1
|
Googins MR, An P, Gauthier CH, Pipas JM. Polyomavirus large T antigens: Unraveling a complex interactome. Tumour Virus Res 2024; 19:200306. [PMID: 39675526 PMCID: PMC11720896 DOI: 10.1016/j.tvr.2024.200306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/12/2024] [Accepted: 12/12/2024] [Indexed: 12/17/2024] Open
Abstract
All members of the polyomavirus family encode a large T antigen (LT) protein that plays essential roles in viral DNA replication, regulation of viral gene expression, and the manipulation of numerous cellular pathways. Over 100 polyomaviruses have been discovered in hosts ranging from arthropods and fish to mammals, including fourteen that infect humans. LT is among the most studied viral proteins with thousands of articles describing its functions in viral productive infection and tumorigenesis. However, nearly all knowledge of LT activities is based on the studies of simian virus 40 (SV40) and a few other viruses. Comparative studies of LT proteins of different polyomaviruses have revealed a remarkable diversity in the mechanisms by which LT proteins function across different polyomavirus species. This review focuses on human polyomaviruses highlights the similarities and differences between polyomavirus LTs and highlights gaps in our understanding of this protein family. The concentration of knowledge around SV40 LT and the corresponding lack of mechanistic studies on LT proteins encoded by other human and animal polyomaviruses severely constrains our understanding of the biology of this important virus family.
Collapse
Affiliation(s)
- Matthew R Googins
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA.
| | - Ping An
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA.
| | - Christian H Gauthier
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA.
| | - James M Pipas
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA.
| |
Collapse
|
2
|
Zheng HC, Xue H, Zhang CY. The oncogenic roles of JC polyomavirus in cancer. Front Oncol 2022; 12:976577. [PMID: 36212474 PMCID: PMC9537617 DOI: 10.3389/fonc.2022.976577] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/05/2022] [Indexed: 11/13/2022] Open
Abstract
JC polyomavirus (JCPyV) belongs to the human polyomavirus family. Based on alternative splicing, the early region encodes the large and small T antigens, while the late region encodes the capsid structural proteins (VP1, VP2, and VP3) and the agnoprotein. The regulatory transcription factors for JCPyV include Sp1, TCF-4, DDX1, YB-1, LCP-1, Purα, GF-1, and NF-1. JCPyV enters tonsillar tissue through the intake of raw sewage, inhalation of air droplets, or parent-to-child transmission. It persists quiescently in lymphoid and renal tissues during latency. Both TGF-β1 and TNF-α stimulates JCPyV multiplication, while interferon-γ suppresses the process. The distinct distribution of caspid receptors (α-2, 6-linked sialic acid, non-sialylated glycosaminoglycans, and serotonin) determines the infection capabilities of JCPyV virions, and JCPyV entry is mediated by clathrin-mediated endocytosis. In permissive cells, JCPyV undergoes lytic proliferation and causes progressive multifocal leukoencephalopathy, while its DNA is inserted into genomic DNA and leads to carcinogenesis in non-permissive cells. T antigen targets p53, β-catenin, IRS, Rb, TGF-β1, PI3K/Akt and AMPK signal pathways in cancer cells. Intracranial injection of T antigen into animals results in neural tumors, and transgenic mice develop neural tumors, lens tumor, breast cancer, gastric, Vater’s, colorectal and pancreatic cancers, insulinoma, and hepatocellular carcinoma. Additionally, JCPyV DNA and its encoded products can be detected in the brain tissues of PML patients and brain, oral, esophageal, gastric, colorectal, breast, cervical, pancreatic, and hepatocellular cancer tissues. Therefore, JCPyV might represent an etiological risk factor for carcinogenesis and should be evaluated for early prevention, diagnosis, and treatment of cancers.
