo, selectively in Rh30 not in RD. Our findings revealed that Ad5/3-pMYOG(S)-mMEF2 shows a promise as a safe and potent therapy to improve treatment in PAX3-FOXO1-positive ARMSs.
Collapse
Affiliation(s)
- Hideki Yoshida
- Department of Surgery, University of Minnesota, Moos Tower 11-216, MMC195, 515 Delaware St SE, Minneapolis, MN 55455, United States
| | - Mizuho Sato-Dahlman
- Department of Surgery, University of Minnesota, Moos Tower 11-216, MMC195, 515 Delaware St SE, Minneapolis, MN 55455, United States; Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, United States
| | - Praveensingh Hajeri
- Department of Surgery, University of Minnesota, Moos Tower 11-216, MMC195, 515 Delaware St SE, Minneapolis, MN 55455, United States
| | - Kari Jacobsen
- Department of Surgery, University of Minnesota, Moos Tower 11-216, MMC195, 515 Delaware St SE, Minneapolis, MN 55455, United States
| | - Lisa Koodie
- Department of Surgery, University of Minnesota, Moos Tower 11-216, MMC195, 515 Delaware St SE, Minneapolis, MN 55455, United States
| | - Chikako Yanagiba
- Department of Surgery, University of Minnesota, Moos Tower 11-216, MMC195, 515 Delaware St SE, Minneapolis, MN 55455, United States
| | - Ryan Shanley
- Masonic Cancer Center, Biostatistics Core, University of Minnesota, Minneapolis, MN 55455, United States
| | - Masato Yamamoto
- Department of Surgery, University of Minnesota, Moos Tower 11-216, MMC195, 515 Delaware St SE, Minneapolis, MN 55455, United States; Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, United States; Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, United States.
| |
Collapse
|
4
|
Abstract
Rhabdomyosarcoma (RMS) is an aggressive childhood mesenchymal tumor with two major molecular and histopathologic subtypes: fusion-positive (FP)RMS, characterized by the PAX3-FOXO1 fusion protein and largely of alveolar histology, and fusion-negative (FN)RMS, the majority of which exhibit embryonal tumor histology. Metastatic disease continues to be associated with poor overall survival despite intensive treatment strategies. Studies on RMS biology have provided some insight into autocrine as well as paracrine signaling pathways that contribute to invasion and metastatic propensity. Such pathways include those driven by the PAX3-FOXO1 fusion oncoprotein in FPRMS and signaling pathways such as IGF/RAS/MEK/ERK, PI3K/AKT/mTOR, cMET, FGFR4, and PDGFR in both FP and FNRMS. In addition, specific cytoskeletal proteins, G protein coupled receptors, Hedgehog, Notch, Wnt, Hippo, and p53 pathways play a role, as do specific microRNA. Paracrine factors, including secreted proteins and RMS-derived exosomes that carry cargo of protein and miRNA, have also recently emerged as potentially important players in RMS biology. This review summarizes the known factors contributing to RMS invasion and metastasis and their implications on identifying targets for treatment and a better understanding of metastatic RMS.
Collapse
|
5
|
Tombolan L, Rossi E, Zin A, Santoro L, Bonvini P, Zamarchi R, Bisogno G. Pediatric sarcomas display a variable EpCAM expression in a histology-dependent manner. Transl Oncol 2020; 13:100846. [PMID: 32805674 PMCID: PMC7453064 DOI: 10.1016/j.tranon.2020.100846] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/17/2020] [Accepted: 07/20/2020] [Indexed: 01/06/2023] Open
Abstract
EpCAM is a transmembrane glycoprotein typically overexpressed in cancer of epithelial origin and mainly involved in the epithelial-to–mesenchymal transition (EMT) of tumor cells that spread and disseminate. Strategies for the targeting and capture of EpCAM-expressing tumor cells are showing promise in cancers prone to metastatize, both as diagnostic tools and potential therapies. Sarcomas are among the most aggressive tumors in children, with a common mesenchymal origin that comprises both soft tissue sarcomas (STS) and bone sarcomas. The aim of this study was to assess EpCAM expression in pediatric sarcomas and correlate its expression with disease progression. To do so, we analyzed a set of cell lines and primary tumor tissues from rhabdomyosarcoma (RMS), Ewing sarcoma (ES), synovial sarcoma (SS) and desmoplastic small round cell tumor (DSRCT) STS, or osteosarcoma (OS) bone cancer. We demonstrated that EpCAM was variably expressed in pediatric sarcomas, with DSRCT, a rare, aggressive and almost fatal tumor type, characterized by the highest EpCAM expression levels. Interestingly, although EpCAM expression was lower in RMS tumors, high levels at diagnosis correlated with reduced patients' overall survival (p < 0.05). Indeed, membrane-bound EpCAM was detected in circulating sarcoma tumor cells, revealing its potential to be used as dissemination biomarker in this type of childhood cancers. This reinforces the concept that pediatric sarcomas do express both epithelial and mesenchymal markers and reside in an intermediate condition that most likely contributes to their aggressive phenotype and low survival rate.
Collapse
Affiliation(s)
- Lucia Tombolan
- Institute of Pediatric Research, Fondazione Città della Speranza, Padua, Italy.
| | - Elisabetta Rossi
- Department of Surgery, Oncology and Gastroenterology, Oncology Section, University of Padova, Padova, Italy; Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - Angelica Zin
- Institute of Pediatric Research, Fondazione Città della Speranza, Padua, Italy
| | - Luisa Santoro
- University Hospital of Padova, Institute of Pathology, Padua, Italy
| | - Paolo Bonvini
- Institute of Pediatric Research, Fondazione Città della Speranza, Padua, Italy
| | - Rita Zamarchi
- Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - Gianni Bisogno
- Department of Woman's and Children's Health, Hematology and Oncology Unit, University of Padua, Padua, Italy
| |
Collapse
|
6
|
Prognostic Value of Circulating IGFBP2 and Related Autoantibodies in Children with Metastatic Rhabdomyosarcomas. Diagnostics (Basel) 2020; 10:diagnostics10020115. [PMID: 32093404 PMCID: PMC7168276 DOI: 10.3390/diagnostics10020115] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 01/26/2023] Open
Abstract
Insulin-like growth factor-binding protein 2 (IGFBP2) is a tumor-associated protein measurable in patients’ biopsies and blood samples. Increased IGFBP2 expression correlates with tumor severity in rhabdomyosarcoma (RMS). Thus, we examined the plasmatic IGFBP2 levels in 114 RMS patients and 15 healthy controls by ELISA assay in order to evaluate its value as a plasma biomarker for RMS. Additionally, we looked for the presence of a humoral response against IGBFP2 protein measurable by the production of anti-IGFBP2 autoantibodies. We demonstrated that both circulating IGFBP2 protein and autoantibodies were significantly higher in RMS patients with respect to controls and their combination showed a better discriminative capacity. IGFBP2 protein identified metastatic patients with worse event-free survival, whereas both IGFBP2 and anti-IGFBP2 antibodies negatively correlated with overall survival. Our study suggests that IGFBP2 and anti-IGFBP2 antibodies are useful for diagnostic and prognostic purposes, mainly as independent negative prognostic markers in metastatic patients. This is the first study that reports a specific humoral response in RMS plasma samples and proves the value of blood-based biomarkers in improving risk assessment and outcome of metastatic RMS patients.
Collapse
|
7
|
Helm BR, Zhan X, Pandya PH, Murray ME, Pollok KE, Renbarger JL, Ferguson MJ, Han Z, Ni D, Zhang J, Huang K. Gene Co-Expression Networks Restructured Gene Fusion in Rhabdomyosarcoma Cancers. Genes (Basel) 2019; 10:genes10090665. [PMID: 31480361 PMCID: PMC6770752 DOI: 10.3390/genes10090665] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/07/2019] [Accepted: 08/19/2019] [Indexed: 01/28/2023] Open
Abstract
Rhabdomyosarcoma is subclassified by the presence or absence of a recurrent chromosome translocation that fuses the FOXO1 and PAX3 or PAX7 genes. The fusion protein (FOXO1-PAX3/7) retains both binding domains and becomes a novel and potent transcriptional regulator in rhabdomyosarcoma subtypes. Many studies have characterized and integrated genomic, transcriptomic, and epigenomic differences among rhabdomyosarcoma subtypes that contain the FOXO1-PAX3/7 gene fusion and those that do not; however, few investigations have investigated how gene co-expression networks are altered by FOXO1-PAX3/7. Although transcriptional data offer insight into one level of functional regulation, gene co-expression networks have the potential to identify biological interactions and pathways that underpin oncogenesis and tumorigenicity. Thus, we examined gene co-expression networks for rhabdomyosarcoma that were FOXO1-PAX3 positive, FOXO1-PAX7 positive, or fusion negative. Gene co-expression networks were mined using local maximum Quasi-Clique Merger (lmQCM) and analyzed for co-expression differences among rhabdomyosarcoma subtypes. This analysis observed 41 co-expression modules that were shared between fusion negative and positive samples, of which 17/41 showed significant up- or down-regulation in respect to fusion status. Fusion positive and negative rhabdomyosarcoma showed differing modularity of co-expression networks with fusion negative (n = 109) having significantly more individual modules than fusion positive (n = 53). Subsequent analysis of gene co-expression networks for PAX3 and PAX7 type fusions observed 17/53 were differentially expressed between the two subtypes. Gene list enrichment analysis found that gene ontology terms were poorly matched with biological processes and molecular function for most co-expression modules identified in this study; however, co-expressed modules were frequently localized to cytobands on chromosomes 8 and 11. Overall, we observed substantial restructuring of co-expression networks relative to fusion status and fusion type in rhabdomyosarcoma and identified previously overlooked genes and pathways that may be targeted in this pernicious disease.
