1
|
Yang F, Zhao Z, Zhang D, Xiong Y, Dong X, Wang Y, Yang M, Pan T, Liu C, Liu K, Lin Y, Liu Y, Tu Q, Dang Y, Xia M, Mi D, Zhou W, Xu Z. Single-cell multi-omics analysis of lineage development and spatial organization in the human fetal cerebellum. Cell Discov 2024; 10:22. [PMID: 38409116 PMCID: PMC10897198 DOI: 10.1038/s41421-024-00656-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 01/30/2024] [Indexed: 02/28/2024] Open
Abstract
Human cerebellum encompasses numerous neurons, exhibiting a distinct developmental paradigm from cerebrum. Here we conducted scRNA-seq, scATAC-seq and spatial transcriptomic analyses of fetal samples from gestational week (GW) 13 to 18 to explore the emergence of cellular diversity and developmental programs in the developing human cerebellum. We identified transitory granule cell progenitors that are conserved across species. Special patterns in both granule cells and Purkinje cells were dissected multidimensionally. Species-specific gene expression patterns of cerebellar lobes were characterized and we found that PARM1 exhibited inconsistent distribution in human and mouse granule cells. A novel cluster of potential neuroepithelium at the rhombic lip was identified. We also resolved various subtypes of Purkinje cells and unipolar brush cells and revealed gene regulatory networks controlling their diversification. Therefore, our study offers a valuable multi-omics landscape of human fetal cerebellum and advances our understanding of development and spatial organization of human cerebellum.
Collapse
Affiliation(s)
- Fuqiang Yang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Ziqi Zhao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Dan Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Yu Xiong
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Xinran Dong
- Center for Molecular Medicine, Children's Hospital of Fudan University, Shanghai, China
| | - Yuchen Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Min Yang
- Department of Neonatology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | | | - Chuanyu Liu
- BGI-Beijing, Beijing, China
- BGI-Shenzhen, Shenzhen, China
| | - Kaiyi Liu
- Key Laboratory of Birth Defects, Children's Hospital of Fudan University, Shanghai, China
| | - Yifeng Lin
- Key Laboratory of Birth Defects, Children's Hospital of Fudan University, Shanghai, China
| | - Yongjie Liu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Qiang Tu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Yashan Dang
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing, China
| | - Mingyang Xia
- Key Laboratory of Birth Defects, Children's Hospital of Fudan University, Shanghai, China.
| | - Da Mi
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing, China.
| | - Wenhao Zhou
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China.
| | - Zhiheng Xu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
2
|
He Z, Chang T, Chen Y, Wang H, Dai L, Zeng H. PARM1 Drives Smooth Muscle Cell Proliferation in Pulmonary Arterial Hypertension via AKT/FOXO3A Axis. Int J Mol Sci 2023; 24:ijms24076385. [PMID: 37047359 PMCID: PMC10094810 DOI: 10.3390/ijms24076385] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/25/2023] [Accepted: 03/23/2023] [Indexed: 03/31/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a group of severe, progressive, and debilitating diseases with limited therapeutic options. This study aimed to explore novel therapeutic targets in PAH through bioinformatics and experiments. Weighted gene co-expression network analysis (WGCNA) was applied to detect gene modules related to PAH, based on the GSE15197, GSE113439, and GSE117261. GSE53408 was applied as validation set. Subsequently, the validated most differentially regulated hub gene was selected for further ex vivo and in vitro assays. PARM1, TSHZ2, and CCDC80 were analyzed as potential intervention targets for PAH. Consistently with the bioinformatic results, our ex vivo and in vitro data indicated that PARM1 expression increased significantly in the lung tissue and/or pulmonary artery of the MCT-induced PAH rats and hypoxia-induced PAH mice in comparison with the respective controls. Besides, a similar expression pattern of PARM1 was found in the hypoxia- and PDGF--treated isolated rat primary pulmonary arterial smooth muscle cells (PASMCs). In addition, hypoxia/PDGF--induced PARM1 protein expression could promote the elevation of phosphorylation of AKT, phosphorylation of FOXO3A and PCNA, and finally the proliferation of PASMCs in vitro, whereas PARM1 siRNA treatment inhibited it. Mechanistically, PARM1 promoted PAH via AKT/FOXO3A/PCNA signaling pathway-induced PASMC proliferation.
Collapse
|
3
|
Ding L, Sishc BJ, Polsdofer E, Yordy JS, Facoetti A, Ciocca M, Saha D, Pompos A, Davis AJ, Story MD. Evaluation of the Response of HNSCC Cell Lines to γ-Rays and 12C Ions: Can Radioresistant Tumors Be Identified and Selected for 12C Ion Radiotherapy? Front Oncol 2022; 12:812961. [PMID: 35280731 PMCID: PMC8914432 DOI: 10.3389/fonc.2022.812961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most common malignancy worldwide. Thirty percent of patients will experience locoregional recurrence for which median survival is less than 1 year. Factors contributing to treatment failure include inherent resistance to X-rays and chemotherapy, hypoxia, epithelial to mesenchymal transition, and immune suppression. The unique properties of 12C radiotherapy including enhanced cell killing, a decreased oxygen enhancement ratio, generation of complex DNA damage, and the potential to overcome immune suppression make its application well suited to the treatment of HNSCC. We examined the 12C radioresponse of five HNSCC cell lines, whose surviving fraction at 3.5 Gy ranged from average to resistant when compared with a larger panel of 38 cell lines to determine if 12C irradiation can overcome X-ray radioresistance and to identify biomarkers predictive of 12C radioresponse. Cells were irradiated with 12C using a SOBP with an average LET of 80 keV/μm (CNAO: Pavia, Italy). RBE values varied depending upon endpoint used. A 37 gene signature was able to place cells in their respective radiosensitivity cohort with an accuracy of 86%. Radioresistant cells were characterized by an enrichment of genes associated with radioresistance and survival mechanisms including but not limited to G2/M Checkpoint MTORC1, HIF1α, and PI3K/AKT/MTOR signaling. These data were used in conjunction with an in silico-based modeling approach to evaluate tumor control probability after 12C irradiation that compared clinically used treatment schedules with fixed RBE values vs. the RBEs determined for each cell line. Based on the above analysis, we present the framework of a strategy to utilize biological markers to predict which HNSCC patients would benefit the most from 12C radiotherapy.