Collapse
Affiliation(s)
- Hua-chuan Zheng
- Department of Oncology and Central Laboratory, The Affiliated Hospital of Chengde Medical University, Chengde, China
- *Correspondence: Hua-chuan Zheng,
| | - Hang Xue
- Department of Oncology and Central Laboratory, The Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Cong-yu Zhang
- Cancer Center, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
3
|
A Comprehensive Proteomics Analysis of the JC Virus (JCV) Large and Small Tumor Antigen Interacting Proteins: Large T Primarily Targets the Host Protein Complexes with V-ATPase and Ubiquitin Ligase Activities While Small t Mostly Associates with Those Having Phosphatase and Chromatin-Remodeling Functions. Viruses 2020; 12:v12101192. [PMID: 33092197 PMCID: PMC7594058 DOI: 10.3390/v12101192] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 02/06/2023] Open
Abstract
The oncogenic potential of both the polyomavirus large (LT-Ag) and small (Sm t-Ag) tumor antigens has been previously demonstrated in both tissue culture and animal models. Even the contribution of the MCPyV tumor antigens to the development of an aggressive human skin cancer, Merkel cell carcinoma, has been recently established. To date, the known primary targets of these tumor antigens include several tumor suppressors such as pRb, p53, and PP2A. However, a comprehensive list of the host proteins targeted by these proteins remains largely unknown. Here, we report the first interactome of JCV LT-Ag and Sm t-Ag by employing two independent “affinity purification/mass spectroscopy” (AP/MS) assays. The proteomics data identified novel targets for both tumor antigens while confirming some of the previously reported interactions. LT-Ag was found to primarily target the protein complexes with ATPase (v-ATPase and Smc5/6 complex), phosphatase (PP4 and PP1), and ligase (E3-ubiquitin) activities. In contrast, the major targets of Sm t-Ag were identified as Smarca1/6, AIFM1, SdhA/B, PP2A, and p53. The interactions between “LT-Ag and SdhB”, “Sm t-Ag and Smarca5”, and “Sm t-Ag and SDH” were further validated by biochemical assays. Interestingly, perturbations in some of the LT-Ag and Sm t-Ag targets identified in this study were previously shown to be associated with oncogenesis, suggesting new roles for both tumor antigens in novel oncogenic pathways. This comprehensive data establishes new foundations to further unravel the new roles for JCV tumor antigens in oncogenesis and the viral life cycle.
Collapse
|
4
|
Dani C, Gonçalves LK, Proença IT, Andrade FDO, Hilakivi-Clarke L. Effects of Maternal Grape Juice Intake on Unfolded Protein Response in the Mammary Glands of Offspring of High Fat Diet Fed Rat Dams. Nutrients 2020; 12:nu12082253. [PMID: 32731460 PMCID: PMC7547380 DOI: 10.3390/nu12082253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/23/2020] [Accepted: 07/23/2020] [Indexed: 12/16/2022] Open
Abstract
Maternal high fat diet (HFD) and obesity during pregnancy increase female offspring′s mammary cancer risk in animal studies. We aimed to observe whether the consumption of grape juice during pregnancy can reverse this risk. During pregnancy and lactation, female Wistar rats were fed either a control or HFD and also received grape juice or tap water. At the age of 50 days, female offspring were euthanized, and mammary glands were collected to assess changes in biomarkers of increased mammary cancer risk. Maternal HFD increased the number of terminal end buds in offspring’s mammary glands and promoted cell proliferation (ki67). Maternal grape consumption blocked these effects. Apoptosis marker caspase 7, but not caspase 3, was reduced in the HFD offspring. HFD offspring also exhibited a reduction in the indicators of cell cycle regulation (p27, p21) and an ability to maintain DNA integrity (reduced p53). Maternal grape juice did not have any effect on these endpoints in the HFD offspring but reduced caspase 7 and p53 levels in the control offspring, perhaps reflecting reduced cellular stress. Maternal HFD increased oxidative stress marker GPx1 mRNA expression, and grape juice increased the levels of GPx2 in both the control and HFD offspring. HFD increased XBP1/Xbp1s, Atf4 and Atf6 mRNA expression and reduced ATF6 and CHOP protein levels. Maternal grape juice reversed the increase in XBP1/Xbp1s, Atf4 and Atf6 in the HFD offspring. PPARγ was downregulated in the HFD group, and grape juice reversed this effect. Grape juice also reduced the levels of HER2 and IRS, both in the control and HFD offspring. In conclusion, maternal grape juice supplementation reversed some of the biomarkers that are indicative of increased breast cancer risk in the HFD offspring.