Collapse
Affiliation(s)
- Bryan R Helm
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202-3082, USA
| | - Xiaohui Zhan
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202-3082, USA
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Pankita H Pandya
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202-3082, USA
| | - Mary E Murray
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202-3082, USA
| | - Karen E Pollok
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202-3082, USA
- Department of Pharmacology and Toxicology, Indiana University, Indianapolis, IN 46202-3082, USA
| | - Jamie L Renbarger
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202-3082, USA
| | - Michael J Ferguson
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202-3082, USA
| | - Zhi Han
- Department of Pharmacology and Toxicology, Indiana University, Indianapolis, IN 46202-3082, USA
| | - Dong Ni
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Jie Zhang
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202-3082, USA.
| | - Kun Huang
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202-3082, USA.
- Regenstrief Institute, Indianapolis, IN 46202, USA.
| |
Collapse
|
8
|
Al-Ghabkari A, Qasrawi DO, Alshehri M, Narendran A. Focal adhesion kinase (FAK) phosphorylation is a key regulator of embryonal rhabdomyosarcoma (ERMS) cell viability and migration. J Cancer Res Clin Oncol 2019; 145:1461-1469. [PMID: 31006845 DOI: 10.1007/s00432-019-02913-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 04/02/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Rhabdomyosarcoma (RMS) is the most common soft-tissue sarcoma in children. Pathogenesis of RMS is associated with aggressive growth pattern and increased risk of morbidity and mortality. There are two main subtypes or RMS: embryonal and alveolar. The embryonal type is characterized by distinct molecular aberrations, including alterations in the activity of certain protein kinases. Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase that plays a vital role in focal adhesion (FA) assembly to promote cytoskeleton dynamics and regulation of cell motility. It is regulated by multiple phosphorylation sites: tyrosine 397, Tyr 576/577, and Tyr 925. Tyrosine 397 is the autophosphorylation site that regulates FAK localization at the cell periphery to facilitate the assembly and formation of the FA complex. The kinase activity of FAK is mediated by the phosphorylation of Tyr 576/577 within the kinase domain activation loop. Aberrations of FAK phosphorylation have been linked to the pathogenesis of different types of cancers. In this regard, pY397 upregulation is linked to increase ERMS cell motility, invasion, and tumorigenesis. METHODS In this study, we have used an established human embryonal muscle rhabdomyosarcoma cell line RD as a model to examine FAK phosphorylation profiles to characterize its role in the pathogenies of RMS. RESULTS Our findings revealed a significant increase of FAK phosphorylation at pY397 in RD cells compared to control cells (hTERT). On the other hand, Tyr 576/577 phosphorylation levels in RD cells displayed a pronounced reduction. Our data showed that Y925 residue exhibited no detectable change. The in vitro analysis showed that the FAK inhibitor, PF-562271 led to G1 cell-cycle arrest induced cell death (IC50, ~ 12 µM) compared to controls. Importantly, immunostaining analyses displayed a noticeable reduction of Y397 phosphorylation following PF-562271 treatment. Our data also showed that PF-562271 suppressed RD cell migration in a dose-dependent manner associated with a reduction in Y397 phosphorylation. CONCLUSIONS The data presented herein indicate that targeting FAK phosphorylation at distinct sites is a promising strategy in future treatment approaches for defined subgroups of rhabdomyosarcoma.
Collapse
Affiliation(s)
- Abdulhameed Al-Ghabkari
- Department of Biochemistry and Molecular Biology, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, 3280 Hospital Drive NW, Calgary, AB, T2N 4Z6, Canada.
| | - Deema O Qasrawi
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, 3280 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Mana Alshehri
- Department of Biochemistry and Molecular Biology, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, 3280 Hospital Drive NW, Calgary, AB, T2N 4Z6, Canada
- King Abdullah International Medical Research Center (KAIMRC), Riyadh, Saudi Arabia
| | - Aru Narendran
- Department of Biochemistry and Molecular Biology, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, 3280 Hospital Drive NW, Calgary, AB, T2N 4Z6, Canada
| |
Collapse
|
9
|
Acquisition of an oncogenic fusion protein serves as an initial driving mutation by inducing aneuploidy and overriding proliferative defects. Oncotarget 2018; 7:62814-62835. [PMID: 27588498 PMCID: PMC5325330 DOI: 10.18632/oncotarget.11716] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 08/10/2016] [Indexed: 11/25/2022] Open
Abstract
While many solid tumors are defined by the presence of a particular oncogene, the role that this oncogene plays in driving transformation through the acquisition of aneuploidy and overcoming growth arrest are often not known. Further, although aneuploidy is present in many solid tumors, it is not clear whether it is the cause or effect of malignant transformation. The childhood sarcoma, Alveolar Rhabdomyosarcoma (ARMS), is primarily defined by the t(2;13)(q35;q14) translocation, creating the PAX3-FOXO1 fusion protein. It is unclear what role PAX3-FOXO1 plays in the initial stages of tumor development through the acquisition and persistence of aneuploidy. In this study we demonstrate that PAX3-FOXO1 serves as a driver mutation to initiate a cascade of mRNA and miRNA changes that ultimately reprogram proliferating myoblasts to induce the formation of ARMS. We present evidence that cells containing PAX3-FOXO1 have changes in the expression of mRNA and miRNA essential for maintaining proper chromosome number and structure thereby promoting aneuploidy. Further, we demonstrate that the presence of PAX3-FOXO1 alters the expression of growth factor related mRNA and miRNA, thereby overriding aneuploid-dependent growth arrest. Finally, we present evidence that phosphorylation of PAX3-FOXO1 contributes to these changes. This is one of the first studies describing how an oncogene and post-translational modifications drive the development of a tumor through the acquisition and persistence of aneuploidy. This mechanism has implications for other solid tumors where large-scale genomics studies may elucidate how global alterations contribute to tumor phenotypes allowing the development of much needed multi-faceted tumor-specific therapeutic regimens.
Collapse
|
10
|
Akaike K, Suehara Y, Kohsaka S, Hayashi T, Tanabe Y, Kazuno S, Mukaihara K, Toda-Ishii M, Kurihara T, Kim Y, Okubo T, Hayashi Y, Takamochi K, Takahashi F, Kaneko K, Ladanyi M, Saito T. PPP2R1A regulated by PAX3/FOXO1 fusion contributes to the acquisition of aggressive behavior in PAX3/FOXO1-positive alveolar rhabdomyosarcoma. Oncotarget 2018; 9:25206-25215. [PMID: 29861864 PMCID: PMC5982774 DOI: 10.18632/oncotarget.25392] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/28/2018] [Indexed: 12/18/2022] Open
Abstract
To better characterize the oncogenic role of the PAX3-FOXO1 fusion protein in the acquisition of aggressive behavior in ARMS, we employed a proteomic approach using a PAX3-FOXO1 knockdown system in ARMS cell lines. This approach revealed a protein list consisting of 107 consistently upregulated and 114 consistently downregulated proteins that were expected to be regulated by PAX3-FOXO1 fusion protein. Furthermore, we identified 16 upregulated and 17 downregulated critical proteins based on a data-mining analysis. We also evaluated the function of PPP2R1A in ARMS cells. The PPP2R1A expression was upregulated at both the mRNA and protein levels by PAX3-FOXO1 silencing. The silencing of PPP2R1A significantly increased the cell growth of all four ARMS cells, suggesting that PPP2R1A still has a tumor suppressive function in ARMS cells; however, the native expression of PPP2R1A was low in the presence of PAX3-FOXO1. In addition, the activation of PP2A-part of which was encoded by PPP2R1A-by FTY720 treatment in ARMS cell lines inhibited cell growth. On the human phospho-kinase array analysis of 46 specific Ser/Thr or Tyr phosphorylation sites on 39 selected proteins, eNOS, AKT1/2/3, RSK1/2/3 and STAT3 phosphorylation were decreased by FTY-720 treatment. These findings suggest that PPP2R1A is a negatively regulated by PAX3-FOXO1 in ARMS. The activation of PP2A-probably in combination with kinase inhibitors-may represent a therapeutic target in ARMS. We believe that the protein expression profile associated with PAX3-FOXO1 would be valuable for discovering new therapeutic targets in ARMS.