Collapse
Affiliation(s)
- Lianghao Ding
- Univeristy of Texas Southwestern Medical Center, Department of Radiation Oncology, Dallas, TX, United States
| | - Brock J Sishc
- Univeristy of Texas Southwestern Medical Center, Department of Radiation Oncology, Dallas, TX, United States
| | - Elizabeth Polsdofer
- Univeristy of Texas Southwestern Medical Center, Department of Radiation Oncology, Dallas, TX, United States
| | - John S Yordy
- Univeristy of Texas Southwestern Medical Center, Department of Radiation Oncology, Dallas, TX, United States
| | - Angelica Facoetti
- Medical Physics Unit & Research Department, Foundazione Centro Nazionale di Adroterapia Oncologica (CNAO), Pavia, Italy
| | - Mario Ciocca
- Medical Physics Unit & Research Department, Foundazione Centro Nazionale di Adroterapia Oncologica (CNAO), Pavia, Italy
| | - Debabrata Saha
- Univeristy of Texas Southwestern Medical Center, Department of Radiation Oncology, Dallas, TX, United States
| | - Arnold Pompos
- Univeristy of Texas Southwestern Medical Center, Department of Radiation Oncology, Dallas, TX, United States
| | - Anthony J Davis
- Univeristy of Texas Southwestern Medical Center, Department of Radiation Oncology, Dallas, TX, United States
| | - Michael D Story
- Univeristy of Texas Southwestern Medical Center, Department of Radiation Oncology, Dallas, TX, United States
| |
Collapse
|
4
|
Feng H, Wang L, Liu J, Wang S. The bioinformatic approach identifies PARM1 as a new potential prognostic factor in osteosarcoma. Front Oncol 2022; 12:1059547. [PMID: 36950314 PMCID: PMC10025378 DOI: 10.3389/fonc.2022.1059547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 12/23/2022] [Indexed: 03/08/2023] Open
Abstract
Objective To explore the key factors affecting the prognosis of osteosarcoma patients. Methods Based on the GEO dataset and differential expression analysis of normal and osteosarcoma tissues, the gene modules related to the prognosis of osteosarcoma patients were screened by WGCNA, and intersecting genes were taken with differential genes, and the risk prognosis model of osteosarcoma patients was constructed by LASSO regression analysis of intersecting genes, and the prognosis-related factors of osteosarcoma patients were obtained by survival analysis, followed by target for validation, and finally, the expression of prognostic factors and their effects on osteosarcoma cell migration were verified by cellular assays and lentiviral transfection experiments. Results The prognosis-related gene module of osteosarcoma patients were intersected with differential genes to obtain a total of 9 common genes. PARM1 was found to be a prognostic factor in osteosarcoma patients by LASSO regression analysis, followed by cellular assays to verify that PARM1 was lowly expressed in osteosarcoma cells and that overexpression of PARM1 in osteosarcoma cells inhibited cell migration. Pan-cancer analysis showed that PARM1 was lowly expressed in most cancers and that low expression of PARM1 predicted poor prognosis for patients. Conclusion The data from this study suggest that PARM1 is closely associated with the prognosis of osteosarcoma patients, and PARM1 may serve as a novel potential prognostic target for osteosarcoma, providing a heartfelt direction for the prevention and treatment of osteosarcoma.
Collapse
Affiliation(s)
- Haijun Feng
- Department of Orthopedics, Second Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Liping Wang
- Department of Orthopedics, Second Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Jie Liu
- Department of Neurosurgery, Liaocheng Second People’s Hospital, Liaocheng, Shandong, China
| | - Shengbao Wang
- Second Hospital of Lanzhou University, Lanzhou, Gansu, China
- *Correspondence: Shengbao Wang,
| |
Collapse
|
5
|
Novel insights in the genetics of steroid-sensitive nephrotic syndrome in childhood. Pediatr Nephrol 2021; 36:2165-2175. [PMID: 33084934 DOI: 10.1007/s00467-020-04780-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/10/2020] [Accepted: 09/14/2020] [Indexed: 10/23/2022]
Abstract
Steroid-sensitive nephrotic syndrome (SSNS) is the most common form of nephrotic syndrome in childhood and there is growing evidence that genetics play a role in the susceptibility for the disease. Familial clustering has been observed and has led to several studies on familial SSNS trying to identify a monogenic cause of the disease. Until now, however, none of these have provided convincing evidence for Mendelian inheritance. This and the phenotypic variability within SSNS suggest a complex inheritance pattern, where multiple variants and interactions between those and the environment play roles in disease development. Genome-wide association studies (GWASs) have been used to investigate this complex disease. We herein highlight new insights in the genetics of the disease provided by GWAS and identify how these insights fit into our understanding of the pathogenesis of SSNS.
