1
|
Hakuno SK, Janson SGT, Trietsch MD, de Graaf M, de Jonge-Muller E, Crobach S, Harryvan TJ, Boonstra JJ, Dinjens WNM, Slingerland M, Hawinkels LJAC. Endoglin and squamous cell carcinomas. Front Med (Lausanne) 2023; 10:1112573. [PMID: 37396898 PMCID: PMC10313935 DOI: 10.3389/fmed.2023.1112573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 05/30/2023] [Indexed: 07/04/2023] Open
Abstract
Despite the fact that the role of endoglin on endothelial cells has been extensively described, its expression and biological role on (epithelial) cancer cells is still debatable. Especially its function on squamous cell carcinoma (SCC) cells is largely unknown. Therefore, we investigated SCC endoglin expression and function in three types of SCCs; head and neck (HNSCC), esophageal (ESCC) and vulvar (VSCC) cancers. Endoglin expression was evaluated in tumor specimens and 14 patient-derived cell lines. Next to being expressed on angiogenic endothelial cells, endoglin is selectively expressed by individual SCC cells in tumor nests. Patient derived HNSCC, ESCC and VSCC cell lines express varying levels of endoglin with high interpatient variation. To assess the function of endoglin in signaling of TGF-β ligands, endoglin was overexpressed or knocked out or the signaling was blocked using TRC105, an endoglin neutralizing antibody. The endoglin ligand BMP-9 induced strong phosphorylation of SMAD1 independent of expression of the type-I receptor ALK1. Interestingly, we observed that endoglin overexpression leads to strongly increased soluble endoglin levels, which in turn decreases BMP-9 signaling. On the functional level, endoglin, both in a ligand dependent and independent manner, did not influence proliferation or migration of the SCC cells. In conclusion, these data show endoglin expression on individual cells in the tumor nests in SCCs and a role for (soluble) endoglin in paracrine signaling, without directly affecting proliferation or migration in an autocrine manner.
Collapse
Affiliation(s)
- Sarah K. Hakuno
- Department of Gastroenterology-Hepatology, Leiden University Medical Center, Leiden, Netherlands
| | - Stefanus G. T. Janson
- Department of Gastroenterology-Hepatology, Leiden University Medical Center, Leiden, Netherlands
| | - Marjolijn D. Trietsch
- Department of Pathology, Leiden University Medical Center, Leiden, Netherlands
- Department of Gynecology, Leiden University Medical Center, Leiden, Netherlands
| | - Manon de Graaf
- Department of Gastroenterology-Hepatology, Leiden University Medical Center, Leiden, Netherlands
- Department of Medical Oncology, Leiden University Medical Center, Leiden, Netherlands
| | - Eveline de Jonge-Muller
- Department of Gastroenterology-Hepatology, Leiden University Medical Center, Leiden, Netherlands
| | - Stijn Crobach
- Department of Pathology, Leiden University Medical Center, Leiden, Netherlands
| | - Tom J. Harryvan
- Department of Gastroenterology-Hepatology, Leiden University Medical Center, Leiden, Netherlands
| | - Jurjen J. Boonstra
- Department of Gastroenterology-Hepatology, Leiden University Medical Center, Leiden, Netherlands
| | - Winand N. M. Dinjens
- Department of Pathology, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, Netherlands
| | - Marije Slingerland
- Department of Medical Oncology, Leiden University Medical Center, Leiden, Netherlands
| | - Lukas J. A. C. Hawinkels
- Department of Gastroenterology-Hepatology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
2
|
Ruiz-Llorente L, Ruiz-Rodríguez MJ, Savini C, González-Muñoz T, Riveiro-Falkenbach E, Rodríguez-Peralto JL, Peinado H, Bernabeu C. Correlation Between Endoglin and Malignant Phenotype in Human Melanoma Cells: Analysis of hsa-mir-214 and hsa-mir-370 in Cells and Their Extracellular Vesicles. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1408:253-272. [PMID: 37093432 DOI: 10.1007/978-3-031-26163-3_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Endoglin (CD105) is an auxiliary receptor of transforming growth factor (TGF)-β family members that is expressed in human melanomas. It is heterogeneously expressed by primary and metastatic melanoma cells, and endoglin targeting as a therapeutic strategy for melanoma tumors is currently been explored. However, its involvement in tumor development and malignancy is not fully understood. Here, we find that endoglin expression correlates with malignancy of primary melanomas and cultured melanoma cell lines. Next, we have analyzed the effect of ectopic endoglin expression on two miRNAs (hsa-mir-214 and hsa-mir-370), both involved in melanoma tumor progression and endoglin regulation. We show that compared with control cells, overexpression of endoglin in the WM-164 melanoma cell line induces; (i) a significant increase of hsa-mir-214 levels in small extracellular vesicles (EVs) as well as an increased trend in cells; and (ii) significantly lower levels of hsa-mir-370 in the EVs fractions, whereas no significant differences were found in cells. As hsa-mir-214 and hsa-mir-370 are not just involved in melanoma tumor progression, but they can also target endoglin-expressing endothelial cells in the tumor vasculature, these results suggest a complex and differential regulatory mechanism involving the intracellular and extracellular signaling of hsa-mir-214 and hsa-mir-370 in melanoma development and progression.
Collapse
Affiliation(s)
- Lidia Ruiz-Llorente
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28040, Madrid, Spain.
- Biochemistry and Molecular Biology Unit, Department of System Biology, School of Medicine and Health Sciences, University of Alcalá, 28871, Alcalá de Henares, Madrid, Spain.
| | - María Jesús Ruiz-Rodríguez
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28040, Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029, Madrid, Spain
| | - Claudia Savini
- Microenvironment & Metastasis Group, Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO), 28029, Madrid, Spain
| | - Teresa González-Muñoz
- Microenvironment & Metastasis Group, Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO), 28029, Madrid, Spain
| | - Erica Riveiro-Falkenbach
- Department of Pathology, Instituto i+12, Hospital Universitario 12 de Octubre, 28041, Madrid, Spain
| | - José L Rodríguez-Peralto
- Department of Pathology, Instituto i+12, Hospital Universitario 12 de Octubre, 28041, Madrid, Spain
| | - Héctor Peinado
- Microenvironment & Metastasis Group, Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO), 28029, Madrid, Spain
| | - Carmelo Bernabeu
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28040, Madrid, Spain
| |
Collapse
|
3
|
Pawlak JB, Blobe GC. TGF-β superfamily co-receptors in cancer. Dev Dyn 2022; 251:137-163. [PMID: 33797167 PMCID: PMC8484463 DOI: 10.1002/dvdy.338] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/17/2021] [Accepted: 03/22/2021] [Indexed: 01/03/2023] Open
Abstract
Transforming growth factor-β (TGF-β) superfamily signaling via their cognate receptors is frequently modified by TGF-β superfamily co-receptors. Signaling through SMAD-mediated pathways may be enhanced or depressed depending on the specific co-receptor and cell context. This dynamic effect on signaling is further modified by the release of many of the co-receptors from the membrane to generate soluble forms that are often antagonistic to the membrane-bound receptors. The co-receptors discussed here include TβRIII (betaglycan), endoglin, BAMBI, CD109, SCUBE proteins, neuropilins, Cripto-1, MuSK, and RGMs. Dysregulation of these co-receptors can lead to altered TGF-β superfamily signaling that contributes to the pathophysiology of many cancers through regulation of growth, metastatic potential, and the tumor microenvironment. Here we describe the role of several TGF-β superfamily co-receptors on TGF-β superfamily signaling and the impact on cellular and physiological functions with a particular focus on cancer, including a discussion on recent pharmacological advances and potential clinical applications targeting these co-receptors.