Collapse
Affiliation(s)
- Keisuke Akaike
- Department of Orthopedic Surgery, Juntendo University School of Medicine, Tokyo, Japan.,Department of Human Pathology, Juntendo University School of Medicine, Tokyo, Japan
| | - Yoshiyuki Suehara
- Department of Orthopedic Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Shinji Kohsaka
- Department of Medical Genomics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takuo Hayashi
- Department of Human Pathology, Juntendo University School of Medicine, Tokyo, Japan
| | - Yu Tanabe
- Department of Orthopedic Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Saiko Kazuno
- Laboratory of Proteomics and Biomolecular Science, Research Support Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kenta Mukaihara
- Department of Orthopedic Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Midori Toda-Ishii
- Department of Orthopedic Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Taisei Kurihara
- Department of Orthopedic Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Youngji Kim
- Department of Orthopedic Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Taketo Okubo
- Department of Orthopedic Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Yasuhide Hayashi
- Department of Hematology/Oncology, Gunma Children's Medical Center, Shibukawa, Gunma, Japan
| | - Kazuya Takamochi
- Department of General Thoracic Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Fumiyuki Takahashi
- Department of Respiratory Medicine, Juntendo University School of Medicine, Tokyo, Japan
| | - Kazuo Kaneko
- Department of Human Pathology, Juntendo University School of Medicine, Tokyo, Japan
| | - Marc Ladanyi
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Tsuyoshi Saito
- Department of Human Pathology, Juntendo University School of Medicine, Tokyo, Japan
| |
Collapse
|
11
|
Tombolan L, Poli E, Martini P, Zin A, Romualdi C, Bisogno G, Lanfranchi G. NELL1, whose high expression correlates with negative outcomes, has different methylation patterns in alveolar and embryonal rhabdomyosarcoma. Oncotarget 2017; 8:33086-33099. [PMID: 28380437 PMCID: PMC5464852 DOI: 10.18632/oncotarget.16526] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 03/14/2017] [Indexed: 12/22/2022] Open
Abstract
Rhabdomyosarcoma (RMS), which represents the most frequent soft tissue sarcoma in pediatric populations, is classified into two major subtypes: embryonal RMS (ERMS) and alveolar RMS (ARMS). ARMS subtype, which shows greater aggressiveness and proneness to metastasis with respect to ERMS, are characterized, in about 75% of cases, by specific chromosomal translocations that involve PAX and FOXO1 genes. Many findings have demonstrated that PAX/FOXO1-positive ARMS have a worse prognosis than PAX/FOXO1-negative ones and that distinct molecular features characterize RMS with different gene fusion statuses. DNA methylation, which presently represents a challenging research area, is involved in the modulation of gene expression.We performed a genome-wide DNA methylation analysis using reduced-representation bisulfite sequencing (RRBS) in RMS samples and we found that fusion-positive alveolar and embryonal subgroups have different DNA methylation signatures and that ARMS fusion-positive subtypes are characterized by overall hypomethylation levels. While NELL1 was found to be hypomethylated and transcriptionally enhanced in RMS alveolar subtypes, high NELL1 expression levels, which proved to be correlated with negative RMS prognostic factors such as fusion status and histology (P < 0.0001), were found to discriminate between RMS patients with different outcomes (P < 0.05).In conclusion, our results demonstrated that different DNA methylation patterns distinguish between different RMS subgroups and they suggest that epigenetic signatures could be useful for risk stratification of patients.
Collapse
Affiliation(s)
- Lucia Tombolan
- Department of Biology, University of Padova, Padova, Italy
- Department of Women's and Children's Health, Oncology Hematology Division, University of Padova, Padova, Italy
| | - Elena Poli
- Department of Women's and Children's Health, Oncology Hematology Division, University of Padova, Padova, Italy
| | - Paolo Martini
- Department of Biology, University of Padova, Padova, Italy
| | | | | | - Gianni Bisogno
- Department of Women's and Children's Health, Oncology Hematology Division, University of Padova, Padova, Italy
| | - Gerolamo Lanfranchi
- Department of Biology, University of Padova, Padova, Italy
- Centro di Ricerca Interdipartimentale per le Biotecnologie Innovative, University of Padova, Padova, Italy
| |
Collapse
|
12
|
Tombolan L, Poli E, Martini P, Zin A, Millino C, Pacchioni B, Celegato B, Bisogno G, Romualdi C, Rosolen A, Lanfranchi G. Global DNA methylation profiling uncovers distinct methylation patterns of protocadherin alpha4 in metastatic and non-metastatic rhabdomyosarcoma. BMC Cancer 2016; 16:886. [PMID: 27842508 PMCID: PMC5109816 DOI: 10.1186/s12885-016-2936-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 10/25/2016] [Indexed: 12/16/2022] Open
Abstract
Background Rhabdomyosarcoma (RMS), which can be classified as embryonal RMS (ERMS) and alveolar RMS (ARMS), represents the most frequent soft tissue sarcoma in the pediatric population; the latter shows greater aggressiveness and metastatic potential with respect to the former. Epigenetic alterations in cancer include DNA methylation changes and histone modifications that influence overall gene expression patterns. Different tumor subtypes are characterized by distinct methylation signatures that could facilitate early disease detection and greater prognostic accuracy. Methods A genome-wide approach was used to examine methylation patterns associated with different prognoses, and DNA methylome analysis was carried out using the Agilent Human DNA Methylation platform. The results were validated using bisulfite sequencing and 5-aza-2′deoxycytidine treatment in RMS cell lines. Some in vitro functional studies were also performed to explore the involvement of a target gene in RMS tumor cells. Results In accordance with the Intergroup Rhabdomyosarcoma Study (IRS) grouping, study results showed that distinct methylation patterns distinguish RMS subgroups and that a cluster of protocadherin genes are hypermethylated in metastatic RMS. Among these, PCDHA4, whose expression was decreased by DNA methylation, emerged as a down-regulated gene in the metastatic samples. As PCDHA4-silenced cells have a significantly higher cell proliferation rate paralleled by higher cell invasiveness, PCDHA4 seems to behave as a tumor suppressor in metastatic RMS. Conclusion Study results demonstrated that DNA methylation patterns distinguish between metastatic and non-metastatic RMS and suggest that epigenetic regulation of specific genes could represent a novel therapeutic target that could enhance the efficiency of RMS treatments. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2936-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- L Tombolan
- Department of Biology, University of Padova, Padova, Italy. .,Department of Women's and Children's Health, University of Padova, Padova, Italy.
| | - E Poli
- Department of Women's and Children's Health, University of Padova, Padova, Italy
| | - P Martini
- Department of Biology, University of Padova, Padova, Italy
| | - A Zin
- Institute of Pediatric Research, IRP, Padova, Italy
| | - C Millino
- C.R.I.B.I.-Biotechnology Centre, University of Padova, Padova, Italy
| | - B Pacchioni
- C.R.I.B.I.-Biotechnology Centre, University of Padova, Padova, Italy
| | - B Celegato
- C.R.I.B.I.-Biotechnology Centre, University of Padova, Padova, Italy
| | - G Bisogno
- Department of Women's and Children's Health, Hematology Oncology Division, University of Padova, Padova, Italy
| | - C Romualdi
- Department of Biology, University of Padova, Padova, Italy
| | - A Rosolen
- Department of Women's and Children's Health, Hematology Oncology Division, University of Padova, Padova, Italy
| | - G Lanfranchi
- Department of Biology, University of Padova, Padova, Italy. .,C.R.I.B.I.-Biotechnology Centre, University of Padova, Padova, Italy.
| |
Collapse
|
13
|
Böhm M, Wachtel M, Marques JG, Streiff N, Laubscher D, Nanni P, Mamchaoui K, Santoro R, Schäfer BW. Helicase CHD4 is an epigenetic coregulator of PAX3-FOXO1 in alveolar rhabdomyosarcoma. J Clin Invest 2016; 126:4237-4249. [PMID: 27760049 DOI: 10.1172/jci85057] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 09/08/2016] [Indexed: 12/19/2022] Open
Abstract
A vast number of cancer genes are transcription factors that drive tumorigenesis as oncogenic fusion proteins. Although the direct targeting of transcription factors remains challenging, therapies aimed at oncogenic fusion proteins are attractive as potential treatments for cancer. There is particular interest in targeting the oncogenic PAX3-FOXO1 fusion transcription factor, which induces alveolar rhabdomyosarcoma (aRMS), an aggressive cancer of skeletal muscle cells for which patient outcomes remain dismal. In this work, we have defined the interactome of PAX3-FOXO1 and screened 60 candidate interactors using siRNA-mediated depletion to identify candidates that affect fusion protein activity in aRMS cells. We report that chromodomain helicase DNA binding protein 4 (CHD4), an ATP-dependent chromatin remodeler, acts as crucial coregulator of PAX3-FOXO1 activity. CHD4 interacts with PAX3-FOXO1 via short DNA fragments. Together, they bind to regulatory regions of PAX3-FOXO1 target genes. Gene expression analysis suggested that CHD4 coregulatory activity is essential for a subset of PAX3-FOXO1 target genes. Depletion of CHD4 reduced cell viability of fusion-positive but not of fusion-negative RMS in vitro, which resembled loss of PAX3-FOXO1. It also caused specific regression of fusion-positive xenograft tumors in vivo. Therefore, this work identifies CHD4 as an epigenetic coregulator of PAX3-FOXO1 activity, providing rational evidence for CHD4 as a potential therapeutic target in aRMS.