Collapse
|
6
|
Wang TH, Lee CY, Lee TY, Huang HD, Hsu JBK, Chang TH. Biomarker Identification through Multiomics Data Analysis of Prostate Cancer Prognostication Using a Deep Learning Model and Similarity Network Fusion. Cancers (Basel) 2021; 13:cancers13112528. [PMID: 34064004 PMCID: PMC8196729 DOI: 10.3390/cancers13112528] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/18/2021] [Accepted: 05/18/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Around 30% of men treated with adjuvant therapy experience recurrences of prostate cancer (PC). Current monitoring of the relapse of PC requires regular postoperative prostate-specific antigen (PSA) value follow-up. Our study aims to identify potential multiomics biomarkers using modern computational analytic methods, deep learning (DL), similarity network fusion (SNF), and the Cancer Genome Atlas (TCGA) prostate adenocarcinoma (PRAD) dataset. Six significantly intersected omics biomarkers from the two models, TELO2, ZMYND19, miR-143, miR-378a, cg00687383 (MED4), and cg02318866 (JMJD6; METTL23) were collected for multiomics panel construction. The difference between the Kaplan–Meier curves of high and low recurrence-risk groups generated from the multiomics panels and clinical information achieve p-value = 2.97 × 10−15 and C-index = 0.713, and the prediction performance of five-year recurrence achieves AUC = 0.789. The results show that the multiomics panel provided valuable biomarkers for the early detection of high-risk recurrent patients, and integrating multiomics data gave us the power to detect the complex mechanisms of cancer among the interactions of different genetic and epigenetic factors. Abstract This study is to identify potential multiomics biomarkers for the early detection of the prognostic recurrence of PC patients. A total of 494 prostate adenocarcinoma (PRAD) patients (60-recurrent included) from the Cancer Genome Atlas (TCGA) portal were analyzed using the autoencoder model and similarity network fusion. Then, multiomics panels were constructed according to the intersected omics biomarkers identified from the two models. Six intersected omics biomarkers, TELO2, ZMYND19, miR-143, miR-378a, cg00687383 (MED4), and cg02318866 (JMJD6; METTL23), were collected for multiomics panel construction. The difference between the Kaplan–Meier curves of high and low recurrence-risk groups generated from the multiomics panel achieved p-value = 5.33 × 10−9, which is better than the former study (p-value = 5 × 10−7). Additionally, when evaluating the selected multiomics biomarkers with clinical information (Gleason score, age, and cancer stage), a high-performance prediction model was generated with C-index = 0.713, p-value = 2.97 × 10−15, and AUC = 0.789. The risk score generated from the selected multiomics biomarkers worked as an effective indicator for the prediction of PRAD recurrence. This study helps us to understand the etiology and pathways of PRAD and further benefits both patients and physicians with potential prognostic biomarkers when making clinical decisions after surgical treatment.
Collapse
Affiliation(s)
- Tzu-Hao Wang
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; (T.-H.W.); (C.-Y.L.)
- School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Cheng-Yang Lee
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; (T.-H.W.); (C.-Y.L.)
- Office of Information Technology, Taipei Medical University, Taipei 110, Taiwan
| | - Tzong-Yi Lee
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen 518172, China; (T.-Y.L.); (H.-D.H.)
- School of Life and Health Science, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Hsien-Da Huang
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen 518172, China; (T.-Y.L.); (H.-D.H.)
- School of Life and Health Science, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Justin Bo-Kai Hsu
- Department of Medical Research, Taipei Medical University Hospital, Taipei 110, Taiwan
- Translational Imaging Research Center, Taipei Medical University Hospital, Taipei 110, Taiwan
- Correspondence: (J.B.-K.H.); (T.-H.C.)
| | - Tzu-Hao Chang
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; (T.-H.W.); (C.-Y.L.)
- Clinical Big Data Research Center, Taipei Medical University Hospital, Taipei 110, Taiwan
- Correspondence: (J.B.-K.H.); (T.-H.C.)
| |
Collapse
|
7
|
Marzec J, Ross-Adams H, Pirrò S, Wang J, Zhu Y, Mao X, Gadaleta E, Ahmad AS, North BV, Kammerer-Jacquet SF, Stankiewicz E, Kudahetti SC, Beltran L, Ren G, Berney DM, Lu YJ, Chelala C. The Transcriptomic Landscape of Prostate Cancer Development and Progression: An Integrative Analysis. Cancers (Basel) 2021; 13:345. [PMID: 33477882 PMCID: PMC7838904 DOI: 10.3390/cancers13020345] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/07/2021] [Accepted: 01/12/2021] [Indexed: 11/16/2022] Open
Abstract
Next-generation sequencing of primary tumors is now standard for transcriptomic studies, but microarray-based data still constitute the majority of available information on other clinically valuable samples, including archive material. Using prostate cancer (PC) as a model, we developed a robust analytical framework to integrate data across different technical platforms and disease subtypes to connect distinct disease stages and reveal potentially relevant genes not identifiable from single studies alone. We reconstructed the molecular profile of PC to yield the first comprehensive insight into its development, by tracking changes in mRNA levels from normal prostate to high-grade prostatic intraepithelial neoplasia, and metastatic disease. A total of nine previously unreported stage-specific candidate genes with prognostic significance were also found. Here, we integrate gene expression data from disparate sample types, disease stages and technical platforms into one coherent whole, to give a global view of the expression changes associated with the development and progression of PC from normal tissue through to metastatic disease. Summary and individual data are available online at the Prostate Integrative Expression Database (PIXdb), a user-friendly interface designed for clinicians and laboratory researchers to facilitate translational research.
Collapse
Affiliation(s)
- Jacek Marzec
- Bioinformatics Unit, Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK; (J.M.); (S.P.); (J.W.); (E.G.)
| | - Helen Ross-Adams
- Bioinformatics Unit, Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK; (J.M.); (S.P.); (J.W.); (E.G.)
| | - Stefano Pirrò
- Bioinformatics Unit, Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK; (J.M.); (S.P.); (J.W.); (E.G.)
| | - Jun Wang
- Bioinformatics Unit, Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK; (J.M.); (S.P.); (J.W.); (E.G.)
| | - Yanan Zhu
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK; (Y.Z.); (X.M.); (S.-F.K.-J.); (E.S.); (S.C.K.); (D.M.B.); (Y.-J.L.)
| | - Xueying Mao
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK; (Y.Z.); (X.M.); (S.-F.K.-J.); (E.S.); (S.C.K.); (D.M.B.); (Y.-J.L.)
| | - Emanuela Gadaleta
- Bioinformatics Unit, Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK; (J.M.); (S.P.); (J.W.); (E.G.)
| | - Amar S. Ahmad
- Centre for Cancer Prevention, Wolfson Institute of Preventive Medicine, Barts and the London School of Medicine, Queen Mary University of London, London EC1M 6BQ, UK; (A.S.A.); (B.V.N.)
| | - Bernard V. North
- Centre for Cancer Prevention, Wolfson Institute of Preventive Medicine, Barts and the London School of Medicine, Queen Mary University of London, London EC1M 6BQ, UK; (A.S.A.); (B.V.N.)
| | - Solène-Florence Kammerer-Jacquet
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK; (Y.Z.); (X.M.); (S.-F.K.-J.); (E.S.); (S.C.K.); (D.M.B.); (Y.-J.L.)
| | - Elzbieta Stankiewicz
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK; (Y.Z.); (X.M.); (S.-F.K.-J.); (E.S.); (S.C.K.); (D.M.B.); (Y.-J.L.)
| | - Sakunthala C. Kudahetti
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK; (Y.Z.); (X.M.); (S.-F.K.-J.); (E.S.); (S.C.K.); (D.M.B.); (Y.-J.L.)
| | - Luis Beltran
- Department of Pathology, Barts Health NHS, London E1 F1R, UK;
| | - Guoping Ren
- Department of Pathology, The First Affiliated Hospital, Zhejiang University Medical College, Hangzhou 310058, China;
| | - Daniel M. Berney
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK; (Y.Z.); (X.M.); (S.-F.K.-J.); (E.S.); (S.C.K.); (D.M.B.); (Y.-J.L.)