Collapse
Affiliation(s)
| | - Gerard C. Blobe
- Department of Medicine, Duke University Medical Center,Department of Pharmacology and Cancer Biology, Duke University Medical Center,Corresponding author: Gerard Blobe, B354 LSRC, Box 91004 DUMC, Durham, NC 27708, , 919-668-1352
| |
Collapse
|
4
|
Endoglin in the Spotlight to Treat Cancer. Int J Mol Sci 2021; 22:ijms22063186. [PMID: 33804796 PMCID: PMC8003971 DOI: 10.3390/ijms22063186] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/06/2021] [Accepted: 03/17/2021] [Indexed: 01/02/2023] Open
Abstract
A spotlight has been shone on endoglin in recent years due to that fact of its potential to serve as both a reliable disease biomarker and a therapeutic target. Indeed, endoglin has now been assigned many roles in both physiological and pathological processes. From a molecular point of view, endoglin mainly acts as a co-receptor in the canonical TGFβ pathway, but also it may be shed and released from the membrane, giving rise to the soluble form, which also plays important roles in cell signaling. In cancer, in particular, endoglin may contribute to either an oncogenic or a non-oncogenic phenotype depending on the cell context. The fact that endoglin is expressed by neoplastic and non-neoplastic cells within the tumor microenvironment suggests new possibilities for targeted therapies. Here, we aimed to review and discuss the many roles played by endoglin in different tumor types, as well as the strong evidence provided by pre-clinical and clinical studies that supports the therapeutic targeting of endoglin as a novel clinical strategy.
Collapse
|
5
|
Endoglin: An 'Accessory' Receptor Regulating Blood Cell Development and Inflammation. Int J Mol Sci 2020; 21:ijms21239247. [PMID: 33287465 PMCID: PMC7729465 DOI: 10.3390/ijms21239247] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 12/13/2022] Open
Abstract
Transforming growth factor-β1 (TGF-β1) is a pleiotropic factor sensed by most cells. It regulates a broad spectrum of cellular responses including hematopoiesis. In order to process TGF-β1-responses in time and space in an appropriate manner, there is a tight regulation of its signaling at diverse steps. The downstream signaling is mediated by type I and type II receptors and modulated by the ‘accessory’ receptor Endoglin also termed cluster of differentiation 105 (CD105). Endoglin was initially identified on pre-B leukemia cells but has received most attention due to its high expression on activated endothelial cells. In turn, Endoglin has been figured out as the causative factor for diseases associated with vascular dysfunction like hereditary hemorrhagic telangiectasia-1 (HHT-1), pre-eclampsia, and intrauterine growth restriction (IUPR). Because HHT patients often show signs of inflammation at vascular lesions, and loss of Endoglin in the myeloid lineage leads to spontaneous inflammation, it is speculated that Endoglin impacts inflammatory processes. In line, Endoglin is expressed on progenitor/precursor cells during hematopoiesis as well as on mature, differentiated cells of the innate and adaptive immune system. However, so far only pro-monocytes and macrophages have been in the focus of research, although Endoglin has been identified in many other immune system cell subsets. These findings imply a functional role of Endoglin in the maturation and function of immune cells. Aside the functional relevance of Endoglin in endothelial cells, CD105 is differentially expressed during hematopoiesis, arguing for a role of this receptor in the development of individual cell lineages. In addition, Endoglin expression is present on mature immune cells of the innate (i.e., macrophages and mast cells) and the adaptive (i.e., T-cells) immune system, further suggesting Endoglin as a factor that shapes immune responses. In this review, we summarize current knowledge on Endoglin expression and function in hematopoietic precursors and mature hematopoietic cells of different lineages.
Collapse
|
6
|
Park R, Philp A, Nagji AS, Kasi A. Pathologically Complete Response after Triple Therapy in Locally Advanced Esophageal Cancer in a Hereditary Hemorrhagic Telangiectasia Patient. Case Rep Oncol 2020; 13:176-181. [PMID: 32231541 PMCID: PMC7098335 DOI: 10.1159/000505832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 01/07/2020] [Indexed: 11/19/2022] Open
Abstract
Hereditary hemorrhagic telangiectasia (HHT) is a disorder characterized by vascular manifestations including mucocutaneous and visceral telangiectasias and arteriovenous malformations. Herein we present the case of a relatively young patient with HHT with an incidentally discovered locally advanced esophageal cancer on endoscopic screening and pathologically complete response after neoadjuvant chemoradiation. This case highlights an unusual tumor response to chemoradiation in locally advanced esophageal cancer, and the surveillance care of HHT patients.
Collapse
Affiliation(s)
- Robin Park
- Department of Medicine, MetroWest Medical Center, Framingham, Massachusetts, USA
| | - Alisdair Philp
- Department of Medicine, Division of Medical Oncology, Kansas University Medical Center, Kansas City, Kansas, USA
| | - Alykhan S Nagji
- Department of Cardiovascular and Thoracic Surgery, Kansas University Medical Center, Kansas City, Kansas, USA
| | - Anup Kasi
- Department of Medicine, Division of Medical Oncology, Kansas University Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
7
|
Schoonderwoerd MJA, Goumans MJTH, Hawinkels LJAC. Endoglin: Beyond the Endothelium. Biomolecules 2020; 10:biom10020289. [PMID: 32059544 PMCID: PMC7072477 DOI: 10.3390/biom10020289] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/03/2020] [Accepted: 02/10/2020] [Indexed: 02/06/2023] Open
Abstract
Keywords: endoglin; CD105 TGF-β; BMP9; ALK-1; TRC105; tumor microenvironment.
Collapse
Affiliation(s)
- Mark J. A. Schoonderwoerd
- Department of Gastrenterology-Hepatology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | | | - Lukas J. A. C. Hawinkels
- Department of Gastrenterology-Hepatology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
- Correspondence: ; Tel.: +31-71-526-6736
| |
Collapse
|
8
|
Gallardo-Vara E, Ruiz-Llorente L, Casado-Vela J, Ruiz-Rodríguez MJ, López-Andrés N, Pattnaik AK, Quintanilla M, Bernabeu C. Endoglin Protein Interactome Profiling Identifies TRIM21 and Galectin-3 as New Binding Partners. Cells 2019; 8:cells8091082. [PMID: 31540324 PMCID: PMC6769930 DOI: 10.3390/cells8091082] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/07/2019] [Accepted: 09/07/2019] [Indexed: 12/15/2022] Open
Abstract
Endoglin is a 180-kDa glycoprotein receptor primarily expressed by the vascular endothelium and involved in cardiovascular disease and cancer. Heterozygous mutations in the endoglin gene (ENG) cause hereditary hemorrhagic telangiectasia type 1, a vascular disease that presents with nasal and gastrointestinal bleeding, skin and mucosa telangiectases, and arteriovenous malformations in internal organs. A circulating form of endoglin (alias soluble endoglin, sEng), proteolytically released from the membrane-bound protein, has been observed in several inflammation-related pathological conditions and appears to contribute to endothelial dysfunction and cancer development through unknown mechanisms. Membrane-bound endoglin is an auxiliary component of the TGF-β receptor complex and the extracellular region of endoglin has been shown to interact with types I and II TGF-β receptors, as well as with BMP9 and BMP10 ligands, both members of the TGF-β family. To search for novel protein interactors, we screened a microarray containing over 9000 unique human proteins using recombinant sEng as bait. We find that sEng binds with high affinity, at least, to 22 new proteins. Among these, we validated the interaction of endoglin with galectin-3, a secreted member of the lectin family with capacity to bind membrane glycoproteins, and with tripartite motif-containing protein 21 (TRIM21), an E3 ubiquitin-protein ligase. Using human endothelial cells and Chinese hamster ovary cells, we showed that endoglin co-immunoprecipitates and co-localizes with galectin-3 or TRIM21. These results open new research avenues on endoglin function and regulation.
Collapse
Affiliation(s)
- Eunate Gallardo-Vara
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28040 Madrid, Spain; (E.G.-V.); (L.R.-L.)
| | - Lidia Ruiz-Llorente
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28040 Madrid, Spain; (E.G.-V.); (L.R.-L.)
| | - Juan Casado-Vela
- Bioengineering and Aerospace Engineering Department, Universidad Carlos III and Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Leganés, 28911 Madrid, Spain;
| | | | - Natalia López-Andrés
- Cardiovascular Translational Research, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), IdiSNA, 31008 Pamplona, Spain;
| | - Asit K. Pattnaik
- School of Veterinary Medicine and Biomedical Sciences, and Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA;
| | - Miguel Quintanilla
- Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior de Investigaciones Científicas (CSIC), and Departamento de Bioquímica, Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain
- Correspondence: (M.Q.); (C.B.)
| | - Carmelo Bernabeu
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28040 Madrid, Spain; (E.G.-V.); (L.R.-L.)