Collapse
MESH Headings
- Animals
- Autoantigens/genetics
- Autoantigens/metabolism
- Cell Line, Tumor
- Epigenesis, Genetic
- Female
- Gene Expression Regulation, Neoplastic
- Heterografts
- Humans
- Mi-2 Nucleosome Remodeling and Deacetylase Complex/genetics
- Mi-2 Nucleosome Remodeling and Deacetylase Complex/metabolism
- Mice, Inbred NOD
- Mice, SCID
- Neoplasm Transplantation
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Paired Box Transcription Factors/genetics
- Paired Box Transcription Factors/metabolism
- Rhabdomyosarcoma, Alveolar/genetics
- Rhabdomyosarcoma, Alveolar/metabolism
- Rhabdomyosarcoma, Alveolar/pathology
Collapse
|
14
|
Bharathy N, Suriyamurthy S, Rao VK, Ow JR, Lim HJ, Chakraborty P, Vasudevan M, Dhamne CA, Chang KTE, Min VLK, Kundu TK, Taneja R. P/CAF mediates PAX3-FOXO1-dependent oncogenesis in alveolar rhabdomyosarcoma. J Pathol 2016; 240:269-281. [PMID: 27453350 DOI: 10.1002/path.4773] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 07/19/2016] [Accepted: 07/21/2016] [Indexed: 12/29/2022]
Abstract
Alveolar rhabdomyosarcoma (ARMS) is an aggressive paediatric cancer of skeletal muscle with poor prognosis. A PAX3-FOXO1 fusion protein acts as a driver of malignancy in ARMS by disrupting tightly coupled but mutually exclusive pathways of proliferation and differentiation. While PAX3-FOXO1 is an attractive therapeutic target, no current treatments are designed to block its oncogenic activity. The present work shows that the histone acetyltransferase P/CAF (KAT2B) is overexpressed in primary tumours from ARMS patients. Interestingly, in fusion-positive ARMS cell lines, P/CAF acetylates and stabilizes PAX3-FOXO1 rather than MyoD, a master regulator of muscle differentiation. Silencing P/CAF, or pharmacological inhibition of its acetyltransferase activity, down-regulates PAX3-FOXO1 levels concomitant with reduced proliferation and tumour burden in xenograft mouse models. Our studies identify a P/CAF-PAX3-FOXO1 signalling node that promotes oncogenesis and may contribute to MyoD dysfunction in ARMS. This work exemplifies the therapeutic potential of targeting chromatin-modifying enzymes to inhibit fusion oncoproteins that are a frequent event in sarcomas. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Narendra Bharathy
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Sudha Suriyamurthy
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Vinay Kumar Rao
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jin Rong Ow
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Huey Jin Lim
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Payal Chakraborty
- Bionivid Technology Pvt Ltd, 401-4 AB Cross, 1st Main, Kasturi Nagar, Bangalore, India
| | - Madavan Vasudevan
- Bionivid Technology Pvt Ltd, 401-4 AB Cross, 1st Main, Kasturi Nagar, Bangalore, India
| | | | | | - Victor Lee Kwan Min
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Tapas K Kundu
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - Reshma Taneja
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
15
|
Loupe JM, Miller PJ, Bonner BP, Maggi EC, Vijayaraghavan J, Crabtree JS, Taylor CM, Zabaleta J, Hollenbach AD. Comparative transcriptomic analysis reveals the oncogenic fusion protein PAX3-FOXO1 globally alters mRNA and miRNA to enhance myoblast invasion. Oncogenesis 2016; 5:e246. [PMID: 27454080 PMCID: PMC4972903 DOI: 10.1038/oncsis.2016.53] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 06/14/2016] [Accepted: 06/20/2016] [Indexed: 12/22/2022] Open
Abstract
Rhabdomyosarcoma, one of the most common childhood sarcomas, is comprised of two main subtypes, embryonal and alveolar (ARMS). ARMS, the more aggressive subtype, is primarily characterized by the t(2;13)(p35;p14) chromosomal translocation, which fuses two transcription factors, PAX3 and FOXO1 to generate the oncogenic fusion protein PAX3-FOXO1. Patients with PAX3-FOXO1-postitive tumors have a poor prognosis, in part due to the enhanced local invasive capacity of these cells, which leads to the increased metastatic potential for this tumor. Despite this knowledge, little is known about the role that the oncogenic fusion protein has in this increased invasive potential. In this report we use large-scale comparative transcriptomic analyses in physiologically relevant primary myoblasts to demonstrate that the presence of PAX3-FOXO1 is sufficient to alter the expression of 70 mRNA and 27 miRNA in a manner predicted to promote cellular invasion. In contrast the expression of PAX3 alters 60 mRNA and 23 miRNA in a manner predicted to inhibit invasion. We demonstrate that these alterations in mRNA and miRNA translate into changes in the invasive potential of primary myoblasts with PAX3-FOXO1 increasing invasion nearly 2-fold while PAX3 decreases invasion nearly 4-fold. Taken together, these results allow us to build off of previous reports and develop a more expansive molecular model by which the presence of PAX3-FOXO1 alters global gene regulatory networks to enhance the local invasiveness of cells. Further, the global nature of our observed changes highlights the fact that instead of focusing on a single-gene target, we must develop multi-faceted treatment regimens targeting multiple genes of a single oncogenic phenotype or multiple genes that target different oncogenic phenotypes for tumor progression.
Collapse
Affiliation(s)
- J M Loupe
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - P J Miller
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - B P Bonner
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - E C Maggi
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - J Vijayaraghavan
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - J S Crabtree
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - C M Taylor
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - J Zabaleta
- Department of Pediatrics and Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - A D Hollenbach
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| |
Collapse
|
16
|
Ahmad I, Rehman A, Khan JA, Rafi M, Khurshid A, Nisar H, Zaidi S, Ikram M. Effects of varying local temperature on the optical properties of cells in-vitro. Photodiagnosis Photodyn Ther 2015; 12:459-65. [DOI: 10.1016/j.pdpdt.2015.05.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 04/13/2015] [Accepted: 05/05/2015] [Indexed: 12/26/2022]
|
17
|
Blais A. Myogenesis in the Genomics Era. J Mol Biol 2015; 427:2023-38. [DOI: 10.1016/j.jmb.2015.02.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 02/04/2015] [Accepted: 02/05/2015] [Indexed: 01/06/2023]
|
18
|
MicroRNA-27a Contributes to Rhabdomyosarcoma Cell Proliferation by Suppressing RARA and RXRA. PLoS One 2015; 10:e0125171. [PMID: 25915942 PMCID: PMC4410939 DOI: 10.1371/journal.pone.0125171] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 03/21/2015] [Indexed: 12/21/2022] Open
Abstract
Background Rhabdomyosarcomas (RMS) are rare but very aggressive childhood tumors that arise as a consequence of a regulatory disruption in the growth and differentiation pathways of myogenic precursor cells. According to morphological criteria, there are two major RMS subtypes: embryonal RMS (ERMS) and alveolar RMS (ARMS) with the latter showing greater aggressiveness and metastatic potential with respect to the former. Efforts to unravel the complex molecular mechanisms underlying RMS pathogenesis and progression have revealed that microRNAs (miRNAs) play a key role in tumorigenesis. Methodology/Principal Findings The expression profiles of 8 different RMS cell lines were analyzed to investigate the involvement of miRNAs in RMS. The miRNA population from each cell line was compared to a reference sample consisting of a balanced pool of total RNA extracted from those 8 cell lines. Sixteen miRNAs whose expression discriminates between translocation-positive ARMS and negative RMS were identified. Attention was focused on the role of miR-27a that is up-regulated in the more aggressive RMS cell lines (translocation-positive ARMS) in which it probably acts as an oncogene. MiR-27a overexpressing cells showed a significant increase in their proliferation rate that was paralleled by a decrease in the number of cells in the G1 phase of the cell cycle. It was possible to demonstrate that miR-27a is implicated in cell cycle control by targeting the retinoic acid alpha receptor (RARA) and retinoic X receptor alpha (RXRA). Conclusions Study results have demonstrated that miRNA expression signature profiling can be used to classify different RMS subtypes and suggest that miR-27a may have a therapeutic potential in RMS by modulating the expression of retinoic acid receptors.
Collapse
|
19
|
Thalhammer V, Lopez-Garcia LA, Herrero-Martin D, Hecker R, Laubscher D, Gierisch ME, Wachtel M, Bode P, Nanni P, Blank B, Koscielniak E, Schäfer BW. PLK1 phosphorylates PAX3-FOXO1, the inhibition of which triggers regression of alveolar Rhabdomyosarcoma. Cancer Res 2015; 75:98-110. [PMID: 25398439 DOI: 10.1158/0008-5472.can-14-1246] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Pediatric tumors harbor very low numbers of somatic mutations and therefore offer few targets to improve therapeutic management with targeted drugs. In particular, outcomes remain dismal for patients with metastatic alveolar rhabdomyosarcoma (aRMS), where the chimeric transcription factor PAX3/7-FOXO1 has been implicated but problematic to target. In this report, we addressed this challenge by developing a two-armed screen for druggable upstream regulatory kinases in the PAX3/7-FOXO1 pathway. Screening libraries of kinome siRNA and small molecules, we defined PLK1 as an upstream-acting regulator. Mechanistically, PLK1 interacted with and phosphorylated PAX3-FOXO1 at the novel site S503, leading to protein stabilization. Notably, PLK1 inhibition led to elevated ubiquitination and rapid proteasomal degradation of the PAX3-FOXO1 chimeric oncoprotein. On this basis, we embarked on a preclinical validation of PLK1 as a target in a xenograft mouse model of aRMS, where the PLK1 inhibitor BI 2536 reduced PAX3-FOXO1-mediated gene expression and elicited tumor regression. Clinically, analysis of human aRMS tumor biopsies documented high PLK1 expression to offer prognostic significance for both event-free survival and overall survival. Taken together, these preclinical studies validate the PLK1-PAX3-FOXO1 axis as a rational target to treat aRMS.