- Department of Pathology, Barts Health NHS, London E1 F1R, UK;
| | - Yong-Jie Lu
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK; (Y.Z.); (X.M.); (S.-F.K.-J.); (E.S.); (S.C.K.); (D.M.B.); (Y.-J.L.)
| | - Claude Chelala
- Bioinformatics Unit, Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK; (J.M.); (S.P.); (J.W.); (E.G.)
- Centre for Computational Biology, Life Sciences Initiative, Queen Mary University London, London EC1M 6BQ, UK
| |
Collapse
|
8
|
Kamdar S, Fleshner NE, Bapat B. A 38-gene model comprised of key TET2-associated genes shows additive utility to high-risk prostate cancer cases in the prognostication of biochemical recurrence. BMC Cancer 2020; 20:953. [PMID: 33008340 PMCID: PMC7530956 DOI: 10.1186/s12885-020-07438-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 09/18/2020] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Early treatment of patients at risk for developing aggressive prostate cancer is able to delay metastasis and reduce mortality; as such, up-front identification of these patients is critical. Several risk classification systems, including CAPRA-S, are currently used for disease prognostication. However, high-risk patients identified by these systems can still exhibit wide-ranging disease outcomes, leading to overtreatment of some patients in this group. METHODS The master methylation regulator TET2 is downregulated in prostate cancer, where its loss is linked to aggressive disease and poor outcome. Using a random forest strategy, we developed a model based on the expression of 38 genes associated with TET2 utilizing 100 radical prostatectomy samples (training cohort) with a 49% biochemical recurrence rate. This 38-gene model was comprised of both upregulated and downregulated TET2-associated genes with a binary outcome, and was further assessed in an independent validation (n = 423) dataset for association with biochemical recurrence. RESULTS 38-gene model status was able to correctly identify patients exhibiting recurrence with 81.4% sensitivity in the validation cohort, and added significant prognostic utility to the high-risk CAPRA-S classification group. Patients considered high-risk by CAPRA-S with negative 38-gene model status exhibited no statistically significant difference in time to recurrence from low-risk CAPRA-S patients, indicating that the expression of TET2-associated genes is able to separate truly high-risk cases from those which have a more benign disease course. CONCLUSIONS The 38-gene model may hold potential in determining which patients would truly benefit from aggressive treatment course, demonstrating a novel role for genes linked to TET2 in the prognostication of PCa and indicating the importance of TET2 dysregulation among high-risk patient groups.
Collapse
Affiliation(s)
- Shivani Kamdar
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 60 Murray Street, Toronto, ON, M5T 3L9, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Medical Sciences Building (6th floor), 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Neil E Fleshner
- Department of Surgery and Surgical Oncology, Division of Urology, University Health Network, University of Toronto, 190 Elizabeth St, Toronto, ON, M5G 2C4, Canada
| | - Bharati Bapat
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 60 Murray Street, Toronto, ON, M5T 3L9, Canada. .,Department of Laboratory Medicine and Pathobiology, University of Toronto, Medical Sciences Building (6th floor), 1 King's College Circle, Toronto, ON, M5S 1A8, Canada. .,Department of Surgery and Surgical Oncology, Division of Urology, University Health Network, University of Toronto, 190 Elizabeth St, Toronto, ON, M5G 2C4, Canada.
| |
Collapse
|
9
|
Zolini AM, Negrón-Pérez VM, Hansen PJ. Importance of prostate androgen-regulated mucin-like protein 1 in development of the bovine blastocyst. BMC DEVELOPMENTAL BIOLOGY 2019; 19:15. [PMID: 31277570 PMCID: PMC6612098 DOI: 10.1186/s12861-019-0195-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 06/19/2019] [Indexed: 12/22/2022]
Abstract
Background Prostate androgen-regulated mucin-like protein 1 (PARM1) is a pro-proliferative and anti-apoptotic glycoprotein involved in the endoplasmic reticulum (ER) stress response. A single nucleotide polymorphism in the coding region of PARM1 has been associated with competence of bovine embryos to develop to the blastocyst stage. Here we tested the importance of PARM1 for development by evaluating consequences of reducing PARM1 mRNA abundance on embryonic development and differentiation, gene expression and resistance to ER stress. Results Knockdown of PARM1 using an anti-PARM1 GapmeR did not affect competence of embryos to develop into blastocysts but decreased the number of trophectoderm (TE) cells in the blastocyst and tended to increase the number of cells in the blastocyst inner cell mass (ICM). Treatment of embryos with anti-PARM1 GapmeR affected expression of 4 and 3 of 90 genes evaluated at the compact-morula and blastocyst stage of development at days 5.5 and 7.5 after fertilization, respectively. In morulae, treatment increased expression of DAB2, INADL, and STAT3 and decreased expression of CCR2. At the blastocyst stage, knockdown of PARM1 increased expression of PECAM and TEAD4 and decreased expression of CCR7. The potential role of PARM1 in ER stress response was determined by evaluating effects of knockdown of PARM1 on development of embryos after exposure to heat shock or tunicamycin and on expression of ATF6, DDIT3 and EIF2AK3 at the compact morula and blastocyst stages. Both heat shock and tunicamycin reduced the percent of embryos becoming a blastocyst but response was unaffected by PARM1 knockdown. Similarly, there was no effect of knockdown on steady-state amounts of ATF6, DDIT3 or EIF2AK3. Conclusion PARM1 participates in formation of TE and ICM cells in early embryonic development but there is no evidence for the role of PARM1 in the ER stress response. Electronic supplementary material The online version of this article (10.1186/s12861-019-0195-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Adriana M Zolini
- Department of Animal Sciences, D.H. Barron Reproductive and Perinatal Biology Research Program and Genetics Institute, University of Florida, PO Box 110910, Gainesville, Florida, 32611-0910, USA.,Present address: Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Verónica M Negrón-Pérez
- Department of Animal Sciences, D.H. Barron Reproductive and Perinatal Biology Research Program and Genetics Institute, University of Florida, PO Box 110910, Gainesville, Florida, 32611-0910, USA.,Present address: Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Peter J Hansen
- Department of Animal Sciences, D.H. Barron Reproductive and Perinatal Biology Research Program and Genetics Institute, University of Florida, PO Box 110910, Gainesville, Florida, 32611-0910, USA.