Collapse
Affiliation(s)
- Caroline Dani
- Master of BioScience and Rehabilitation, Methodist Center IPA, Porto Alegre, RS 90420-060, Brazil; (C.D.); (L.K.G.); (I.T.P.)
| | - Luciana Kneib Gonçalves
- Master of BioScience and Rehabilitation, Methodist Center IPA, Porto Alegre, RS 90420-060, Brazil; (C.D.); (L.K.G.); (I.T.P.)
| | - Isabel Teixeira Proença
- Master of BioScience and Rehabilitation, Methodist Center IPA, Porto Alegre, RS 90420-060, Brazil; (C.D.); (L.K.G.); (I.T.P.)
| | | | - Leena Hilakivi-Clarke
- Department of Oncology, Georgetown University, Washington, DC 20057, USA;
- Correspondence: ; Tel.: +202-687-7237
| |
Collapse
|
5
|
Viral DNA replication-dependent DNA damage response activation during BK polyomavirus infection. J Virol 2015; 89:5032-9. [PMID: 25694603 DOI: 10.1128/jvi.03650-14] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 02/13/2015] [Indexed: 12/18/2022] Open
Abstract
UNLABELLED BK polyomavirus (BKPyV) reactivation is associated with severe human disease in kidney and bone marrow transplant patients. The interplay between viral and host factors that regulates the productive infection process remains poorly understood. We have previously reported that the cellular DNA damage response (DDR) is activated upon lytic BKPyV infection and that its activation is required for optimal viral replication in primary kidney epithelial cells. In this report, we set out to determine what viral components are responsible for activating the two major phosphatidylinositol 3-kinase-like kinases (PI3KKs) involved in the DDR: ataxia telangiectasia mutated (ATM) kinase and ATM and Rad3-related (ATR) kinase. Using a combination of UV treatment, lentivirus transduction, and mutant virus infection experiments, our results demonstrate that neither the input virus nor the expression of large T antigen (TAg) alone is sufficient to trigger the activation of ATM or ATR in our primary culture model. Instead, our data suggest that the activation of both the ATM- and ATR-mediated DDR pathways is linked to viral DNA replication. Intriguingly, a TAg mutant virus that is unable to activate the DDR causes substantial host DNA damage. Our study provides insight into how DDRs are activated by polyomaviruses in primary cells with intact cell cycle checkpoints and how the activation might be linked to the maintenance of host genome stability. IMPORTANCE Polyomaviruses are opportunistic pathogens that are associated with several human diseases under immunosuppressed conditions. BK polyomavirus (BKPyV) affects mostly kidney and bone marrow transplant patients. The detailed replication mechanism of these viruses remains to be determined. We have previously reported that BKPyV activates the host DNA damage response (DDR), a response normally used by the host cell to combat genotoxic stress, to aid its own replication. In this study, we identified that the trigger for DDR activation is viral replication. Furthermore, we show that the virus is able to cause host DNA damage in the absence of viral replication and DDR activation. These results suggest an intricate relationship between viral replication, DDR activation, and host genome instability.
Collapse
|
6
|
Wilk A, Waligórski P, Lassak A, Vashistha H, Lirette D, Tate D, Zea AH, Koochekpour S, Rodriguez P, Meggs LG, Estrada JJ, Ochoa A, Reiss K. Polycyclic aromatic hydrocarbons-induced ROS accumulation enhances mutagenic potential of T-antigen from human polyomavirus JC. J Cell Physiol 2013; 228:2127-38. [PMID: 23558788 DOI: 10.1002/jcp.24375] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 03/28/2013] [Indexed: 01/28/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are the products of incomplete combustion of organic materials, which are present in cigarette smoke, deep-fried food, and in natural crude oil. Since PAH-metabolites form DNA adducts and cause oxidative DNA damage, we asked if these environmental carcinogens could affect transforming potential of the human Polyomavirus JC oncoprotein, T-antigen (JCV T-antigen). We extracted DMSO soluble PAHs from Deepwater Horizon oil spill in the Gulf of Mexico (oil-PAHs), and detected several carcinogenic PAHs. The oil-PAHs were tested in exponentially growing cultures of normal mouse fibroblasts (R508), and in R508 stably expressing JCV T-antigen (R508/T). The oil-PAHs were cytotoxic only at relatively high doses (1:50-1:100 dilution), and at 1:500 dilution the growth and cell survival rates were practically unaffected. This non-toxic dose triggered however, a significant accumulation of reactive oxygen species (ROS), caused oxidative DNA damage and the formation of DNA double strand breaks (DSBs). Although oil-PAHs induced similar levels of DNA damage in R508 and R508/T cells, only T-antigen expressing cells demonstrated inhibition of high fidelity DNA repair by homologous recombination (HRR). In contrast, low-fidelity repair by non-homologous end joining (NHEJ) was unaffected. This potential mutagenic shift between DNA repair mechanisms was accompanied by a significant increase in clonal growth of R508/T cells chronically exposed to low doses of the oil-PAHs. Our results indicate for the first time carcinogenic synergy in which oil-PAHs trigger oxidative DNA damage and JCV T-antigen compromises DNA repair fidelity.