- Correspondence: (M.Q.); (C.B.)
| |
Collapse
|
9
|
Puerto-Camacho P, Amaral AT, Lamhamedi-Cherradi SE, Menegaz BA, Castillo-Ecija H, Ordóñez JL, Domínguez S, Jordan-Perez C, Diaz-Martin J, Romero-Pérez L, Lopez-Alvarez M, Civantos-Jubera G, Robles-Frías MJ, Biscuola M, Ferrer C, Mora J, Cuglievan B, Schadler K, Seifert O, Kontermann R, Pfizenmaier K, Simón L, Fabre M, Carcaboso ÁM, Ludwig JA, de Álava E. Preclinical Efficacy of Endoglin-Targeting Antibody-Drug Conjugates for the Treatment of Ewing Sarcoma. Clin Cancer Res 2018; 25:2228-2240. [PMID: 30420447 DOI: 10.1158/1078-0432.ccr-18-0936] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 07/13/2018] [Accepted: 11/06/2018] [Indexed: 12/26/2022]
Abstract
PURPOSE Endoglin (ENG; CD105) is a coreceptor of the TGFβ family that is highly expressed in proliferating endothelial cells. Often coopted by cancer cells, ENG can lead to neo-angiogenesis and vasculogenic mimicry in aggressive malignancies. It exists both as a transmembrane cell surface protein, where it primarily interacts with TGFβ, and as a soluble matricellular protein (sENG) when cleaved by matrix metalloproteinase 14 (MMP14). High ENG expression has been associated with poor prognosis in Ewing sarcoma, an aggressive bone cancer that primarily occurs in adolescents and young adults. However, the therapeutic value of ENG targeting has not been fully explored in this disease. EXPERIMENTAL DESIGN We characterized the expression pattern of transmembrane ENG, sENG, and MMP14 in preclinical and clinical samples. Subsequently, the antineoplastic potential of two novel ENG-targeting monoclonal antibody-drug conjugates (ADC), OMTX503 and OMTX703, which differed only by their drug payload (nigrin-b A chain and cytolysin, respectively), was assessed in cell lines and preclinical animal models of Ewing sarcoma. RESULTS Both ADCs suppressed cell proliferation in proportion to the endogenous levels of ENG observed in vitro. Moreover, the ADCs significantly delayed tumor growth in Ewing sarcoma cell line-derived xenografts and patient-derived xenografts in a dose-dependent manner. CONCLUSIONS Taken together, these studies demonstrate potent preclinical activity of first-in-class anti-ENG ADCs as a nascent strategy to eradicate Ewing sarcoma.
Collapse
Affiliation(s)
- Pilar Puerto-Camacho
- Institute of Biomedicine of Sevilla (IBiS), Virgen del Rocio University Hospital/CSIC/University of Sevilla/CIBERONC, Seville, Spain
| | - Ana Teresa Amaral
- Institute of Biomedicine of Sevilla (IBiS), Virgen del Rocio University Hospital/CSIC/University of Sevilla/CIBERONC, Seville, Spain
| | | | - Brian A Menegaz
- Department of Sarcoma Medical Oncology, MD Anderson Cancer Center, Houston, Texas
| | - Helena Castillo-Ecija
- Institut de Recerca Sant Joan de Déu, Pediatric Hematology and Oncology, Hospital Sant Joan de Déu Barcelona, Spain
| | - José Luis Ordóñez
- Institute of Biomedicine of Sevilla (IBiS), Virgen del Rocio University Hospital/CSIC/University of Sevilla/CIBERONC, Seville, Spain
| | | | - Carmen Jordan-Perez
- Institute of Biomedicine of Sevilla (IBiS), Virgen del Rocio University Hospital/CSIC/University of Sevilla/CIBERONC, Seville, Spain
| | - Juan Diaz-Martin
- Institute of Biomedicine of Sevilla (IBiS), Virgen del Rocio University Hospital/CSIC/University of Sevilla/CIBERONC, Seville, Spain
| | - Laura Romero-Pérez
- Institute of Biomedicine of Sevilla (IBiS), Virgen del Rocio University Hospital/CSIC/University of Sevilla/CIBERONC, Seville, Spain
| | - Maria Lopez-Alvarez
- Institute of Biomedicine of Sevilla (IBiS), Virgen del Rocio University Hospital/CSIC/University of Sevilla/CIBERONC, Seville, Spain
| | - Gema Civantos-Jubera
- Institute of Biomedicine of Sevilla (IBiS), Virgen del Rocio University Hospital/CSIC/University of Sevilla/CIBERONC, Seville, Spain
| | - María José Robles-Frías
- Institute of Biomedicine of Sevilla (IBiS), Virgen del Rocio University Hospital/CSIC/University of Sevilla/CIBERONC, Seville, Spain
| | - Michele Biscuola
- Institute of Biomedicine of Sevilla (IBiS), Virgen del Rocio University Hospital/CSIC/University of Sevilla/CIBERONC, Seville, Spain
| | | | - Jaume Mora
- Institut de Recerca Sant Joan de Déu, Pediatric Hematology and Oncology, Hospital Sant Joan de Déu Barcelona, Spain
| | - Branko Cuglievan
- Department of Sarcoma Medical Oncology, MD Anderson Cancer Center, Houston, Texas
| | - Keri Schadler
- Department of Sarcoma Medical Oncology, MD Anderson Cancer Center, Houston, Texas
| | | | | | | | | | | | - Ángel M Carcaboso
- Institut de Recerca Sant Joan de Déu, Pediatric Hematology and Oncology, Hospital Sant Joan de Déu Barcelona, Spain
| | - Joseph A Ludwig
- Department of Sarcoma Medical Oncology, MD Anderson Cancer Center, Houston, Texas.
| | - Enrique de Álava
- Institute of Biomedicine of Sevilla (IBiS), Virgen del Rocio University Hospital/CSIC/University of Sevilla/CIBERONC, Seville, Spain.
| |
Collapse
|
10
|
Hu J, Guan W, Liu P, Dai J, Tang K, Xiao H, Qian Y, Sharrow AC, Ye Z, Wu L, Xu H. Endoglin Is Essential for the Maintenance of Self-Renewal and Chemoresistance in Renal Cancer Stem Cells. Stem Cell Reports 2018; 9:464-477. [PMID: 28793246 PMCID: PMC5550272 DOI: 10.1016/j.stemcr.2017.07.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 07/10/2017] [Accepted: 07/11/2017] [Indexed: 12/26/2022] Open
Abstract
Renal cell carcinoma (RCC) is a deadly malignancy due to its tendency to metastasize and resistance to chemotherapy. Stem-like tumor cells often confer these aggressive behaviors. We discovered an endoglin (CD105)-expressing subpopulation in human RCC xenografts and patient samples with a greater capability to form spheres in vitro and tumors in mice at low dilutions than parental cells. Knockdown of CD105 by short hairpin RNA and CRISPR/cas9 reduced stemness markers and sphere-formation ability while accelerating senescence in vitro. Importantly, downregulation of CD105 significantly decreased the tumorigenicity and gemcitabine resistance. This loss of stem-like properties can be rescued by CDA, MYC, or NANOG, and CDA might act as a demethylase maintaining MYC and NANOG. In this study, we showed that Endoglin (CD105) expression not only demarcates a cancer stem cell subpopulation but also confers self-renewal ability and contributes to chemoresistance in RCC.