| |
Collapse
|
10
|
do Nascimento AV, Romero ÂRDS, Utsunomiya YT, Utsunomiya ATH, Cardoso DF, Neves HHR, Carvalheiro R, Garcia JF, Grisolia AB. Genome-wide association study using haplotype alleles for the evaluation of reproductive traits in Nelore cattle. PLoS One 2018; 13:e0201876. [PMID: 30089161 PMCID: PMC6082543 DOI: 10.1371/journal.pone.0201876] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 07/24/2018] [Indexed: 12/18/2022] Open
Abstract
Zebu cattle (Bos taurus indicus) are highly adapted to tropical regions. However, females reach puberty after taurine heifers, which affects the economic efficiency of beef cattle breeding in the tropical regions. The aims of this study were to establish associations between the haplotype alleles of the bovine genome and age at first calving (AFC) in the Nelore cattle, and to identify the genes and quantitative trait loci (QTL) related to this phenotype. A total of 2,273 Nelore cattle (995 males and 1,278 females) genotyped using the Illumina BovineHD BeadChip were used in the current study. The association analysis included females with valid first calving records as well as open heifers. Linkage disequilibrium (LD) analysis among the markers was performed using blocks of 5, 10, and 15 markers, which were determined by sliding windows shifting one marker at a time. Then, the haplotype block size to be used in the association study was chosen based on the highest r2 average among the SNPs in the block. The five HapAlleles most strongly associated with the trait (top five) were considered as significant associations. The results of the analysis revealed four genomic regions related to AFC, which overlapped with 20 QTL of the reproductive traits reported previously. Furthermore, there were 19 genes related to reproduction in those regions. In conclusion, the use of haplotypes allowed the detection of chromosomal regions associated with AFC in Nelore cattle, and provided the basis for elucidating the mechanisms underlying this trait.
Collapse
Affiliation(s)
- André Vieira do Nascimento
- Faculdade de Ciências Biológicas e Ambientais, Universidade Federal da Grande Dourados, UFGD, Dourados, Mato Grosso do Sul, Brazil
| | | | - Yuri Tani Utsunomiya
- Departamento de Medicina Veterinária Preventiva e Reprodução Animal, Faculdade de Ciências Agrárias e Veterinárias, UNESP, Jaboticabal, São Paulo, Brazil
| | - Adam Taiti Harth Utsunomiya
- Departamento de Apoio, Produção e Saúde Animal, Faculdade de Medicina Veterinária de Araçatuba, UNESP, Araçatuba, São Paulo, Brazil
| | - Diercles Francisco Cardoso
- Departamento de Zootecnia, Faculdade de Ciências Agrárias e Veterinárias, UNESP, Jaboticabal, São Paulo, Brazil
| | | | - Roberto Carvalheiro
- Departamento de Zootecnia, Faculdade de Ciências Agrárias e Veterinárias, UNESP, Jaboticabal, São Paulo, Brazil
| | - José Fernando Garcia
- Departamento de Medicina Veterinária Preventiva e Reprodução Animal, Faculdade de Ciências Agrárias e Veterinárias, UNESP, Jaboticabal, São Paulo, Brazil
- Departamento de Apoio, Produção e Saúde Animal, Faculdade de Medicina Veterinária de Araçatuba, UNESP, Araçatuba, São Paulo, Brazil
- International Atomic Energy Agency (IAEA), Collaborating Centre on Animal Genomics and Bioinformatics, Araçatuba, São Paulo, Brazil
| | - Alexeia Barufatti Grisolia
- Faculdade de Ciências Biológicas e Ambientais, Universidade Federal da Grande Dourados, UFGD, Dourados, Mato Grosso do Sul, Brazil
- * E-mail:
| |
Collapse
|
11
|
Guo XY, Wang SN, Wu Y, Lin YH, Tang J, Ding SQ, Shen L, Wang R, Hu JG, Lü HZ. Transcriptome profile of rat genes in bone marrow-derived macrophages at different activation statuses by RNA-sequencing. Genomics 2018; 111:986-996. [PMID: 31307632 DOI: 10.1016/j.ygeno.2018.06.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 06/12/2018] [Accepted: 06/27/2018] [Indexed: 02/07/2023]
Abstract
The underlying mechanisms of macrophage polarization have been detected by genome-wide transcriptome analysis in a variety of mammals. However, the transcriptome profile of rat genes in bone marrow-derived macrophages (BMM) at different activation statuses has not been reported. Therefore, we performed RNA-Sequencing to identify gene expression signatures of rat BMM polarized in vitro with different stimuli. The differentially expressed genes (DEGs) among unactivated (M0), classically activated pro-inflammatory (M1), and alternatively activated anti-inflammatory macrophages (M2) were analyzed by using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis. In this study, not only we have identified the changes of global gene expression in rat M0, M1 and M2, but we have also made clear systematically the key genes and signaling pathways in the differentiation process of M0 to M1 and M2. These will provide a foundation for future researches of macrophage polarization.