Collapse
Affiliation(s)
- Anna Wilk
- Neurological Cancer Research at Stanley S Scott Cancer Center, New Orleans, Louisiana, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Abstract
The family of insulin receptor substrates (IRS) consists of four proteins (IRS-1-IRS-4), which were initially characterized as typical cytosolic adaptor proteins involved in insulin receptor (IR) and insulin-like growth factor I receptor (IGF-IR) signaling. The first cloned and characterized member of the IRS family, IRS-1, has a predicted molecular weight of 132 kDa, however, as a result of its extensive serine phosphorylation it separates on a SDS gel as a band of approximately 160-185 kDa. In addition to its metabolic and growth-promoting functions, IRS-1 is also suspected to play a role in malignant transformation. The mechanism by which IRS-1 supports tumor growth is not fully understood, and the argument that IRS-1 merely amplifies the signal from the IGF-1R and/or IR requires further investigation. Almost a decade ago, we reported the presence of nuclear IRS-1 in medulloblastoma clinical samples, which express viral oncoprotein, large T-antigen of human polyomavirus JC (JCV T-antigen). This first demonstration of nuclear IRS-1 was confirmed by several other laboratories. Nuclear IRS-1 was also detected by cells expressing the SV40 T-antigen, v-Src, in immortalized fibroblasts stimulated with IGF-I, in hepatocytes, 32D cells, and in an osteosarcoma cell line. More recently, nuclear IRS-1 was detected in breast cancer cells in association with estrogen receptor alpha (ERα), and in JC virus negative medulloblastoma cells expressing estrogen receptor beta (ERβ), further implicating nuclear IRS-1 in cellular transformation. Here, we discuss how nuclear IRS-1 acting on DNA repair fidelity, transcriptional activity, and cell growth can support tumor development and progression.
Collapse
Affiliation(s)
- Krzysztof Reiss
- Neurological Cancer Research, Stanley S. Scott Cancer Center, School of Medicine, LSU Health Sciences Center, New Orleans, LA 70112, USA.
| | | | | | | |
Collapse
|
8
|
Wilk A, Waligorska A, Waligorski P, Ochoa A, Reiss K. Inhibition of ERβ induces resistance to cisplatin by enhancing Rad51-mediated DNA repair in human medulloblastoma cell lines. PLoS One 2012; 7:e33867. [PMID: 22439007 PMCID: PMC3306313 DOI: 10.1371/journal.pone.0033867] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 02/23/2012] [Indexed: 12/14/2022] Open
Abstract
Cisplatin is one of the most widely used and effective anticancer drugs against solid tumors including cerebellar tumor of the childhood, Medulloblastoma. However, cancer cells often develop resistance to cisplatin, which limits therapeutic effectiveness of this otherwise effective genotoxic drug. In this study, we demonstrate that human medulloblastoma cell lines develop acute resistance to cisplatin in the presence of estrogen receptor (ER) antagonist, ICI182,780. This unexpected finding involves a switch from the G2/M to G1 checkpoint accompanied by decrease in ATM/Chk2 and increase in ATR/Chk1 phosphorylation. We have previously reported that ERβ, which is highly expressed in medulloblastomas, translocates insulin receptor substrate 1 (IRS-1) to the nucleus, and that nuclear IRS-1 binds to Rad51 and attenuates homologous recombination directed DNA repair (HRR). Here, we demonstrate that in the presence of ICI182,780, cisplatin-treated medulloblastoma cells show recruitment of Rad51 to the sites of damaged DNA and increase in HRR activity. This enhanced DNA repair during the S phase preserved also clonogenic potential of medulloblastoma cells treated with cisplatin. In conclusion, inhibition of ERβ considered as a supplemental anticancer therapy, has been found to interfere with cisplatin–induced cytotoxicity in human medulloblastoma cell lines.