Collapse
Affiliation(s)
- Junhui Hu
- Department of Urology and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan 430030, China; Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan 430030, China; Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Wei Guan
- Department of Urology and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan 430030, China
| | - Peijun Liu
- Department of Urology and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan 430030, China
| | - Jin Dai
- Department of Urology, The First Affiliated Hospital of Yangtze University, Jingzhou 434000, China
| | - Kun Tang
- Department of Urology and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan 430030, China
| | - Haibing Xiao
- Department of Urology and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan 430030, China
| | - Yuan Qian
- MoE Key Laboratory for Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Allison C Sharrow
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Zhangqun Ye
- Department of Urology and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan 430030, China
| | - Lily Wu
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA; Department of Urology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA.
| | - Hua Xu
- Department of Urology and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan 430030, China.
| |
Collapse
|
11
|
Chai AWY, Cheung AKL, Dai W, Ko JMY, Ip JCY, Chan KW, Kwong DLW, Ng WT, Lee AWM, Ngan RKC, Yau CC, Tung SY, Lee VHF, Lam AKY, Pillai S, Law S, Lung ML. Metastasis-suppressing NID2, an epigenetically-silenced gene, in the pathogenesis of nasopharyngeal carcinoma and esophageal squamous cell carcinoma. Oncotarget 2018; 7:78859-78871. [PMID: 27793011 PMCID: PMC5346683 DOI: 10.18632/oncotarget.12889] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 10/19/2016] [Indexed: 12/13/2022] Open
Abstract
Nidogen-2 (NID2) is a key component of the basement membrane that stabilizes the extracellular matrix (ECM) network. The aim of the study is to analyze the functional roles of NID2 in the pathogenesis of nasopharyngeal carcinoma (NPC) and esophageal squamous cell carcinoma (ESCC). We performed genome-wide methylation profiling of NPC and ESCC and validated our findings using the methylation-sensitive high-resolution melting (MS-HRM) assay. Results showed that promoter methylation of NID2 was significantly higher in NPC and ESCC samples than in their adjacent non-cancer counterparts. Consistently, down-regulation of NID2 was observed in the clinical samples and cell lines of both NPC and ESCC. Re-expression of NID2 suppresses clonogenic survival and migration abilities of transduced NPC and ESCC cells. We showed that NID2 significantly inhibits liver metastasis. Mechanistic studies of signaling pathways also confirm that NID2 suppresses the EGFR/Akt and integrin/FAK/PLCγ metastasis-related pathways. This study provides novel insights into the crucial tumor metastasis suppression roles of NID2 in cancers.
Collapse
Affiliation(s)
- Annie Wai Yeeng Chai
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong (SAR), People's Republic of China
| | - Arthur Kwok Leung Cheung
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong (SAR), People's Republic of China
| | - Wei Dai
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong (SAR), People's Republic of China
| | - Josephine Mun Yee Ko
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong (SAR), People's Republic of China
| | - Joseph Chok Yan Ip
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong (SAR), People's Republic of China
| | - Kwok Wah Chan
- Center for Cancer Research, The University of Hong Kong, Hong Kong (SAR), People's Republic of China.,Department of Pathology, The University of Hong Kong, Hong Kong (SAR), People's Republic of China
| | - Dora Lai-Wan Kwong
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong (SAR), People's Republic of China.,Center for Nasopharyngeal Carcinoma Research, The University of Hong Kong, Hong Kong (SAR), People's Republic of China
| | - Wai Tong Ng
- Center for Nasopharyngeal Carcinoma Research, The University of Hong Kong, Hong Kong (SAR), People's Republic of China.,Department of Clinical Oncology, Pamela Youde Nethersole Eastern Hospital, Hong Kong (SAR), People's Republic of China
| | - Anne Wing Mui Lee
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong (SAR), People's Republic of China.,Center for Nasopharyngeal Carcinoma Research, The University of Hong Kong, Hong Kong (SAR), People's Republic of China
| | - Roger Kai Cheong Ngan
- Center for Nasopharyngeal Carcinoma Research, The University of Hong Kong, Hong Kong (SAR), People's Republic of China.,Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong (SAR), People's Republic of China
| | - Chun Chung Yau
- Center for Nasopharyngeal Carcinoma Research, The University of Hong Kong, Hong Kong (SAR), People's Republic of China.,Department of Oncology, Princess Margaret Hospital, Hong Kong (SAR), People's Republic of China
| | - Stewart Yuk Tung
- Center for Nasopharyngeal Carcinoma Research, The University of Hong Kong, Hong Kong (SAR), People's Republic of China.,Department of Clinical Oncology, Tuen Mun Hospital, Hong Kong (SAR), People's Republic of China
| | - Victor Ho Fun Lee
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong (SAR), People's Republic of China.,Center for Nasopharyngeal Carcinoma Research, The University of Hong Kong, Hong Kong (SAR), People's Republic of China
| | - Alfred King-Yin Lam
- Department of Cancer Molecular Pathology, Griffith Medical School and Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia
| | - Suja Pillai
- Department of Cancer Molecular Pathology, Griffith Medical School and Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia
| | - Simon Law
- Center for Cancer Research, The University of Hong Kong, Hong Kong (SAR), People's Republic of China.,Department of Surgery, The University of Hong Kong, Hong Kong (SAR), People's Republic of China
| | - Maria Li Lung
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong (SAR), People's Republic of China.,Center for Cancer Research, The University of Hong Kong, Hong Kong (SAR), People's Republic of China.,Center for Nasopharyngeal Carcinoma Research, The University of Hong Kong, Hong Kong (SAR), People's Republic of China
| |
Collapse
|
12
|
Yan H, Guan Q, He J, Lin Y, Zhang J, Li H, Liu H, Gu Y, Guo Z, He F. Individualized analysis reveals CpG sites with methylation aberrations in almost all lung adenocarcinoma tissues. J Transl Med 2017; 15:26. [PMID: 28178989 PMCID: PMC5299650 DOI: 10.1186/s12967-017-1122-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 01/07/2017] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Due to the heterogeneity of cancer, identifying differentially methylated (DM) CpG sites between a set of cancer samples and a set of normal samples cannot tell us which patients have methylation aberrations in a particular DM CpG site. METHODS We firstly showed that the relative methylation-level orderings (RMOs) of CpG sites within individual normal lung tissues are highly stable but widely disrupted in lung adenocarcinoma tissues. This finding provides the basis of using the RankComp algorithm, previously developed for differential gene expression analysis at the individual level, to identify DM CpG sites in each cancer tissue compared with its own normal state. Briefly, through comparing with the highly stable normal RMOs predetermined in a large collection of samples for normal lung tissues, the algorithm finds those CpG sites whose hyper- or hypo-methylations may lead to the disrupted RMOs of CpG site pairs within a disease sample based on Fisher's exact test. RESULTS Evaluated in 59 lung adenocarcinoma tissues with paired adjacent normal tissues, RankComp reached an average precision of 94.26% for individual-level DM CpG sites. Then, after identifying DM CpG sites in each of the 539 lung adenocarcinoma samples from TCGA, we found five and 44 CpG sites hypermethylated and hypomethylated in above 90% of the disease samples, respectively. These findings were validated in 140 publicly available and eight additionally measured paired cancer-normal samples. Gene expression analysis revealed that four of the five genes, HOXA9, TAL1, ATP8A2, ENG and SPARCL1, each harboring one of the five frequently hypermethylated CpG sites within its promoters, were also frequently down-regulated in lung adenocarcinoma. CONCLUSIONS The common DNA methylation aberrations in lung adenocarcinoma tissues may be important for lung adenocarcinoma diagnosis and therapy.
Collapse
Affiliation(s)
- Haidan Yan
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150086, China.,Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Department of Bioinformatics, Fujian Medical University, Fuzhou, 350001, China
| | - Qingzhou Guan
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Department of Bioinformatics, Fujian Medical University, Fuzhou, 350001, China
| | - Jun He
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Department of Bioinformatics, Fujian Medical University, Fuzhou, 350001, China
| | - Yunqing Lin
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Department of Bioinformatics, Fujian Medical University, Fuzhou, 350001, China
| | - Juan Zhang
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Department of Bioinformatics, Fujian Medical University, Fuzhou, 350001, China
| | - Hongdong Li
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Department of Bioinformatics, Fujian Medical University, Fuzhou, 350001, China
| | - Huaping Liu
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Department of Bioinformatics, Fujian Medical University, Fuzhou, 350001, China
| | - Yunyan Gu
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150086, China
| | - Zheng Guo
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150086, China. .,Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Department of Bioinformatics, Fujian Medical University, Fuzhou, 350001, China.
| | - Fei He
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, 350001, China.