Collapse
Affiliation(s)
- Xue-Yan Guo
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China
| | - Sai-Nan Wang
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China; Department of Immunology, Bengbu Medical College, Anhui 233030, PR China
| | - Yan Wu
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China; Department of Immunology, Bengbu Medical College, Anhui 233030, PR China
| | - Yu-Hong Lin
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China; Department of Immunology, Bengbu Medical College, Anhui 233030, PR China
| | - Jie Tang
- Department of Immunology, Bengbu Medical College, Anhui 233030, PR China
| | - Shu-Qin Ding
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China
| | - Lin Shen
- Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China
| | - Rui Wang
- Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China
| | - Jian-Guo Hu
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China.
| | - He-Zuo Lü
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China; Department of Immunology, Bengbu Medical College, Anhui 233030, PR China.
| |
Collapse
|
12
|
Pan X, Gong D, Gao F, Sangild PT. Diet-dependent changes in the intestinal DNA methylome after introduction of enteral feeding in preterm pigs. Epigenomics 2018; 10:395-408. [PMID: 29587528 DOI: 10.2217/epi-2017-0122] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
AIM To examine how enteral feeding affects the intestinal epigenome and gene expression just after preterm birth. MATERIALS & METHODS Intestinal tissue from preterm pigs, modeling preterm infants, was collected at birth and 5 days after gradual introduction of infant formula or bovine colostrum. The intestinal tissue was analyzed by reduced representation bisulfite sequencing and real-time qPCR. RESULTS Relative to colostrum, formula increased bacterial epithelial adherence and lipopolysaccharide binding protein (LBP) expression, which was regulated by promoter methylation. Diet-dependent changes in DNA methylation and/or mRNA expression were related to innate immune response, hypoxia, angiogenesis and epithelial-mesenchymal transition pathways (e.g., TTC38, IL8, C3, HIF1A and VEGFR1). CONCLUSION Epigenetic changes may mediate important effects of the first feeding on intestinal development in preterm neonates.
Collapse
Affiliation(s)
- Xiaoyu Pan
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg DK 1870 C, Denmark
| | - Desheng Gong
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, PR China
| | - Fei Gao
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, PR China
| | - Per Torp Sangild
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg DK 1870 C, Denmark
| |
Collapse
|
13
|
Effects of differentn-6:n-3 fatty acid ratios and of enterolactone on gene expression and PG secretion in bovine endometrial cells. Br J Nutr 2014; 113:56-71. [DOI: 10.1017/s0007114514003304] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Feeding flaxseed to dairy cows can modulate gene expression and PG synthesis in the uterus at the time of peri-implantation. The objectives of the present study were to determine which flaxseed components are responsible for these effects and how different endometrial cell types are affected. We evaluated the effects of six different linoleic acid (n-6):α-linolenic acid (n-3) ratios and three concentrations of the lignan enterolactone (ENL) on endometrial stromal cells (SC) and epithelial cells (EC). The mRNA abundance of genes with known or suspected roles in embryo survival or PG synthesis was evaluated, along with PGE2and PGF2αconcentrations in culture media. The mRNA abundance of several genes was modulated by different fatty acid (FA) ratios and/or ENL, and this modulation differed between cell types. The FA4 (FA at ann-6:n-3 ratio of 4) treatment (rich inn-3 FA) increased the mRNA abundance of genes that have positive effects on uterine receptivity and implantation when compared with the FA25 (FA at ann-6:n-3 ratio of 25) treatment (rich inn-6 FA). ENL decreased PGE2and PGF2αconcentrations in both cell types, and this reduction was associated with lower mRNA abundance of the PG synthase genesAKR1B1andPTGESin SC. The combination of ENL with FA (FA4 treatment) resulted in the greatest reduction in PGF2αconcentrations when compared with the addition of FA (FA4) or ENL alone. Because of the known luteolytic properties of PGF2α, a reduction in endometrial PGF2αsecretion would favour the establishment and maintenance of pregnancy.
Collapse
|
14
|
Li R, Dong X, Ma C, Liu L. Computational identification of surrogate genes for prostate cancer phases using machine learning and molecular network analysis. Theor Biol Med Model 2014; 11:37. [PMID: 25151146 PMCID: PMC4159107 DOI: 10.1186/1742-4682-11-37] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 08/20/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Prostate cancer is one of the most common malignant diseases and is characterized by heterogeneity in the clinical course. To date, there are no efficient morphologic features or genomic biomarkers that can characterize the phenotypes of the cancer, especially with regard to metastasis--the most adverse outcome. Searching for effective surrogate genes out of large quantities of gene expression data is a key to cancer phenotyping and/or understanding molecular mechanisms underlying prostate cancer development. RESULTS Using the maximum relevance minimum redundancy (mRMR) method on microarray data from normal tissues, primary tumors and metastatic tumors, we identifed four genes that can optimally classify samples of different prostate cancer phases. Moreover, we constructed a molecular interaction network with existing bioinformatic resources and co-identifed eight genes on the shortest-paths among the mRMR-identified genes, which are potential co-acting factors of prostate cancer. Functional analyses show that molecular functions involved in cell communication, hormone-receptor mediated signaling, and transcription regulation play important roles in the development of prostate cancer. CONCLUSION We conclude that the surrogate genes we have selected compose an effective classifier of prostate cancer phases, which corresponds to a minimum characterization of cancer phenotypes on the molecular level. Along with their molecular interaction partners, it is fairly to assume that these genes may have important roles in prostate cancer development; particularly, the un-reported genes may bring new insights for the understanding of the molecular mechanisms. Thus our results may serve as a candidate gene set for further functional studies.
Collapse
Affiliation(s)
| | | | | | - Lei Liu
- Shanghai Center for Bioinformatics Technology (SCBIT), Shanghai 201203, China.