Collapse
Affiliation(s)
- Verena Thalhammer
- Department of Oncology and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Laura A Lopez-Garcia
- Department of Oncology and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - David Herrero-Martin
- Department of Oncology and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Regina Hecker
- Department of Oncology and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Dominik Laubscher
- Department of Oncology and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Maria E Gierisch
- Department of Oncology and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Marco Wachtel
- Department of Oncology and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Peter Bode
- Department of Surgical Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Paolo Nanni
- Functional Genomics Center Zurich, University of Zurich, Zurich, Switzerland
| | - Bernd Blank
- Department of Oncology/Hematology/Immunology, Olgahospital, Klinikum Stuttgart, Stuttgart, Germany
| | - Ewa Koscielniak
- Department of Oncology/Hematology/Immunology, Olgahospital, Klinikum Stuttgart, Stuttgart, Germany
| | - Beat W Schäfer
- Department of Oncology and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland.
| |
Collapse
|
20
|
Hu Q, Yuan Y, Wang C. Structural and functional studies of FKHR-PAX3, a reciprocal fusion gene of the t(2;13) chromosomal translocation in alveolar rhabdomyosarcoma. PLoS One 2013; 8:e68065. [PMID: 23799156 PMCID: PMC3683129 DOI: 10.1371/journal.pone.0068065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 05/23/2013] [Indexed: 12/14/2022] Open
Abstract
Alveolar rhabdomyosarcoma (ARMS) is an aggressive pediatric cancer of skeletal muscle. More than 70% of ARMS tumors carry balanced t(2;13) chromosomal translocation that leads to the production of two novel fusion genes, PAX3-FKHR and FKHR-PAX3. While the PAX3-FKHR gene has been intensely studied, the reciprocal FKHR-PAX3 gene has rarely been described. We report here the cloning and functional characterization of the FKHR-PAX3 gene as the first step towards a better understanding of its potential impact on ARMS biology. From RH30 ARMS cells, we detected and isolated three versions of FKHR-PAX3 cDNAs whose C-terminal sequences corresponded to PAX3c, PAX3d, and PAX3e isoforms. Unlike the nuclear-specific localization of PAX3-FKHR, the reciprocal FKHR-PAX3 proteins stayed predominantly in the cytoplasm. FKHR-PAX3 potently inhibited myogenesis in both non-transformed myoblast cells and ARMS cells. We showed that FKHR-PAX3 was not a classic oncogene but could act as a facilitator in oncogenic pathways by stabilizing PAX3-FKHR expression, enhancing cell proliferation, clonogenicity, anchorage-independent growth, and matrix adhesion in vitro, and accelerating the onset of tumor formation in xenograft mouse model in vivo. In addition to these pro-oncogenic behaviors, FKHR-PAX3 also negatively affected cell migration and invasion in vitro and lung metastasis in vivo. Taken together, these functional characteristics suggested that FKHR-PAX3 might have a critical role in the early stage of ARMS development.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Cell Adhesion
- Cell Differentiation
- Cell Movement
- Cell Proliferation
- Chromosomes, Human, Pair 13/genetics
- Chromosomes, Human, Pair 2/genetics
- Forkhead Box Protein O1
- Forkhead Transcription Factors/genetics
- Forkhead Transcription Factors/metabolism
- Gene Expression
- Gene Expression Regulation, Neoplastic
- HEK293 Cells
- Humans
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Lung Neoplasms/secondary
- Male
- Mice
- Mice, Nude
- Molecular Sequence Data
- Muscle Neoplasms/genetics
- Muscle Neoplasms/metabolism
- Muscle Neoplasms/pathology
- Myoblasts/metabolism
- NIH 3T3 Cells
- Neoplasm Transplantation
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- PAX3 Transcription Factor
- Paired Box Transcription Factors/genetics
- Paired Box Transcription Factors/metabolism
- Protein Transport
- Rhabdomyosarcoma, Alveolar/genetics
- Rhabdomyosarcoma, Alveolar/metabolism
- Rhabdomyosarcoma, Alveolar/secondary
- Transcriptional Activation
- Translocation, Genetic
Collapse
Affiliation(s)
- Qiande Hu
- Center for Molecular Biology of Oral Diseases, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Yewen Yuan
- Center for Molecular Biology of Oral Diseases, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Department of Oral Biology, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Chiayeng Wang
- Center for Molecular Biology of Oral Diseases, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Department of Oral Biology, University of Illinois at Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
21
|
Ahn EH, Mercado GE, Laé M, Ladanyi M. Identification of target genes of PAX3-FOXO1 in alveolar rhabdomyosarcoma. Oncol Rep 2013; 30:968-78. [PMID: 23733015 PMCID: PMC3776721 DOI: 10.3892/or.2013.2513] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 03/28/2013] [Indexed: 01/07/2023] Open
Abstract
Rhabdomyosarcoma (RMS) is a soft tissue sarcoma categorized into two major subtypes: alveolar RMS (ARMS) and embryonal RMS (ERMS). Most ARMS express the PAX3-FOXO1 (P3F) fusion oncoprotein generated by the 2;13 chromosomal translocation. In the present study, the downstream target genes of P3F were identified by analyzing two independent sets of gene expression profiles: primary RMS tumors and RD ERMS cells transduced with inducible P3F constructs. We found 34 potential target genes (27 upregulated and 7 downregulated) that were significantly and differentially expressed between P3F-positive and P3F-negative categories, both in primary RMS tumors and in the inducible P3F cell culture system. Gene ontology analysis of microarray data of the inducible P3F cell culture system employed indicated apoptosis, cell death, development, and signal transduction as overrepresented significant functional categories found in both upregulated and downregulated genes. Therefore, among the 34 potential target genes, the expression of cell death-related [Gremlin1, cysteine knot superfamily 1, BMP antagonist 1 (GREM1) and death-associated protein kinase 1 (DAPK1)] and development-related [myogenic differentiation 1 (MYOD1) and hairy/enhancer-of-split related with YRPW motif 1 (HEY1)] genes were further investigated. The differential expression of GREM1, DAPK1, MYOD1 and HEY1 was confirmed in independent tumors and inducible cell culture systems. The expression of GREM1, DAPK1 and MYOD1 were significantly upregulated; HEY1 was significantly downregulated in independent P3F-positive ARMS tumors and transcriptionally active P3F cells, compared to those in ERMS tumors and transcriptionally inactive P3F cells. This study identified target genes of P3F and suggested that four downstream targets (GREM1, DAPK1, MYOD1 and HEY1) can contribute to the biological activities of P3F involved in growth suppression or cell death and myogenic differentiation.
Collapse
Affiliation(s)
- Eun Hyun Ahn
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.
| | | | | | | |
Collapse
|
22
|
Marshall AD, Grosveld GC. Alveolar rhabdomyosarcoma - The molecular drivers of PAX3/7-FOXO1-induced tumorigenesis. Skelet Muscle 2012. [PMID: 23206814 PMCID: PMC3564712 DOI: 10.1186/2044-5040-2-25] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Rhabdomyosarcoma is a soft tissue sarcoma arising from cells of a mesenchymal or skeletal muscle lineage. Alveolar rhabdomyosarcoma (ARMS) is more aggressive than the more common embryonal (ERMS) subtype. ARMS is more prone to metastasis and carries a poorer prognosis. In contrast to ERMS, the majority of ARMS tumors carry one of several characteristic chromosomal translocations, such as t(2;13)(q35;q14), which results in the expression of a PAX3-FOXO1 fusion transcription factor. In this review we discuss the genes that cooperate with PAX3-FOXO1, as well as the target genes of the fusion transcription factor that contribute to various aspects of ARMS tumorigenesis. The characterization of these pathways will lead to a better understanding of ARMS tumorigenesis and will allow the design of novel targeted therapies that will lead to better treatment for this aggressive pediatric tumor.
Collapse
Affiliation(s)
- Amy D Marshall
- Department of Genetics, St Jude Children's Research Hospital, Memphis, TN, 38105, USA.
| | | |
Collapse
|
23
|
Davicioni E, Wai DH, Anderson MJ. Diagnostic and Prognostic Sarcoma Signatures. Mol Diagn Ther 2012; 12:359-74. [DOI: 10.1007/bf03256302] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
24
|
Rapa E, Hill SK, Morten KJ, Potter M, Mitchell C. The over-expression of cell migratory genes in alveolar rhabdomyosarcoma could contribute to metastatic spread. Clin Exp Metastasis 2012; 29:419-29. [PMID: 22415709 DOI: 10.1007/s10585-012-9460-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Accepted: 02/16/2012] [Indexed: 12/01/2022]
Abstract
Alveolar (ARMS) and Embryonal (ERMS) rhabdomyosarcoma differ in their response to current treatments. The ARMS subtype has a less favourable prognosis and often presents with widespread metastases, while the less metastatic ERMS has a 5 year survival rate of more than 80 %. In this study we investigate gene expression differences that could contribute to the high frequency of metastasis in ARMS. Microarray analysis identified significant differences in DNA repair, cell cycle and cell migration between the two RMS subtypes. Two genes up regulated in ARMS and involved in cell migration; the engulfment and cell motility gene 1 (ELMO1) and NEL-like 1 gene (NELL1) were selected for further investigation. Over-expression of ELMO1 significantly increased cell invasion from 24.70 ± 7% to 93 ± 5.4% in primary myoblasts and from 29.43 ± 2.1% to 87.33 ± 4.1% in the ERMS cell line RD. siRNA knockout of ELMO1 in the ARMS cell line RH30 significantly reduced cell invasion from 88.2 ± 3.8% to 35.2 ± 2.5%. Over-expression of NELL1 significantly increased myoblast invasion from 23.6 ± 6.9% to 100 ± 0.1%, but had no effect on invasion of the ERMS cell line RD. These findings suggest that ELMO1 may play a key role in ARMS metastasis. NELL1 increased invasion in primary myoblasts, but other factors required for it to enhance motility were not present in the RD ERMS cell line. Impairing ELMO1 function by pharmacological or siRNA knockdown could be a highly effective approach to reduce the metastatic spread of RMS.