| |
Collapse
|
13
|
Mei Q, Li X, Zhang K, Wu Z, Li X, Meng Y, Guo M, Luo G, Fu X, Han W. Genetic and Methylation-Induced Loss of miR-181a2/181b2 within chr9q33.3 Facilitates Tumor Growth of Cervical Cancer through the PIK3R3/Akt/FoxO Signaling Pathway. Clin Cancer Res 2016; 23:575-586. [PMID: 27503199 DOI: 10.1158/1078-0432.ccr-16-0303] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 07/21/2016] [Accepted: 07/29/2016] [Indexed: 11/16/2022]
Affiliation(s)
- Qian Mei
- Department of Molecular Biology, Institute of Basic Medicine, School of Life Sciences, Chinese PLA General Hospital, Beijing, China
| | - Xiang Li
- Department of Molecular Biology, Institute of Basic Medicine, School of Life Sciences, Chinese PLA General Hospital, Beijing, China
| | - Kang Zhang
- Department of Obstetrics and Gynecology, Chinese PLA General Hospital, Beijing, China
| | - Zhiqiang Wu
- Department of Molecular Biology, Institute of Basic Medicine, School of Life Sciences, Chinese PLA General Hospital, Beijing, China
| | - Xiaolei Li
- Department of Molecular Biology, Institute of Basic Medicine, School of Life Sciences, Chinese PLA General Hospital, Beijing, China
| | - Yuanguang Meng
- Department of Obstetrics and Gynecology, Chinese PLA General Hospital, Beijing, China
| | - Mingzhou Guo
- Department of Gastroenterology and Hepatology, Chinese PLA General Hospital, Beijing, China
| | - Guangbin Luo
- Case Comprehensive Cancer Centre, Case Western Reserve University, Cleveland, Ohio
| | - Xiaobing Fu
- Department of Molecular Biology, Institute of Basic Medicine, School of Life Sciences, Chinese PLA General Hospital, Beijing, China
| | - Weidong Han
- Department of Molecular Biology, Institute of Basic Medicine, School of Life Sciences, Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
14
|
O'Leary K, Shia A, Cavicchioli F, Haley V, Comino A, Merlano M, Mauri F, Walter K, Lackner M, Wischnewsky MB, Crook T, Lo Nigro C, Schmid P. Identification of Endoglin as an epigenetically regulated tumour-suppressor gene in lung cancer. Br J Cancer 2015; 113:970-8. [PMID: 26325105 PMCID: PMC4578092 DOI: 10.1038/bjc.2015.302] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 07/17/2015] [Accepted: 07/29/2015] [Indexed: 12/25/2022] Open
Abstract
Background: The transforming growth factor-beta (TGF- β) pathway has been implicated in proliferation, migration and invasion of various cancers. Endoglin is a TGF-β accessory receptor that modulates signalling. We identified Endoglin as an epigenetically silenced tumour-suppressor gene in lung cancer by means of a genome-wide screening approach, then sought to characterise its effect on lung cancer progression. Methods: Methylation microarray and RNA sequencing were carried out on lung cancer cell lines. Epigenetic silencing of Endoglin was confirmed by methylation and expression analyses. An expression vector and a 20-gene expression panel were used to evaluate Endoglin function. Pyrosequencing was carried out on two independent cohorts comprising 112 and 202 NSCLC cases, respectively, and the impact of Endoglin methylation on overall survival (OS) was evaluated. Results: Methylation in the promoter region resulted in silencing of Endoglin, which could be reactivated by demethylation. Increased invasion coupled with altered EMT marker expression was observed in cell lines with an epithelial-like, but not those with a mesenchymal-like, profile when Endoglin was absent. Methylation was associated with decreased OS in stage I but not in stages II–III disease. Conclusions: We show that Endoglin is a common target of epigenetic silencing in lung cancer. We reveal a link between Endoglin silencing and EMT progression that might be associated with decreased survival in stage I disease.
Collapse
Affiliation(s)
- K O'Leary
- Brighton and Sussex Medical School, University of Sussex, Brighton BN1 9RY, UK
| | - A Shia
- Brighton and Sussex Medical School, University of Sussex, Brighton BN1 9RY, UK.,Barts Cancer Institute, Queen Mary University of London, Old Anatomy Building, Charterhouse Square, London EC1M 6BQ, UK
| | - F Cavicchioli
- Brighton and Sussex Medical School, University of Sussex, Brighton BN1 9RY, UK
| | - V Haley
- Brighton and Sussex Medical School, University of Sussex, Brighton BN1 9RY, UK
| | - A Comino
- Pathology Department, S. Croce General Hospital, via Coppino 26, 12100, Cuneo, Italy
| | - M Merlano
- Medical Oncology, Oncology Department, S. Croce General Hospital, via Carle 25, 12100, Cuneo, Italy
| | - F Mauri
- Department of Histopathology, Imperial College London, Hammersmith Campus, Du Cane Road, London, W12 0HS, UK
| | - K Walter
- Oncology Biomarker Development, Genentech, Inc., 550 Grandview Boulevard, South San Francisco, CA 94080, USA
| | - M Lackner
- Oncology Biomarker Development, Genentech, Inc., 550 Grandview Boulevard, South San Francisco, CA 94080, USA
| | - M B Wischnewsky
- eScience Lab, Department of Biomathematics, University of Bremen, Bremen 28359, Germany
| | - T Crook
- Division of Cancer Research, Medical Research Institute, Jacqui Wood Cancer Centre, University of Dundee, Ninewells Hospital And Medical School, Dundee DD1 9SY, UK
| | - C Lo Nigro
- Laboratory of Cancer Genetics and Translational Oncology, Oncology Department, S. Croce Genreal Hospital, via Carle 25, Cuneo 12100, Italy
| | - P Schmid
- Brighton and Sussex Medical School, University of Sussex, Brighton BN1 9RY, UK.,Barts Cancer Institute, Queen Mary University of London, Old Anatomy Building, Charterhouse Square, London EC1M 6BQ, UK
| |
Collapse
|
15
|
Immunohistochemical expression of endoglin offers a reliable estimation of bone marrow neoangiogenesis in multiple myeloma. J Cancer Res Clin Oncol 2015; 141:1503-9. [DOI: 10.1007/s00432-015-1952-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 03/05/2015] [Indexed: 12/13/2022]
|
16
|
del Castillo G, Sánchez-Blanco E, Martín-Villar E, Valbuena-Diez AC, Langa C, Pérez-Gómez E, Renart J, Bernabéu C, Quintanilla M. Soluble endoglin antagonizes Met signaling in spindle carcinoma cells. Carcinogenesis 2014; 36:212-22. [PMID: 25503931 DOI: 10.1093/carcin/bgu240] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Increased levels of soluble endoglin (Sol-Eng) correlate with poor outcome in human cancer. We have previously shown that shedding of membrane endoglin, and concomitant release of Sol-Eng is a late event in chemical mouse skin carcinogenesis associated with the development of undifferentiated spindle cell carcinomas (SpCCs). In this report, we show that mouse skin SpCCs exhibit a high expression of hepatocyte growth factor (HGF) and an elevated ratio of its active tyrosine kinase receptor Met versus total Met levels. We have evaluated the effect of Sol-Eng in spindle carcinoma cells by transfection of a cDNA encoding most of the endoglin ectodomain or by using purified recombinant Sol-Eng. We found that Sol-Eng inhibited both mitogen-activated protein kinase (MAPK) activity and cell growth in vitro and in vivo. Sol-Eng also blocked MAPK activation by transforming growth factor-β1 (TGF-β1) and impaired both basal and HGF-induced activation of Met and downstream MAPK. Moreover, Sol-Eng strongly reduced basal and HGF-stimulated spindle cell migration and invasion. Both Sol-Eng and full-length endoglin were shown to interact with Met by coimmunoprecipitation experiments. However, full-length endoglin expressed at the plasma membrane of spindle carcinoma cells had no effect on Met signaling activity, and was unable to inhibit HGF-induced cell migration/invasion. These results point to a paradoxical suppressor role for Sol-Eng in carcinogenesis.