| |
Collapse
|
15
|
Park JY, Jang H, Curry TE, Sakamoto A, Jo M. Prostate androgen-regulated mucin-like protein 1: a novel regulator of progesterone metabolism. Mol Endocrinol 2013; 27:1871-86. [PMID: 24085821 DOI: 10.1210/me.2013-1097] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The LH surge reprograms preovulatory follicular cells to become terminally differentiated luteal cells which produce high levels of progesterone and become resistant to apoptosis. PARM1 (prostate androgen regulated mucin-like protein 1) has been implicated in cell differentiation and cell survival in nonovarian cells, but little is known about PARM1 in the ovary. This study demonstrated that the LH surge induced a dramatic increase in Parm1 expression in periovulatory follicles and newly forming CL in both cycling and immature rat models. We further demonstrated that hCG increases Parm1 expression in granulosa cell cultures. The in vitro up-regulation of Parm1 expression was mediated by hCG-activated multiple signaling pathways and transcriptional activation of this gene. Parm1 knockdown increased the viability of cultured granulosa cells but resulted in a decrease in progesterone levels. The inhibitory effect of Parm1 silencing on progesterone was reversed by adenoviral mediated add-back expression of Parm1. Parm1 silencing had little effect on the expression of genes involved in progesterone biosynthesis and metabolism such as Scarb1, Ldlr, Vldlr, Scp2, Star, Cyp11a1, Hsd3b, and Srd5a1, while decreasing the expression of Akr1c3. Analyses of culture media steroid levels revealed that Parm1 knockdown had no effect on pregnenolone levels, while resulting in time-dependent decreases in progesterone and 20α-dihydroprogesterone and accelerated accumulation of 5α-pregnanediol. This study revealed that the up-regulation of Parm1 expression promotes progesterone and 20α-dihydroprogesterone accumulation in luteinizing granulosa cells by inhibiting progesterone catabolism to 5α-pregnanediol. PARM1 contributes to ovulation and/or luteal function by acting as a novel regulator of progesterone metabolism.
Collapse
Affiliation(s)
- Ji Yeon Park
- Department of Obstetrics and Gynecology, Chandler Medical Center, 800 Rose Street, Room MS 335, University of Kentucky, Lexington, Kentucky 40536-0298.
| | | | | | | | | |
Collapse
|
16
|
Charfi C, Levros LC, Edouard E, Rassart E. Characterization and identification of PARM-1 as a new potential oncogene. Mol Cancer 2013; 12:84. [PMID: 23902727 PMCID: PMC3750824 DOI: 10.1186/1476-4598-12-84] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 07/25/2013] [Indexed: 11/21/2022] Open
Abstract
Background The Graffi murine retrovirus is a powerful tool to find leukemia associated oncogenes. Using DNA microarrays, we recently identified several genes specifically deregulated in T- and B-leukemias induced by this virus. Results In the present study, probsets associated with T-CD8+ leukemias were analyzed and we validated the expression profile of the Parm-1 gene. PARM-1 is a member of the mucin family. We showed that human PARM-1 is an intact secreted protein accumulating predominantly, such as murine PARM-1, at the Golgi and in the early and late endosomes. PARM-1 colocalization with α-tubulin suggests that its trafficking within the cell involves the microtubule cytoskeleton. Also, the protein co-localizes with caveolin-1 which probably mediates its internalization. Transient transfection of both mouse and human Parm-1 cDNAs conferred anchorage- and serum-independent growth and enhanced cell proliferation. Moreover, deletion mutants of human PARM-1 without either extracellular or cytoplasmic portions seem to retain the ability to induce anchorage-independent growth of NIH/3T3 cells. In addition, PARM-1 increases ERK1/2, but more importantly AKT and STAT3 phosphorylation. Conclusions Our results strongly suggest the oncogenic potential of PARM-1.
Collapse
Affiliation(s)
- Cyndia Charfi
- Laboratoire de Biologie Moléculaire, Département des Sciences Biologiques, Centre BioMed, Université du Québec à Montréal, Case Postale 8888, Succursale Centre-ville, Montréal, QC H3C-3P8, Canada
| | | | | | | |
Collapse
|
17
|
Generation of mice deficient in both KLF3/BKLF and KLF8 reveals a genetic interaction and a role for these factors in embryonic globin gene silencing. Mol Cell Biol 2013; 33:2976-87. [PMID: 23716600 DOI: 10.1128/mcb.00074-13] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Krüppel-like factors 3 and 8 (KLF3 and KLF8) are highly related transcriptional regulators that bind to similar sequences of DNA. We have previously shown that in erythroid cells there is a regulatory hierarchy within the KLF family, whereby KLF1 drives the expression of both the Klf3 and Klf8 genes and KLF3 in turn represses Klf8 expression. While the erythroid roles of KLF1 and KLF3 have been explored, the contribution of KLF8 to this regulatory network has been unknown. To investigate this, we have generated a mouse model with disrupted KLF8 expression. While these mice are viable, albeit with a reduced life span, mice lacking both KLF3 and KLF8 die at around embryonic day 14.5 (E14.5), indicative of a genetic interaction between these two factors. In the fetal liver, Klf3 Klf8 double mutant embryos exhibit greater dysregulation of gene expression than either of the two single mutants. In particular, we observe derepression of embryonic, but not adult, globin expression. Taken together, these results suggest that KLF3 and KLF8 have overlapping roles in vivo and participate in the silencing of embryonic globin expression during development.
Collapse
|
18
|
Nakanishi N, Takahashi T, Ogata T, Adachi A, Imoto-Tsubakimoto H, Ueyama T, Matsubara H. PARM-1 promotes cardiomyogenic differentiation through regulating the BMP/Smad signaling pathway. Biochem Biophys Res Commun 2012; 428:500-5. [PMID: 23123625 DOI: 10.1016/j.bbrc.2012.10.078] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 10/20/2012] [Indexed: 11/18/2022]
Abstract
PARM-1, prostatic androgen repressed message-1, is an endoplasmic reticulum (ER) molecule that is involved in ER stress-induced apoptosis in cardiomyocytes. In this study, we assessed whether PARM-1 plays a role in the differentiation of stem cells into cardiomyocytes. While PARM-1 was not expressed in undifferentiated P19CL6 embryonic carcinoma cells, PARM-1 expression was induced during cardiomyogenic differentiation. This expression followed expression of mesodermal markers, and preceded expression of cardiac transcription factors. PARM-1 overexpression did not alter the expression of undifferentiated markers and the proliferative property in undifferentiated P19CL6 cells. Expression of cardiac transcription factors during cardiomyogenesis was markedly enhanced by overexpression of PARM-1, while expression of mesodermal markers was not altered, suggesting that PARM-1 is involved in the differentiation from the mesodermal lineage to cardiomyocytes. Furthermore, overexpression of PARM-1 induced BMP2 mRNA expression in undifferentiated P19CL6 cells and enhanced both BMP2 and BMP4 mRNA expression in the early phase of cardiomyogenesis. PARM-1 overexpression also enhanced phosphorylation of Smads1/5/8. Thus, PARM-1 plays an important role in the cardiomyogenic differentiation of P19CL6 cells through regulating BMP/Smad signaling pathways, demonstrating a novel role of PARM-1 in the cardiomyogenic differentiation of stem cells.