Collapse
Affiliation(s)
- Elizabeth Rapa
- Department of Obstetrics & Gynaecology, University of Oxford, The Women's Centre, John Radcliffe Hospital, Oxford, UK
| | | | | | | | | |
Collapse
|
25
|
Abstract
Rhabdomyosarcoma (RMS) is a morphologically and clinically heterogeneous group of malignant tumors that resemble developing skeletal muscle and is the most common soft-tissue sarcoma in children and adolescents. The most prominent sites involve head and neck structures (~40%), genito-urinary track (~25%), and extremities (~20%). Embryonal (ERMS) and alveolar (ARMS) are the two major RMS subtypes that are distinct in their morphology and genetic make-up. The prognosis for this cancer depends strongly on tumor size, location, staging, and child's age. In general, ERMS has a more favorable outcome, whereas the mortality rate remains high in patients with ARMS, because of its aggressive and metastatic nature. Over the past two decades, researchers have made concerted efforts to delineate genetic and epigenetic changes associated with RMS pathogenesis. These molecular signatures have presented golden opportunities to design targeted therapies for treating this aggressive cancer. This article highlights recent advances in understanding the molecular pathogenesis of RMS, and addresses promising research areas for further exploration.
Collapse
Affiliation(s)
- C Wang
- Department of Oral Biology and Center for Molecular Biology of Oral Diseases, University of Illinois at Chicago, 801 South Paulina Street, RM530CB, m/c 860, Chicago, IL 60612, USA.
| |
Collapse
|
26
|
Tombolan L, Orso F, Guzzardo V, Casara S, Zin A, Bonora M, Romualdi C, Giorgi C, Bisogno G, Alaggio R, Pinton P, De Pittà C, Taverna D, Rosolen A, Lanfranchi G. High IGFBP2 expression correlates with tumor severity in pediatric rhabdomyosarcoma. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:2611-24. [PMID: 21924226 DOI: 10.1016/j.ajpath.2011.07.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 07/08/2011] [Accepted: 07/26/2011] [Indexed: 11/26/2022]
Abstract
Rhabdomyosarcoma (RMS) is the most common childhood sarcoma and is identified as either the embryonal or alveolar (ARMS) subtype. In approximately 75% of cases, ARMSs are characterized by specific chromosomal translocations that involve PAX and FKHR genes. ARMS gene expression signatures vary, depending on the presence or absence of the translocations. Insulin-like growth factor-binding protein 2 (IGFBP2) is strongly overexpressed in translocation-negative RMS. Because IGFBP2 is associated with tumorigenesis, we investigated its functional role in RMS. An analysis of IGFBP2 distribution in RMS cell lines revealed a strong accumulation in the Golgi complex, in which morphological characteristics appeared peculiarly modified. After silencing IGFBP2 expression, our microarray analysis revealed mostly cell cycle and actin cytoskeleton gene modulations. In parallel, IGFBP2-silenced cells showed reduced cell cycle and rates of invasion and decreased seeding in the lungs after tail vein injections in immunodeficient mice. An analysis of IGFBP2 mRNA and protein localization in human tumors showed abnormal protein accumulation in the Golgi complex, mostly in PAX/FKHR-negative RMS. Moreover, an analysis of patients with RMS revealed the presence of conspicuous circulating levels of IGFBP2 proteins in children with highly aggressive RMS tumors. Taken together, our data provide evidence that IGFBP2 contributes to tumor progression and that it could be used as a marker to better classify clinical and biological risks in RMS.
Collapse
Affiliation(s)
- Lucia Tombolan
- Department of Biology and the Interdepartmental Research Center in Innovative Biotechnology (CRIBI), Padova Hospital, University of Padova, Padova, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Rengaswamy V, Kontny U, Rössler J. New approaches for pediatric rhabdomyosarcoma drug discovery: targeting combinatorial signaling. Expert Opin Drug Discov 2011; 6:1103-25. [PMID: 22646865 DOI: 10.1517/17460441.2011.611498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Rhabdomyosarcomas (RMS) are rare heterogeneous pediatric tumors that are treated by surgery, chemotherapy and irradiation. New therapeutic approaches are needed, especially in the advanced stages to target the pro-oncogenic signals. Exploring the molecular interactions of the regulatory signals and their roles in the developmental aspects of different subtypes of RMS is essential to identify potential targets and develop new therapeutic drugs. AREAS COVERED Insights into different drug discovery approaches are discussed with specific emphasis on gene expression profiling, fusion protein, role of small interfering RNA (siRNA)- and microRNA (miRNA)-based discovery approaches, targeting cancer stem cells, and in vitro and in vivo model systems. Targeting some overexpressed signals along with the possibilities of combination therapy of validated drug targets is discussed. Additionally, methods to overcome the limitations of discovery-based research are briefly discussed. EXPERT OPINION Due to drug resistance, ineffective therapy in advanced stages and relapse, there is a demand to explore new drug targets and discovery approaches. Implementing miRNA-based profiling would reveal the extent of miR-based regulation, various biomarkers and potential targets in RMS. A suitable combination of innovative techniques and the use of model systems might assist the identification and validation of novel targets and drug discovery methods. Combining specific drugs along with type-specific target inhibition of overexpressed mRNAs through siRNA approaches would enable the development of personalized therapy.
Collapse
Affiliation(s)
- Venkatesh Rengaswamy
- University Hospital Freiburg, Center for Pediatrics and Adolescent Medicine, Clinic IV: Pediatric Hematology and Oncology, Mathildenstr. 1, 79106 Freiburg , Germany +49 761 270 43000 ; +49 761 270 45180 ;
| | | | | |
Collapse
|
28
|
Biscontin A, Casara S, Cagnin S, Tombolan L, Rosolen A, Lanfranchi G, De Pittà C. New miRNA labeling method for bead-based quantification. BMC Mol Biol 2010; 11:44. [PMID: 20553585 PMCID: PMC2900262 DOI: 10.1186/1471-2199-11-44] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Accepted: 06/16/2010] [Indexed: 12/26/2022] Open
Abstract
Background microRNAs (miRNAs) are small single-stranded non-coding RNAs that act as crucial regulators of gene expression. Different methods have been developed for miRNA expression profiling in order to better understand gene regulation in normal and pathological conditions. miRNAs expression values obtained from large scale methodologies such as microarrays still need a validation step with alternative technologies. Results Here we have applied with an innovative approach, the Luminex® xMAP™ technology validate expression data of differentially expressed miRNAs obtained from high throughput arrays. We have developed a novel labeling system of small RNA molecules (below 200 nt), optimizing the sensitive cloning method for miRNAs, termed miRNA amplification profiling (mRAP). The Luminex expression patterns of three miRNAs (miR-23a, miR-27a and miR-199a) in seven different cell lines have been validated by TaqMan miRNA assay. In all cases, bead-based meas were confirmed by the data obtained by TaqMan and microarray technologies. Conclusions We demonstrate that the measure of individual miRNA by the bead-based method is feasible, high speed, sensitive and low cost. The Luminex® xMAP™ technology also provides flexibility, since the central reaction can be scaled up with additional miRNA capturing beads, allowing validation of many differentially expressed miRNAs obtained from microarrays in a single experiment. We propose this technology as an alternative method to qRT-PCR for validating miRNAs expression data obtained with high-throughput technologies.
Collapse
Affiliation(s)
- Alberto Biscontin
- Department of Biology and CRIBI Biotechnology Centre, Università degli Studi di Padova, Via U. Bassi, 58/B, 35121 Padova, Italy
| | | | | | | | | | | | | |
Collapse
|
29
|
De Giovanni C, Landuzzi L, Nicoletti G, Lollini PL, Nanni P. Molecular and cellular biology of rhabdomyosarcoma. Future Oncol 2009; 5:1449-75. [DOI: 10.2217/fon.09.97] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Rhabdomyosarcoma is a group of soft-tissue sarcomas that share features of skeletal myogenesis, but show extensive heterogeneity in histology, age and site of onset, and prognosis. This review matches recent molecular data with biological features of rhabdomyosarcoma. Alterations in molecular pathways, animal models, cell of origin and potential new therapeutic targets are discussed.