Collapse
Affiliation(s)
- Gaelle del Castillo
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain and Centro de Investigaciones Biológicas, CSIC, and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28040 Madrid, Spain Present address: Departamento de Bioquímica y Biología Molecular, Facultad de Biología, Universidad Complutense, 28040 Madrid, Spain
| | - Esther Sánchez-Blanco
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain and Centro de Investigaciones Biológicas, CSIC, and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28040 Madrid, Spain Present address: Departamento de Bioquímica y Biología Molecular, Facultad de Biología, Universidad Complutense, 28040 Madrid, Spain
| | - Ester Martín-Villar
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain and Centro de Investigaciones Biológicas, CSIC, and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28040 Madrid, Spain Present address: Departamento de Bioquímica y Biología Molecular, Facultad de Biología, Universidad Complutense, 28040 Madrid, Spain
| | - Ana C Valbuena-Diez
- Centro de Investigaciones Biológicas, CSIC, and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28040 Madrid, Spain
| | - Carmen Langa
- Centro de Investigaciones Biológicas, CSIC, and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28040 Madrid, Spain
| | - Eduardo Pérez-Gómez
- Present address: Departamento de Bioquímica y Biología Molecular, Facultad de Biología, Universidad Complutense, 28040 Madrid, Spain
| | - Jaime Renart
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain and Centro de Investigaciones Biológicas, CSIC, and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28040 Madrid, Spain Present address: Departamento de Bioquímica y Biología Molecular, Facultad de Biología, Universidad Complutense, 28040 Madrid, Spain
| | - Carmelo Bernabéu
- Centro de Investigaciones Biológicas, CSIC, and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28040 Madrid, Spain
| | - Miguel Quintanilla
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain and Centro de Investigaciones Biológicas, CSIC, and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28040 Madrid, Spain Present address: Departamento de Bioquímica y Biología Molecular, Facultad de Biología, Universidad Complutense, 28040 Madrid, Spain.
| |
Collapse
|
17
|
Kershaw RM, Siddiqui YH, Roberts D, Jayaraman PS, Gaston K. PRH/HHex inhibits the migration of breast and prostate epithelial cells through direct transcriptional regulation of Endoglin. Oncogene 2013; 33:5592-600. [PMID: 24240683 DOI: 10.1038/onc.2013.496] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 09/19/2013] [Accepted: 10/11/2013] [Indexed: 12/16/2022]
Abstract
PRH/HHex (proline-rich homeodomain protein) is a transcription factor that controls cell proliferation and cell differentiation in a variety of tissues. Aberrant subcellular localisation of PRH is associated with breast cancer and thyroid cancer. Further, in blast crisis chronic myeloid leukaemia, and a subset of acute myeloid leukaemias, PRH is aberrantly localised and its activity is downregulated. Here we show that PRH is involved in the regulation of cell migration and cancer cell invasion. We show for the first time that PRH is expressed in prostate cells and that a decrease in PRH protein levels increases the migration of normal prostate epithelial cells. We show that a decrease in PRH protein levels also increases the migration of normal breast epithelial cells. Conversely, PRH overexpression inhibits cell migration and cell invasion by PC3 and DU145 prostate cancer cells and MDA-MB-231 breast cancer cells. Previous work has shown that the transforming growth factor-β co-receptor Endoglin inhibits the migration of prostate and breast cancer cells. Here we show that PRH can bind to the Endoglin promoter in immortalised prostate and breast cells. PRH overexpression in these cells results in increased Endoglin protein expression, whereas PRH knockdown results in decreased Endoglin protein expression. Moreover, we demonstrate that Endoglin overexpression abrogates the increased migration shown by PRH knockdown cells. Our data suggest that PRH controls the migration of multiple epithelial cell lineages in part at least through the direct transcriptional regulation of Endoglin. We discuss these results in terms of the functions of PRH in normal cells and the mislocalisation of PRH seen in multiple cancer cell types.
Collapse
Affiliation(s)
- R M Kershaw
- Division of Immunity and Infection, School of Medicine, University of Birmingham, Edgbaston, Birmingham, UK
| | - Y H Siddiqui
- School of Biochemistry, University Walk, University of Bristol, Bristol, UK
| | - D Roberts
- Division of Immunity and Infection, School of Medicine, University of Birmingham, Edgbaston, Birmingham, UK
| | - P-S Jayaraman
- Division of Immunity and Infection, School of Medicine, University of Birmingham, Edgbaston, Birmingham, UK
| | - K Gaston
- School of Biochemistry, University Walk, University of Bristol, Bristol, UK
| |
Collapse
|
18
|
Abstract
OBJECTIVES CD105 expression correlates with prognosis for several cancers. However, its significance in pancreatic cancer is unclear. METHODS We analyzed CD105 expression in resected pancreatic cancer tissue and pancreatic cancer cell lines, compared the properties of CD105(+) and CD105(-) cells using quantitative RT-PCR and migration assays, and evaluated the relationship between CD105(+) cells and pancreatic stellate cells (PSCs). RESULTS Immunohistochemistry showed that the frequency of CD105 expression was higher in pancreatic cancer than that in normal tissue(8% vs 0%, respectively). In flow cytometry, CD105 was expressed in pancreatic cancer cells, whereas weak CD105 expression was detected in normal pancreatic ductal epithelial cells. Quantitative RT-PCR showed that E-cadherin mRNA expression was suppressed and vimentin mRNA was overexpressed in CD105(+) cells (P < 0.05). Migration of CD105(+) cancer cells was strongly enhanced (more than that of CD105(+) cells) in coculture with PSCs (P < 0.05). CD105 expression did not correlate to clinicopathologic characteristics or the Kaplan-Meier survival analysis. CONCLUSIONS Suppression of an epithelial marker and over expression of a mesenchymal marker suggest that epithelial-mesenchymal transition is induced in CD105(+) pancreatic cancer cells. CD105(+) pancreatic cancer cell migration is strongly enhanced by PSCs, suggesting that these cells play a role in the pancreatic cancer microenvironment.
Collapse
|
19
|
Jin Z, Zhao Z, Cheng Y, Dong M, Zhang X, Wang L, Fan X, Feng X, Mori Y, Meltzer SJ. Endoglin promoter hypermethylation identifies a field defect in human primary esophageal cancer. Cancer 2013; 119:3604-9. [PMID: 23893879 DOI: 10.1002/cncr.28276] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 05/06/2013] [Accepted: 05/13/2013] [Indexed: 01/18/2023]
Abstract
BACKGROUND Endoglin (ENG) is a 180-kilodalton transmembrane glycoprotein that functions as a component of the transforming growth factor-β receptor complex. Recently, ENG promoter hypermethylation was reported in several human cancers. METHODS The authors examined ENG promoter hypermethylation using real-time, quantitative, methylation-specific polymerase chain reaction in 260 human esophageal tissues. RESULTS ENG hypermethylation demonstrated highly discriminative receiver operating characteristic curve profiles, clearly distinguishing esophageal squamous cell carcinoma (ESCC) and esophageal adenocarcinoma (EAC) from normal esophagus (P<.01). It is interesting to note that ENG normalized methylation values were significantly higher in ESCC compared with normal tissue (P<.01) or EAC (P<.01). The ENG hypermethylation frequency was 46.2% in ESCC and 11.9% in normal esophageal tissue, but increased early and sequentially during EAC-associated neoplastic progression to 13.3% in Barrett metaplasia (BE), 25% in dysplastic BE, and 26.9% in frank EAC. ENG hypermethylation was significantly higher in normal esophageal tissue from patients with ESCC (mean, 0.0186) than in normal tissue from patients with EAC (mean, 0.0117; P<.05). Treatment of KYSE220 ESCC cells with the demethylating agent 5-aza-2'-deoxycytidine was found to reverse ENG methylation and reactivate ENG mRNA expression. CONCLUSIONS Promoter hypermethylation of ENG appears to be a frequent, tissue-specific event in human ESCC and exhibits a field defect with promising biomarker potential for the early detection of ESCC. In addition, ENG hypermethylation occurs in a subset of human EAC, and early during BE-associated esophageal neoplastic progression.
Collapse
Affiliation(s)
- Zhe Jin
- Department of Pathology, The Shenzhen University School of Medicine, Shenzhen, Guangdong, People's Republic of China; Shenzhen Key Laboratory of Micromolecule Innovative Drugs, Shenzhen, Guangdong, People's Republic of China; Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, Guangdong, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Baba Y, Watanabe M, Baba H. A review of the alterations in DNA methylation in esophageal squamous cell carcinoma. Surg Today 2013; 43:1355-64. [DOI: 10.1007/s00595-012-0451-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 10/26/2012] [Indexed: 12/20/2022]
|
21
|
Li JS, Ying JM, Wang XW, Wang ZH, Tao Q, Li LL. Promoter methylation of tumor suppressor genes in esophageal squamous cell carcinoma. CHINESE JOURNAL OF CANCER 2012; 32:3-11. [PMID: 22572016 PMCID: PMC3845589 DOI: 10.5732/cjc.011.10381] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Esophageal squamous cell carcinoma (ESCC) is a prevalent and fatal cancer in China and other Asian countries. Epigenetic silencing of key tumor suppressor genes (TSGs) is critical to ESCC initiation and progression. Recently, many novel TSGs silenced by promoter methylation have been identified in ESCC, and these genes further serve as potential tumor markers for high-risk group stratification, early detection, and prognosis prediction. This review summarizes recent discoveries on aberrant promoter methylation of TSGs in ESCC, providing better understanding of the role of disrupted epigenetic regulation in tumorigenesis and insight into diagnostic and prognostic biomarkers for this malignancy.