Collapse
Affiliation(s)
- Anna Wilk
- Neurological Cancer Research, Department of Medicine, LSU Health Sciences Center, New Orleans, Louisiana, United States of America
- Stanley S. Scott Cancer Center, Department of Medicine, LSU Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Agnieszka Waligorska
- Neurological Cancer Research, Department of Medicine, LSU Health Sciences Center, New Orleans, Louisiana, United States of America
- Stanley S. Scott Cancer Center, Department of Medicine, LSU Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Piotr Waligorski
- Neurological Cancer Research, Department of Medicine, LSU Health Sciences Center, New Orleans, Louisiana, United States of America
- Stanley S. Scott Cancer Center, Department of Medicine, LSU Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Augusto Ochoa
- Stanley S. Scott Cancer Center, Department of Medicine, LSU Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Krzysztof Reiss
- Neurological Cancer Research, Department of Medicine, LSU Health Sciences Center, New Orleans, Louisiana, United States of America
- Stanley S. Scott Cancer Center, Department of Medicine, LSU Health Sciences Center, New Orleans, Louisiana, United States of America
- * E-mail:
| |
Collapse
|
9
|
Caracciolo V, Macaluso M, D'Agostino L, Montanari M, Scheff J, Reiss K, Khalili K, Giordano A. Cross-talk between T-Ag presence and pRb family and p53/p73 signaling in mouse and human medulloblastoma. J Cell Biochem 2010; 110:182-90. [PMID: 20336668 DOI: 10.1002/jcb.22525] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The formation and progression of mudulloblastoma (MB) is poorly understood. However, somatic inactivation of pRb/p105, in combination with a somatic or a germ-line TP53 inactivation, leads to MB in a mouse model. Presently, there is no specific evidence of pathway/s alterations for the other two members of the retinoblastoma family, pRb2/p130 and/or p107 in MB. JC virus (JCV) is a human polyomavirus. Although there is no firm evidence that this virus plays a causal role in human neoplasia, it has been clearly proven that JCV is highly oncogenic when injected into the brain of experimental animals. The mechanism of JCV-induced tumorigenesis is not entirely clear. However, several studies relate the oncogenic properties of JCV mainly to its early protein large T-antigen (T-Ag), which is able to bind and inactivate both TP53 and Rb family proteins. Here, we compared the protein expression profiles of p53, p73, pRb family proteins, and PCNA, as main regulators of cell proliferation and death, in different cell lines of mouse primitive neuroectodermal tumors (PNET), either T-Ag-positive or -negative, and in human MB cell lines. Our goal was to determine if changes in the relative expression of these regulators could trigger molecular perturbations underlying MB pathogenesis in mouse and human cells. Our results support that the presence of JCV T-Ag may interfere with the expression of pRb family proteins, specific p73 isoforms, and p53. In turn, this "perturbation" may trigger a network of signals strictly connected with survival and apoptosis.
Collapse
Affiliation(s)
- Valentina Caracciolo
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania 19122, USA
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Coelho TR, Almeida L, Lazo PA. JC virus in the pathogenesis of colorectal cancer, an etiological agent or another component in a multistep process? Virol J 2010; 7:42. [PMID: 20167111 PMCID: PMC2830963 DOI: 10.1186/1743-422x-7-42] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Accepted: 02/18/2010] [Indexed: 02/06/2023] Open
Abstract
JCV infection occurs early in childhood and last throughout life. JCV has been associated to colorectal cancer and might contribute to the cancer phenotype by several mechanisms. Among JCV proteins, particularly two of them, large T-antigen and agnoprotein, can interfere with cell cycle control and genomic instability mechanisms, but other viral proteins might also contribute to the process. Part of viral DNA sequences are detected in carcinoma lesions, but less frequently in adenomas, and not in the normal surrounding tissue, suggesting they are integrated in the host cell genome and these integrations have been selected; in addition viral integration can cause a gene, or chromosomal damage. The inflammatory infiltration caused by a local chronic viral infection in the intestine can contribute to the selection and expansion of a tumor prone cell in a cytokine rich microenvironment. JCV may not be the cause of colorectal cancer, but it can be a relevant risk factor and able to facilitate progression at one or several stages in tumor progression. JCV transient effects might lead to selective expansion of tumor cells. Since there is not a direct cause and effect relationship, JCV infection may be an alternative to low frequency cancer predisposition genes.