Collapse
Affiliation(s)
- Carla De Giovanni
- Department of Experimental Pathology, Cancer Research Section, University of Bologna, Bologna, Italy
| | - Lorena Landuzzi
- Laboratory of Experimental Oncology, Rizzoli Orthopaedic Institute, Bologna, Italy
| | - Giordano Nicoletti
- Laboratory of Experimental Oncology, Rizzoli Orthopaedic Institute, Bologna, Italy
| | - Pier-Luigi Lollini
- Department of Hematology and Oncological Sciences ‘L. e A. Seragnoli’, Viale Filopanti 22, Bologna 40126, Italy
| | - Patrizia Nanni
- Department of Experimental Pathology, Cancer Research Section, University of Bologna, Bologna, Italy
| |
Collapse
|
30
|
Hu K, Lee C, Qiu D, Fotovati A, Davies A, Abu-Ali S, Wai D, Lawlor ER, Triche TJ, Pallen CJ, Dunn SE. Small interfering RNA library screen of human kinases and phosphatases identifies polo-like kinase 1 as a promising new target for the treatment of pediatric rhabdomyosarcomas. Mol Cancer Ther 2009; 8:3024-35. [PMID: 19887553 PMCID: PMC2783569 DOI: 10.1158/1535-7163.mct-09-0365] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Rhabdomyosarcoma, consisting of alveolar (aRMS) and embryonal (eRMS) subtypes, is the most common type of sarcoma in children. Currently, there are no targeted drug therapies available for rhabdomyosarcoma. In searching for new molecular therapeutic targets, we carried out genome-wide small interfering RNA (siRNA) library screens targeting human phosphatases (n = 206) and kinases (n = 691) initially against an aRMS cell line, RH30. Sixteen phosphatases and 50 kinases were identified based on growth inhibition after 72 hours. Inhibiting polo-like kinase 1 (PLK1) had the most remarkable impact on growth inhibition (approximately 80%) and apoptosis on all three rhabdomyosarcoma cell lines tested, namely, RH30, CW9019 (aRMS), and RD (eRMS), whereas there was no effect on normal muscle cells. The loss of PLK1 expression and subsequent growth inhibition correlated with decreased p-CDC25C and Cyclin B1. Increased expression of WEE 1 was also noted. The induction of apoptosis after PLK1 silencing was confirmed by increased p-H2AX, propidium iodide uptake, and chromatin condensation, as well as caspase-3 and poly(ADP-ribose) polymerase cleavage. Pediatric Ewing's sarcoma (TC-32), neuroblastoma (IMR32 and KCNR), and glioblastoma (SF188) models were also highly sensitive to PLK1 inhibition. Finally, based on cDNA microarray analyses, PLK1 mRNA was overexpressed (>1.5 fold) in 10 of 10 rhabdomyosarcoma cell lines and in 47% and 51% of primary aRMS (17 of 36 samples) and eRMS (21 of 41 samples) tumors, respectively, compared with normal muscles. Similarly, pediatric Ewing's sarcoma, neuroblastoma, and osteosarcoma tumors expressed high PLK1. We conclude that PLK1 could be a promising therapeutic target for the treatment of a wide range of pediatric solid tumors including rhabdomyosarcoma.
Collapse
Affiliation(s)
- Kaiji Hu
- Laboratory for Oncogenomic Research, Departments of Pediatrics, Experimental Medicine, and Medical Genetics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Cathy Lee
- Laboratory for Oncogenomic Research, Departments of Pediatrics, Experimental Medicine, and Medical Genetics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Dexin Qiu
- Cell Phosphosignaling Laboratory, Departments of Pediatrics, Pathology and Laboratory Medicine, and Experimental Medicine, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Abbas Fotovati
- Laboratory for Oncogenomic Research, Departments of Pediatrics, Experimental Medicine, and Medical Genetics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Alastair Davies
- Laboratory for Oncogenomic Research, Departments of Pediatrics, Experimental Medicine, and Medical Genetics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Samah Abu-Ali
- Laboratory for Oncogenomic Research, Departments of Pediatrics, Experimental Medicine, and Medical Genetics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Daniel Wai
- Department of Pathology, Keck School of Medicine of the University of Southern California, Los Angeles, CA
| | - Elizabeth R. Lawlor
- Department of Pathology, Keck School of Medicine of the University of Southern California, Los Angeles, CA
| | - Timothy J. Triche
- Department of Pathology, Keck School of Medicine of the University of Southern California, Los Angeles, CA
| | - Catherine J. Pallen
- Cell Phosphosignaling Laboratory, Departments of Pediatrics, Pathology and Laboratory Medicine, and Experimental Medicine, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sandra E. Dunn
- Laboratory for Oncogenomic Research, Departments of Pediatrics, Experimental Medicine, and Medical Genetics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
31
|
Risso D, Massa MS, Chiogna M, Romualdi C. A modified LOESS normalization applied to microRNA arrays: a comparative evaluation. ACTA ACUST UNITED AC 2009; 25:2685-91. [PMID: 19628505 DOI: 10.1093/bioinformatics/btp443] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
MOTIVATION Microarray normalization is a fundamental step in removing systematic bias and noise variability caused by technical and experimental artefacts. Several approaches, suitable for large-scale genome arrays, have been proposed and shown to be effective in the reduction of systematic errors. Most of these methodologies are based on specific assumptions that are reasonable for whole-genome arrays, but possibly unsuitable for small microRNA (miRNA) platforms. In this work, we propose a novel normalization (loessM), and we investigate, through simulated and real datasets, the influence that normalizations for two-colour miRNA arrays have on the identification of differentially expressed genes. RESULTS We show that normalizations usually applied to large-scale arrays, in several cases, modify the actual structure of miRNA data, leading to large portions of false positives and false negatives. Nevertheless, loessM is able to outperform other techniques in most experimental scenarios. Moreover, when usual assumptions on differential expression distribution are missed, channel effect has a strikingly negative influence on small arrays, bias that cannot be removed by normalizations but rather by an appropriate experimental design. We find that the combination of loessM with eCADS, an experimental design based on biological replicates dye-swap recently proposed for channel-effect reduction, gives better results in most of the experimental conditions in terms of specificity/sensitivity both on simulated and real data. AVAILABILITY LoessM R function is freely available at http://gefu.cribi.unipd.it/papers/miRNA-simulation/
Collapse
Affiliation(s)
- Davide Risso
- Department of Statistical Sciences, University of Padova, via C. Battisti 241 and Department of Biology, University of Padova, via U. Bassi 58/B, 35121 Padova, Italy
| | | | | | | |
Collapse
|
32
|
Nishijo K, Chen QR, Zhang L, McCleish AT, Rodriguez A, Cho MJ, Prajapati SI, Gelfond JAL, Chisholm GB, Michalek JE, Aronow BJ, Barr FG, Randall RL, Ladanyi M, Qualman SJ, Rubin BP, LeGallo RD, Wang C, Khan J, Keller C. Credentialing a preclinical mouse model of alveolar rhabdomyosarcoma. Cancer Res 2009; 69:2902-11. [PMID: 19339268 DOI: 10.1158/0008-5472.can-08-3723] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The highly aggressive muscle cancer alveolar rhabdomyosarcoma (ARMS) is one of the most common soft tissue sarcoma of childhood, yet the outcome for the unresectable and metastatic disease is dismal and unchanged for nearly three decades. To better understand the pathogenesis of this disease and to facilitate novel preclinical approaches, we previously developed a conditional mouse model of ARMS by faithfully recapitulating the genetic mutations observed in the human disease, i.e., activation of Pax3:Fkhr fusion gene with either p53 or Cdkn2a inactivation. In this report, we show that this model recapitulates the immunohistochemical profile and the rapid progression of the human disease. We show that Pax3:Fkhr expression increases during late preneoplasia but tumor cells undergoing metastasis are under apparent selection for Pax3:Fkhr expression. At a whole-genome level, a cross-species gene set enrichment analysis and metagene projection study showed that our mouse model is most similar to human ARMS when compared with other pediatric cancers. We have defined an expression profile conserved between mouse and human ARMS, as well as a Pax3:Fkhr signature, including the target gene, SKP2. We further identified 7 "druggable" kinases overexpressed across species. The data affirm the accuracy of this genetically engineered mouse model.
Collapse
Affiliation(s)
- Koichi Nishijo
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, Texas, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Fisher C. Soft tissue sarcomas with non-EWS translocations: molecular genetic features and pathologic and clinical correlations. Virchows Arch 2009; 456:153-66. [DOI: 10.1007/s00428-009-0776-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Revised: 03/27/2009] [Accepted: 04/14/2009] [Indexed: 12/15/2022]
|
34
|
Makawita S, Ho M, Durbin AD, Thorner PS, Malkin D, Somers GR. Expression of insulin-like growth factor pathway proteins in rhabdomyosarcoma: IGF-2 expression is associated with translocation-negative tumors. Pediatr Dev Pathol 2009; 12:127-35. [PMID: 18788888 DOI: 10.2350/08-05-0477.1] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2008] [Accepted: 07/29/2008] [Indexed: 01/08/2023]
Abstract
Recent studies have shown a significant involvement of insulin-like growth factor (IGF) signaling components in the pathogenesis of rhabdomyosarcoma (RMS). Furthermore, there has been some evidence to indicate that differential expression of IGF pathway genes can distinguish RMS subtypes. The present study utilized immunohistochemistry to determine the expression patterns of IGF1, IGF2, IGF binding protein 2 (IGFBP2), IGF receptor 1 (IGF1R), and IGF receptor 2 (IGF2R) in 24 embryonal RMS (ERMS) and 8 alveolar RMS (ARMS). A majority of tumors were positive for IGF2, IGFBP2, IGF1R, and IGF2R and negative for IGF1 expression. However, only IGF2 showed a significant difference in expression between the ERMS and ARMS subtypes, with higher levels of expression in ERMS (P = 0.0003). Within the ARMS subtype, IGF2 positivity was limited to PAX/FKHR translocation-negative tumors. The staining pattern for all 5 proteins was diffuse cytoplasmic in the majority of tumors. Analysis of RMS cell lines by real-time reverse transcriptase-polymerase chain reaction for IGF2 expression revealed significantly higher mean expression levels in ERMS and translocation-negative ARMS cell lines when compared to translocation-positive ARMS cell lines (P = 0.0027). Stable introduction of PAX3/FKHR into an ERMS cell line also demonstrated a significant reduction in IGF2 expression. The results of this study show that expression of the IGF2 ligand is associated with translocation-negative tumors and may serve as a diagnostic aid in distinguishing RMS subtypes. Furthermore, the in vitro results are supportive of a role for the PAX3/FKHR fusion gene in the inhibition of IGF2 expression.