Collapse
Affiliation(s)
- Ji-Sheng Li
- Department of Chemotherapy, Shandong University, Jinan, Shandong, People's Republic of China
| | | | | | | | | | | |
Collapse
|
22
|
Jarosz M, Jazowiecka-Rakus J, Cichoń T, Głowala-Kosińska M, Smolarczyk R, Smagur A, Malina S, Sochanik A, Szala S. Therapeutic antitumor potential of endoglin-based DNA vaccine combined with immunomodulatory agents. Gene Ther 2012; 20:262-73. [PMID: 22495576 DOI: 10.1038/gt.2012.28] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Therapy targeting tumor blood vessels ought to inhibit tumor growth. However, tumors become refractory to antiangiogenic drugs. Therefore, therapeutic solutions should be sought to address cellular resistance to antiangiogenic therapy. In this regard, reversal of the proangiogenic and immunosuppressive phenotype of cancer cells, and the shift of the tumor microenvironment towards more antiangiogenic and immune-stimulating phenotype may hold some promise. In our study, we sought to validate the effects of a combination therapy aimed at reducing tumor blood vessels, coupled with the abrogation of the immunosuppressive state. To achieve this, we developed an oral DNA vaccine against endoglin. This antigen was carried by an attenuated Salmonella Typhimurium and applied before or after tumor cell inoculation into immunocompetent mice. Our results show that this DNA vaccine effectively inhibited tumor growth, in both the prophylactic and therapeutic settings. It also activated both specific and nonspecific immune responses in immunized mice. Activated cytotoxic T-lymphocytes were directed specifically against endothelial and tumor cells overexpressing endoglin. The DNA vaccine inhibited angiogenesis but did not affect wound healing. In combination with interleukin-12-mediated gene therapy, or with cyclophosphamide administration, the DNA vaccine resulted in reduced microvessel density and lowered the level of Treg lymphocytes in the experimental tumors. This effectively inhibited tumor growth and prolonged survival of the treated animals. Polarization of tumor milieu, from proangiogenic and immunosuppressive, towards an immunostimulatory and antiangiogenic profile represents a promising avenue in anticancer therapy.
Collapse
Affiliation(s)
- M Jarosz
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Gliwice, Poland
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Zakrzewski PK, Cygankiewicz AI, Mokrosiński J, Nowacka-Zawisza M, Semczuk A, Rechberger T, Krajewska WM. Expression of endoglin in primary endometrial cancer. Oncology 2011; 81:243-50. [PMID: 22116456 DOI: 10.1159/000334240] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 10/04/2011] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Alterations in the transforming growth factor-β (TGF-β) signaling cascade are engaged in the development of human neoplasms through the deregulation of proliferation, differentiation and migration. However, in endometrial cancer, the role of endoglin, which acts as an accessory receptor in the TGF-β pathway, is still unknown. The aim of our study was the evaluation of endoglin mRNA and protein expression levels in endometrial cancer as compared to normal endometrium. TGF-β(1) and TGF-β type II receptor were involved in the investigation since they directly cooperate with endoglin during signal propagation. Obtained results were correlated with clinicopathological parameters of studied material to determine endoglin contribution to tumor development and progression. METHODS mRNA level assessment was performed using real-time technique, whereas protein expression was determined by ELISA assay. RESULTS The endoglin mRNA level was not significantly altered in cancerous samples as compared to normal tissue, whereas its protein level demonstrated significant upregulation (p < 0.001) associated with increased tumor malignancy, assessed by histological grade and myometrium infiltration. CONCLUSIONS An increase in endoglin protein expression level may interfere with the oncogenic potential of TGF-β(1) and TGF-β type II receptor in endometrial cancer. Correlation of the endoglin level with pronounced cancer malignancy suggests that it may be regarded as a potential prognostic marker of primary endometrial cancer.
Collapse
|
24
|
Ogoshi K, Hashimoto SI, Nakatani Y, Qu W, Oshima K, Tokunaga K, Sugano S, Hattori M, Morishita S, Matsushima K. Genome-wide profiling of DNA methylation in human cancer cells. Genomics 2011; 98:280-7. [PMID: 21821115 DOI: 10.1016/j.ygeno.2011.07.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Revised: 07/06/2011] [Accepted: 07/08/2011] [Indexed: 10/17/2022]
Abstract
Global changes in DNA methylation correlate with altered gene expression and genomic instability in cancer. We have developed a methylation-specific digital sequencing (MSDS) method that can assess DNA methylation on a genomic scale. MSDS is a simple, low-cost method that combines the use of methylation-sensitive restriction enzymes with second generation sequencing technology. DNA methylation in two colon cancer cell lines, HT29 and HCT116, was measured using MSDS. When methylation levels were compared between the two cell lines, many differentially methylated regions (DMRs) were identified in CpG island shore regions (located within 2kb of a CpG island), gene body regions and intergenic regions. The number of DMRs in the vicinity of gene transcription start sites correlated with the level of expression of TACC1, CLDN1, and PLEKHC1 (FERMT2) genes, which have been linked to carcinogenesis. The MSDS method has the potential to provide novel insight into the functional complexity of the human genome.
Collapse
Affiliation(s)
- Katsumi Ogoshi
- Department of Molecular Preventive Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Ambrosio EP, Drigo SA, Bérgamo NA, Rosa FE, Bertonha FB, de Abreu FB, Kowalski LP, Rogatto SR. Recurrent copy number gains of ACVR1 and corresponding transcript overexpression are associated with survival in head and neck squamous cell carcinomas. Histopathology 2011; 59:81-9. [PMID: 21668474 DOI: 10.1111/j.1365-2559.2011.03885.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIMS This study aimed to evaluate the copy number alteration on 2q24, its association with ACVR1 transcript expression and the prognostic value of these data in head and neck squamous cell carcinomas. METHODS AND RESULTS Twenty-eight samples of squamous cell carcinoma were evaluated by fluorescence in situ hybridization (FISH) using the probes RP11-546J1 (2q24) and RP11-21P18 (internal control). Significant gains at 2q24 were detected in most cases at frequencies varying from 3 to 35%. ACVR1 gains and amplifications were associated with longer overall survival (P = 0.022). ACVR1 mRNA expression analysis in 78 cases revealed overexpression in 44% (34 of 78) of these tumours, suggesting that gene copy number alterations could be involved in gene overexpression. In laryngeal carcinomas, overexpression of ACVR1 mRNA levels was associated with longer overall survival (P = 0.013). Multivariate analysis revealed that ACVR1 is an independent prognostic marker in laryngeal carcinomas (P = 0.012, hazard ratio = 0.165, 95% confidence interval =0.041-0.668). CONCLUSIONS These findings suggest that copy number alterations at 2q24 can be involved in ACVR1 overexpression, which is associated with longer overall survival in laryngeal carcinomas. To our knowledge, this is the first report indicating the relevance of ACVR1 expression in head and neck cancers.