Collapse
Affiliation(s)
- Tatiana R Coelho
- Instituto de Farmacologia e Terapêutica, Faculdade de Medicina, Universidade de Coimbra, Portugal
| | | | | |
Collapse
|
11
|
Mardilovich K, Pankratz SL, Shaw LM. Expression and function of the insulin receptor substrate proteins in cancer. Cell Commun Signal 2009; 7:14. [PMID: 19534786 PMCID: PMC2709114 DOI: 10.1186/1478-811x-7-14] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2009] [Accepted: 06/17/2009] [Indexed: 12/13/2022] Open
Abstract
The Insulin Receptor Substrate (IRS) proteins are cytoplasmic adaptor proteins that function as essential signaling intermediates downstream of activated cell surface receptors, many of which have been implicated in cancer. The IRS proteins do not contain any intrinsic kinase activity, but rather serve as scaffolds to organize signaling complexes and initiate intracellular signaling pathways. As common intermediates of multiple receptors that can influence tumor progression, the IRS proteins are positioned to play a pivotal role in regulating the response of tumor cells to many different microenvironmental stimuli. Limited studies on IRS expression in human tumors and studies on IRS function in human tumor cell lines and in mouse models have provided clues to the potential function of these adaptor proteins in human cancer. A general theme arises from these studies; IRS-1 and IRS-4 are most often associated with tumor growth and proliferation and IRS-2 is most often associated with tumor motility and invasion. In this review, we discuss the mechanisms by which IRS expression and function are regulated and how the IRS proteins contribute to tumor initiation and progression.
Collapse
Affiliation(s)
- Katerina Mardilovich
- Department of Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA.
| | | | | |
Collapse
|
12
|
Urbanska K, Pannizzo P, Lassak A, Gualco E, Surmacz E, Croul S, Del Valle L, Khalili K, Reiss K. Estrogen receptor beta-mediated nuclear interaction between IRS-1 and Rad51 inhibits homologous recombination directed DNA repair in medulloblastoma. J Cell Physiol 2009; 219:392-401. [PMID: 19117011 DOI: 10.1002/jcp.21683] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In medulloblastomas, which are highly malignant cerebellar tumors of the childhood genotoxic treatments such as cisplatin or gamma-irradiation are frequently associated with DNA damage, which often associates with unfaithful DNA repair, selection of new adaptations and possibly tumor recurrences. Therefore, better understanding of molecular mechanisms which control DNA repair fidelity upon DNA damage is a critical task. Here we demonstrate for the first time that estrogen receptor beta (ERbeta) can contribute to the development of genomic instability in medulloblastomas. Specifically, ERbeta was found highly expressed and active in mouse and human medulloblastoma cell lines. Nuclear ERbeta was also present in human medulloblastoma clinical samples. Expression of ERbeta coincided with nuclear translocation of insulin receptor substrate 1 (IRS-1), which was previously reported to interfere with the faithful component of DNA repair when translocated to the nucleus. We demonstrated that ERbeta and IRS-1 bind each other, and the interaction involves C-terminal domain of IRS-1 (aa 931-1233). Following cisplatin-induced DNA damage, nuclear IRS-1 localized at the sites of damaged DNA, and interacted with Rad51--an enzymatic component of homologous recombination directed DNA repair (HRR). In medulloblastoma cells, engineered to express HRR-DNA reporter plasmid, ER antagonist, ICI 182,780, or IRS mutant (931-1233) significantly increased DNA repair fidelity. These data strongly suggest that both molecular and pharmacological interventions are capable of preventing ERbeta-mediated IRS-1 nuclear translocation, which in turn improves DNA repair fidelity and possibly counteracts accumulation of malignant mutations in actively growing medulloblastomas.