Collapse
Affiliation(s)
- Shalini Makawita
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | | | | | | | | | | |
Collapse
|
35
|
PAX3-FOXO1 fusion gene in rhabdomyosarcoma. Cancer Lett 2008; 270:10-8. [PMID: 18457914 DOI: 10.1016/j.canlet.2008.03.035] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Revised: 03/26/2008] [Accepted: 03/26/2008] [Indexed: 01/22/2023]
Abstract
Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma of childhood and adolescence. The predominant histologic variants of this disease are termed embryonal (eRMS) and alveolar (aRMS), based on their appearance under light microscopy. Of the two, aRMS is associated with an more aggressive disease pattern and a higher mortality, mandating a better understanding of this cancer at the molecular level. The PAX3-FOXO1 fusion gene, resulting from the stable reciprocal translocation of chromosomes 2 and 13, is a signature genetic change found only in aRMS, and thought to be responsible at least in part for its malignant phenotype. This review will discuss the clinical significance of the PAX3-FOXO1 fusion gene, the pertinent historical and current models used to study its oncogenic contributions, the transcriptional targets that are thought to mediate these contributions, and the cellular mechanisms impacted by PAX3-FOXO1 that ultimately lead to aRMS.
Collapse
|
36
|
De Bortoli M, Castellino RC, Skapura DG, Shen JJ, Su JM, Russell HV, Hicks MJ, Man TK, Kim JYH. Patched haploinsufficient mouse rhabdomyosarcoma overexpress secreted phosphoprotein 1 and matrix metalloproteinases. Eur J Cancer 2007; 43:1308-17. [PMID: 17467979 DOI: 10.1016/j.ejca.2007.02.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2006] [Revised: 02/14/2007] [Accepted: 02/14/2007] [Indexed: 10/23/2022]
Abstract
Rhabdomyosarcoma is the most common soft tissue sarcoma of childhood. Improving the management of rhabdomyosarcoma requires a better understanding of growth regulation. Patched haploinsufficient (Ptch+/-) mice spontaneously develop soft tissue sarcomas that resemble human rhabdomyosarcomas. Using microarray profiling and quantitative real-time reverse transcriptase polymerase chain reaction, we identified candidate genes differentially expressed in Ptch+/- mouse rhabdomyosarcoma relative to mature muscle. Overexpressed genes include Secreted Phosphoprotein 1 (Spp1, Osteopontin), and Matrix Metalloproteinases-2 and -14 (Mmp2 and Mmp14). Spp1 is an integrin-binding phosphoglycoprotein upregulated in carcinomas, and Mmps regulate tumour invasion. Immunochemical analyses of murine and human rhabdomyosarcoma specimens confirmed increased expression of Spp1, Mmp2, Mmp14, nuclear factor-kappa B (NF-kappaB) p65 and its phosphorylated active isoform. Neutralising Spp1 antibody decreased Mmp14 RNA in murine rhabdomyosarcoma cultures, indicating a positive regulatory role for extracellular Spp1. Plasma from rhabdomyosarcoma patients display elevated levels of SPP1. These results implicate Spp1, NF-kappaB, and Mmp activation as a putative signalling pathway involved in rhabdomyosarcoma growth.
Collapse
Affiliation(s)
- Massimiliano De Bortoli
- Texas Children's Cancer Center, Department of Pediatrics, Baylor College of Medicine, 6621 Fannin Street, MC 3-3320 Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Zhang L, Wang C. Identification of a new class of PAX3-FKHR target promoters: a role of the Pax3 paired box DNA binding domain. Oncogene 2007; 26:1595-605. [PMID: 16964289 PMCID: PMC2238811 DOI: 10.1038/sj.onc.1209958] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2006] [Revised: 07/18/2006] [Accepted: 07/21/2006] [Indexed: 12/18/2022]
Abstract
Alveolar rhabdomyosarcoma (aRMS), an aggressive skeletal muscle cancer, carries a unique t(2;13) chromosomal translocation resulting in the formation of a chimeric transcription factor PAX3-FKHR. This fusion protein contains the intact DNA-binding domains (PD: paired box binding domain; HD: paired-type homeodomain) of Pax3 fused to the activation domain of FKHR. Cells expressing Pax3 and PAX3-FKHR show vastly different gene expression patterns, despite that they share the same DNA-binding domains. We present evidence of a gain of function mechanism that allows the fusion protein to recognize and transcriptionally activate response elements containing a PD-specific binding site. This DNA recognition specificity is in contrast to the requirement for Pax3-specific target sequences that must contain a composite of PD-and HD-binding sites. Domain swapping studies suggest that an increased structural flexibility could account for the relaxed DNA targeting specificity in PAX3-FKHR. Here, we identify myogenin gene as a direct target of PD-dependent PAX3-FKHR activation pathway in vitro and in vivo. We demonstrate that PAX3-FKHR could induce myogenin expression in undifferentiated myoblasts by a MyoD independent pathway, and that PAX3-FKHR is directly involved in myogenin expression in aRMS cells.
Collapse
Affiliation(s)
- L Zhang
- Center for Molecular Biology of Oral Diseases, University of Illinois at Chicago, Chicago, IL 60612, USA
| | | |
Collapse
|
38
|
Defining the gene expression signature of rhabdomyosarcoma by meta-analysis. BMC Genomics 2006; 7:287. [PMID: 17090319 PMCID: PMC1636648 DOI: 10.1186/1471-2164-7-287] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2006] [Accepted: 11/07/2006] [Indexed: 11/12/2022] Open
Abstract
Background Rhabdomyosarcoma is a highly malignant soft tissue sarcoma in childhood and arises as a consequence of regulatory disruption of the growth and differentiation pathways of myogenic precursor cells. The pathogenic pathways involved in this tumor are mostly unknown and therefore a better characterization of RMS gene expression profile would represent a considerable advance. The availability of publicly available gene expression datasets have opened up new challenges especially for the integration of data generated by different research groups and different array platforms with the purpose of obtaining new insights on the biological process investigated. Results In this work we performed a meta-analysis on four microarray and two SAGE datasets of gene expression data on RMS in order to evaluate the degree of agreement of the biological results obtained by these different studies and to identify common regulatory pathways that could be responsible of tumor growth. Regulatory pathways and biological processes significantly enriched has been investigated and a list of differentially meta-profiles have been identified as possible candidate of aggressiveness of RMS. Conclusion Our results point to a general down regulation of the energy production pathways, suggesting a hypoxic physiology for RMS cells. This result agrees with the high malignancy of RMS and with its resistance to most of the therapeutic treatments. In this context, different isoforms of the ANT gene have been consistently identified for the first time as differentially expressed in RMS. This gene is involved in anti-apoptotic processes when cells grow in low oxygen conditions. These new insights in the biological processes responsible of RMS growth and development demonstrate the effective advantage of the use of integrated analysis of gene expression studies.
Collapse
|
39
|
Abstract
Pediatric soft tissue sarcomas (STSs), of which rhabdomyosarcoma is the most common, constitute approximately 5-6% of all cancers in children. Biopsy, being incisional or rarely excisional, is an essential primary diagnostic step, while in some cases it may be followed by primary re-excision to establish a correct diagnosis in which molecular analysis can be helpful. Most European STS treatment groups favor preoperative chemotherapy, sometimes combined with preoperative irradiation. Local therapy is essential, in which surgery remains an important adjunct. However, it has to be applied in a multidisciplinary, combined fashion in close cooperation with oncologists, pathologists and radiotherapeutists. Current 5-year survival in rhabdomyosarcoma reaches 60-70% in nonmetastatic cases and remains below 20% in metastatic situations. Outcome in pediatric nonrhabdomyosarcoma STS is similar.
Collapse
Affiliation(s)
- Piotr Czauderna
- Medical University of Gdansk, Department of Surgery & Urology for Children & Adolescents, Ul. Nowe Ogrody 1-6, 80-803 Gdansk, Poland.
| |
Collapse
|
40
|
Goldstein M, Meller I, Issakov J, Orr-Urtreger A. Novel genes implicated in embryonal, alveolar, and pleomorphic rhabdomyosarcoma: a cytogenetic and molecular analysis of primary tumors. Neoplasia 2006; 8:332-43. [PMID: 16790082 PMCID: PMC1592451 DOI: 10.1593/neo.05829] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Rhabdomyosarcoma, the most common pediatric soft tissue sarcoma, likely results from deregulation of the skeletal myogenesis program. Although associations between PAX3, PAX7, FOXO1A, and RMS tumorigenesis are well recognized, the entire spectrum of genetic factors underlying RMS development and progression is unclear. Using a combined approach of spectral karyotyping, array-based comparative genomic hybridization (CGH), and expression analysis, we examined 10 primary RMS tumors, including embryonal, alveolar, and the rare adult pleomorphic variant, to explore the involvement of different genes and genetic pathways in RMS tumorigenesis. A complete karyotype established for each tumor revealed a high aneuploidy level, mostly tetraploidy, with double minutes and additional structural aberrations. Quantitative expression analysis detected the overexpression of the AURKA gene in all tumors tested, suggesting a role for this mitotic regulator in the aneuploidy and chromosomal instability observed in RMS. Array-based CGH analysis in primary RMS tumors detected copy number changes of genes involved in multiple genetic pathways, including transcription factors such as MYC-related gene from lung cancer and the cytoskeleton and cell adhesion-encoding genes laminin gamma-2 and p21-activated kinase-1. Our data suggest the involvement of genes encoding cell adhesion, cytoskeletal signaling, and transcriptional and cell cycle components in RMS tumorigenesis.
Collapse
Affiliation(s)
- Myriam Goldstein
- Genetic Institute, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Isaac Meller
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- The National Unit of Orthopedic Oncology, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
| | - Josephine Issakov
- Pathology Institute, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
| | - Avi Orr-Urtreger
- Genetic Institute, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|