Collapse
Affiliation(s)
- Naohiko Nakanishi
- Department of Cardiovascular Medicine, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | | | | | | | | | | | | |
Collapse
|
19
|
Wittler L, Hilger A, Proske J, Pennimpede T, Draaken M, Ebert AK, Rösch W, Stein R, Nöthen MM, Reutter H, Ludwig M. Murine expression and mutation analyses of the prostate androgen-regulated mucin-like protein 1 (Parm1) gene, a candidate for human epispadias. Gene 2012; 506:392-5. [PMID: 22766399 DOI: 10.1016/j.gene.2012.06.082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 06/20/2012] [Accepted: 06/25/2012] [Indexed: 10/28/2022]
Abstract
BACKGROUND Epispadias is the mildest phenotype of the human bladder exstrophy-epispadias complex (BEEC), and presents with varying degrees of severity. This urogenital birth defect results from a disturbance in the septation process, during which separate urogenital and anorectal components are formed through division of the cloaca. This process is reported to be influenced by androgen signaling. The human PARM1 gene encodes the prostate androgen-regulated mucin-like protein 1, which is expressed in heart, kidney, and placenta. METHODS We performed whole mount in situ hybridization analysis of Parm1 expression in mouse embryos between gestational days (GD) 9.5 and 12.5, which are equivalent to human gestational weeks 4-6. Since the spatio-temporal localization of Parm1 corresponded to tissues which are affected in human epispadias, we sequenced PARM1 in 24 affected patients. RESULTS We found Parm1 specifically expressed in the region of the developing cloaca, the umbilical cord, bladder anlage, and the urethral component of the genital tubercle. Additionally, Parm1 expression was detected in the muscle progenitor cells of the somites and head mesenchyme. PARM1 gene analysis revealed no alterations in the coding region of any of the investigated patients. CONCLUSIONS These findings suggest that PARM1 does not play a major role in the development of human epispadias. However, we cannot rule out the possibility that a larger sample size would enable detection of rare mutations in this gene.
Collapse
Affiliation(s)
- Lars Wittler
- Department of Developmental Genetics, Max-Planck-Institute for Molecular Genetics, Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Migita T, Inoue S. Implications of the Golgi apparatus in prostate cancer. Int J Biochem Cell Biol 2012; 44:1872-6. [PMID: 22721754 DOI: 10.1016/j.biocel.2012.06.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2012] [Revised: 06/07/2012] [Accepted: 06/07/2012] [Indexed: 11/16/2022]
Abstract
The classical view of the Golgi apparatus is of a small membranous organelle involved in protein transport and secretion. Recent descriptions of the molecular network connecting the Golgi to other organelles demonstrate the essential roles of the Golgi in cellular activities as a stress sensor, apoptosis trigger, lipid/protein modifier, mitotic checkpoint, and a mediator of malignant transformation. Thus, the Golgi function should have a fundamental impact on cancer cell survival. Prostate cancer is initially responsive to androgenic hormones; however, it almost invariably progresses to a castration-refractory or hormone-insensitive state. Nevertheless, androgen signaling remains active at this stage and is important as a therapeutic target. Certain Golgi-associated molecules have recently been demonstrated to be regulated by androgen action, and the Golgi is emerging as a new therapeutic target in prostate cancer. The key Golgi-associated molecules essential for prostate cancer development and the potential therapeutic options targeting the Golgi apparatus are discussed.
Collapse
Affiliation(s)
- Toshiro Migita
- Department of Anti-Aging Medicine, Graduate School of Medicine, The University of Tokyo, Japan
| | | |
Collapse
|
21
|
PARM-1 is an endoplasmic reticulum molecule involved in endoplasmic reticulum stress-induced apoptosis in rat cardiac myocytes. PLoS One 2010; 5:e9746. [PMID: 20305782 PMCID: PMC2841187 DOI: 10.1371/journal.pone.0009746] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Accepted: 02/28/2010] [Indexed: 01/08/2023] Open
Abstract
To identify novel transmembrane and secretory molecules expressed in cardiac myocytes, signal sequence trap screening was performed in rat neonatal cardiac myocytes. One of the molecules identified was a transmembrane protein, prostatic androgen repressed message-1 (PARM-1). While PARM-1 has been identified as a gene induced in prostate in response to castration, its function is largely unknown. Our expression analysis revealed that PARM-1 was specifically expressed in hearts and skeletal muscles, and in the heart, cardiac myocytes, but not non-myocytes expressed PARM-1. Immunofluorescent staining showed that PARM-1 was predominantly localized in endoplasmic reticulum (ER). In Dahl salt-sensitive rats, high-salt diet resulted in hypertension, cardiac hypertrophy and subsequent heart failure, and significantly stimulated PARM-1 expression in the hearts, with a concomitant increase in ER stress markers such as GRP78 and CHOP. In cultured cardiac myocytes, PARM-1 expression was stimulated by proinflammatory cytokines, but not by hypertrophic stimuli. A marked increase in PARM-1 expression was observed in response to ER stress inducers such as thapsigargin and tunicamycin, which also induced apoptotic cell death. Silencing PARM-1 expression by siRNAs enhanced apoptotic response in cardiac myocytes to ER stresses. PARM-1 silencing also repressed expression of PERK and ATF6, and augmented expression of CHOP without affecting IRE-1 expression and JNK and Caspase-12 activation. Thus, PARM-1 expression is induced by ER stress, which plays a protective role in cardiac myocytes through regulating PERK, ATF6 and CHOP expression. These results suggested that PARM-1 is a novel ER transmembrane molecule involved in cardiac remodeling in hypertensive heart disease.
Collapse
|
22
|
Current world literature. Curr Opin Endocrinol Diabetes Obes 2009; 16:260-77. [PMID: 19390324 DOI: 10.1097/med.0b013e32832c937e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|