Collapse
Affiliation(s)
- Katarzyna Urbanska
- Department of Neuroscience, Center for Neurovirology, Temple University School of Medicine, Philadelphia, Pennsylvania 19122, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Chan BTY, Lee AV. Insulin receptor substrates (IRSs) and breast tumorigenesis. J Mammary Gland Biol Neoplasia 2008; 13:415-22. [PMID: 19030971 PMCID: PMC2819329 DOI: 10.1007/s10911-008-9101-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Accepted: 11/03/2008] [Indexed: 01/29/2023] Open
Abstract
Insulin receptor substrate (IRS)-1 and IRS-2 are adaptor proteins in the insulin-like growth factor I (IGF-I)/IGF-I receptor (IGF-IR) pathway that mediate cell proliferation, migration, and survival. In addition to their role as scaffolding proteins in the cytoplasm, they are able to translocate into the nucleus and regulate gene transcription. IRS levels are developmentally and hormonally regulated in the normal mammary gland and both are essential for normal mammary gland bud formation and lactation. Both IRS-1 and IRS-2 are transforming oncogenes, and induce transformation and metastasis in vitro and in vivo. In breast cancer IRSs have unique functions, with IRS-1 being mainly involved in cell proliferation and survival, whereas IRS-2 has clear roles in cell migration and metastasis. In this review we will discuss the roles of IRSs in mammary gland development and breast cancer.
Collapse
Affiliation(s)
- Bonita Tak-Yee Chan
- Lester and Sue Smith Breast Center, Department of Medicine and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | | |
Collapse
|
14
|
Insulin-like growth factor-1 attenuates cisplatin-induced γH2AX formation and DNA double-strand breaks repair pathway in non-small cell lung cancer. Cancer Lett 2008; 272:232-41. [DOI: 10.1016/j.canlet.2008.07.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2008] [Revised: 03/27/2008] [Accepted: 07/14/2008] [Indexed: 11/23/2022]
|
15
|
Insulin receptor substrate 1 modulates the transcriptional activity and the stability of androgen receptor in breast cancer cells. Breast Cancer Res Treat 2008; 115:297-306. [DOI: 10.1007/s10549-008-0079-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2008] [Accepted: 05/22/2008] [Indexed: 01/25/2023]
|
16
|
Caracciolo V, Reiss K, Crozier-Fitzgerald C, De Pascali F, Macaluso M, Khalili K, Giordano A, Claudio PP. Interplay between the retinoblastoma related pRb2/p130 and E2F-4 and -5 in relation to JCV-TAg. J Cell Physiol 2007; 212:96-104. [PMID: 17385710 DOI: 10.1002/jcp.21005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Human polyomaviruses, which include JC virus (JCV) and BK virus (BKV), as well as the simian virus 40 (SV40), have been associated with human tumors and have been shown to be highly tumorigenic in experimental animal models. Although the mechanism by which JCV induces tumorigenesis is not entirely clear, earlier studies point to the involvement of the viral early protein T-antigen which has the ability to bind and inactivate tumor suppressors and cell cycle regulatory proteins, such as the retinoblastoma family proteins and p53. We investigated if the distribution between nucleus and cytoplasm of the transcription factors E2F4 and E2F5 is mediated by pRb2/p130 and if the presence of JCV T-antigen may impair this shuttling by sequestering pRb2/p130. The results showed that E2F4 was prevalently localized in the nucleus of both T-antigen positive and -negative R503 cells independently of the cell cycle phase. E2F5 instead was prevalently localized in the cytoplasmic fraction in G(0)/G(1), S-phase synchronized, and asynchronous R503 and R503 T-Ag positive cells. The presence of T-antigen did not influence the subcellular localization of these transcription factors E2F4 and E2F5, at least in this murine cellular model. Moreover, Small interference RNA experiments directed toward silencing the Rb2/p130 gene demonstrated that pRb2/p130 does not play a predominant role in the nuclear transportation of E2F4 and E2F5.
Collapse
Affiliation(s)
- Valentina Caracciolo
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania 19122, USA
| | | | | | | | | | | | | | | |
Collapse
|