Collapse
Affiliation(s)
- Eliane P Ambrosio
- Institute of Biosciences, UNESP - São Paulo State University, Botucatu, São Paulo, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Wong VCL, Chen H, Ko JMY, Chan KW, Chan YP, Law S, Chua D, Kwong DLW, Lung HL, Srivastava G, Tang JCO, Tsao SW, Zabarovsky ER, Stanbridge EJ, Lung ML. Tumor suppressor dual-specificity phosphatase 6 (DUSP6) impairs cell invasion and epithelial-mesenchymal transition (EMT)-associated phenotype. Int J Cancer 2011; 130:83-95. [DOI: 10.1002/ijc.25970] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Accepted: 12/30/2010] [Indexed: 01/08/2023]
|
27
|
Abrogated expression of DEC1 during oesophageal squamous cell carcinoma progression is age- and family history-related and significantly associated with lymph node metastasis. Br J Cancer 2011; 104:841-9. [PMID: 21326238 PMCID: PMC3048215 DOI: 10.1038/bjc.2011.25] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Background: Oesophageal squamous cell carcinoma (SCC) causes the highest number of cancer deaths in some regions of Northern China. Previously, we narrowed down a critical region at 9q33-34, identified to be associated with tumour-suppressive function of deleted in oesophageal cancer 1 (DEC1) in oesophageal SCC. Methods: We generated DEC1 antibody and constructed tissue microarrays (TMAs) utilising tissue specimens from Henan, a high-risk region for oesophageal SCC, to investigate the importance of DEC1 expression in this cancer. Results: Tissue microarray immunohistochemical staining reveals significant loss of DEC1 from hyperplasia, to tumour, and to lymph node metastasis. In addition, the loss of DEC1 in tumour is age-dependent. Interestingly, there is significant abrogation of DEC1 expression in patients with a family history of oesophageal SCC. Deleted in oesophageal cancer 1 localises to both the cytoplasm and nucleus. The vesicular pattern of DEC1 in the cytoplasm appears to localise at the Golgi and Golgi–endoplasmic reticulum intermediate compartment. Conclusion: This is the first TMA study to suggest a clinical association of DEC1 in lymph node metastatic oesophageal SCC, early onset oesophageal SCC and familial oesophageal SCC development. Subcellular localisation of DEC1 and its expression in oesophageal SCC tissues provide important insight for further deciphering the molecular mechanism of DEC1 in oesophageal SCC development.
Collapse
|
28
|
Henry LA, Johnson DA, Sarrió D, Lee S, Quinlan PR, Crook T, Thompson AM, Reis-Filho JS, Isacke CM. Endoglin expression in breast tumor cells suppresses invasion and metastasis and correlates with improved clinical outcome. Oncogene 2010; 30:1046-58. [DOI: 10.1038/onc.2010.488] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
29
|
Lakshman M, Huang X, Ananthanarayanan V, Jovanovic B, Liu Y, Craft CS, Romero D, Vary CPH, Bergan RC. Endoglin suppresses human prostate cancer metastasis. Clin Exp Metastasis 2010; 28:39-53. [PMID: 20981476 DOI: 10.1007/s10585-010-9356-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Accepted: 10/06/2010] [Indexed: 01/04/2023]
Abstract
Endoglin is a transmembrane receptor that suppresses human prostate cancer (PCa) cell invasion. Small molecule therapeutics now being tested in humans can activate endoglin signaling. It is not known whether endoglin can regulate metastatic behavior, PCa tumor growth, nor what signaling pathways are linked to these processes. This study sought to investigate the effect of endoglin on these parameters. We used a murine orthotopic model of human PCa metastasis, designed by us to measure effects at early steps in the metastatic cascade, and implanted PCa cells stably engineered to express differing levels of endoglin. We now extend this model to measure cancer cells circulating in the blood. Progressive endoglin loss led to progressive increases in the number of circulating PCa cells as well as to the formation of soft tissue metastases. Endoglin was known to suppress invasion by activating the Smad1 transcription factor. We now show that it selectively activates specific Smad1-responsive genes, including JUNB, STAT1, and SOX4. Increased tumor growth and increased Ki67 expression in tissue was seen only with complete endoglin loss. By showing that endoglin increased TGFβ-mediated suppression of cell growth in vitro and TGFβ-mediated signaling in tumor tissue, loss of this growth-suppressive pathway appears to be implicated at least in part for the increased size of endoglin-deficient tumors. Endoglin is shown for the first time to suppress cell movement out of primary tumor as well as the formation of distant metastasis. It is also shown to co-regulate tumor growth and metastatic behavior in human PCa.
Collapse
Affiliation(s)
- Minalini Lakshman
- Department of Medicine, Northwestern University Medical School, Lurie 6-105, 303 E. Superior Street, Chicago, IL 60611, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Tumor cell plasticity enables certain types of highly malignant tumor cells to dedifferentiate and engage a plastic multipotent embryonic-like phenotype, which enables them to 'adapt' during tumor progression and escape conventional therapeutic strategies. This plastic phenotype of aggressive cancer cells enables them to express endothelial cell-specific markers and form tube-like structures, a phenotype that has been linked to aggressive behavior and poor prognosis. We demonstrate here that the transforming growth factor (TGF)-β co-receptor endoglin, an endothelial cell marker, is expressed by tumor cells and its expression correlates with tumor cell plasticity in two types of human cancer, Ewing sarcoma and melanoma. Moreover, endoglin expression was significantly associated with worse survival of Ewing sarcoma patients. Endoglin knockdown in tumor cells interferes with tumor cell plasticity and reduces invasiveness and anchorage-independent growth in vitro. Ewing sarcoma and melanoma cells with reduced endoglin levels showed reduced tumor growth in vivo. Mechanistically, we provide evidence that endoglin, while interfering with TGF-β signaling, is required for efficient bone morphogenetic protein, integrin, focal adhesion kinase and phosphoinositide-3-kinase signaling in order to maintain tumor cell plasticity. The present study delineates an important role of endoglin in tumor cell plasticity and progression of aggressive tumors.
Collapse
|
31
|
Involvement of the TGF-β superfamily signalling pathway in hereditary haemorrhagic telangiectasia. J Appl Biomed 2010. [DOI: 10.2478/v10136-009-0020-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
32
|
Fonsatti E, Nicolay HJM, Altomonte M, Covre A, Maio M. Targeting cancer vasculature via endoglin/CD105: a novel antibody-based diagnostic and therapeutic strategy in solid tumours. Cardiovasc Res 2009; 86:12-9. [PMID: 19812043 DOI: 10.1093/cvr/cvp332] [Citation(s) in RCA: 127] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Endoglin/CD105 is well acknowledged as being the most reliable marker of proliferation of endothelial cells, and it is overexpressed on tumour neovasculature. Our current knowledge of its structure, physiological role, and tissue distribution suggests that targeting of endoglin/CD105 is a novel and powerful diagnostic and therapeutic strategy in human malignancies, through the imaging of tumour-associated angiogenesis and the inhibition of endothelial cell functions related to tumour angiogenesis. Among biotherapeutic agents, monoclonal antibodies have shown a major impact on the clinical course of human malignancies of different histotypes. Along this line, the potential efficacy of anti-endoglin/CD105 antibodies and their derivatives for clinical purposes in cancer is supported by a large body of available pre-clinical in vitro and in vivo data. In this review, the main findings supporting the translation of antibody-based endoglin/CD105 targeting from pre-clinical studies to clinical applications in human cancer are summarized and discussed.
Collapse
Affiliation(s)
- Ester Fonsatti
- Division of Medical Oncology and Immunotherapy, Department of Oncology, Istituto Toscano Tumori, University Hospital of Siena, Strada delle Scotte 14, 53100 Siena, Italy
| | | | | | | | | |
Collapse
|
33
|
Mittal KR, Chen F, Wei JJ, Rijhvani K, Kurvathi R, Streck D, Dermody J, Toruner GA. Molecular and immunohistochemical evidence for the origin of uterine leiomyosarcomas from associated leiomyoma and symplastic leiomyoma-like areas. Mod Pathol 2009; 22:1303-11. [PMID: 19633649 DOI: 10.1038/modpathol.2009.96] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
It is uncertain whether uterine leiomyosarcoma arises de novo or in preexisting leiomyoma. Leiomyoma-like areas can be seen associated with uterine leiomyosarcoma, raising the possibility of precursor lesions for uterine leiomyosarcoma. In this study, we examined cases of uterine leiomyosarcoma associated with leiomyoma-like areas at the histological, immunohistochemical and DNA level to further evaluate if benign-looking leiomyoma-like and uterine leiomyosarcoma areas are related. Cases of uterine leiomyosarcoma observed at the New York University Medical Center from 1994 to 2007 were reviewed for the presence of leiomyoma-like areas. Of the 26 cases of uterine leiomyosarcoma observed during this period, 18 cases had an associated leiomyoma-like area (five cellular leiomyoma, four symplastic leiomyoma, four cellular and symplastic leiomyoma and five usual type leiomyoma). Sixteen of the 18 cases were examined immunohistochemically for Ki-67, for estrogen receptor, progesterone receptor and for p53. Immunohistochemical profiles were as expected for leiomyoma-like (the mean expression of p53, ER, PR and Ki-67 at 0.3, 63, 75 and 0.6%, respectively), symplastic leiomyoma-like areas (the mean expression of p53, ER, PR and Ki-67 at 0.6, 85, 89 and 5.5%, respectively) and uterine leiomyosarcoma areas (the mean expression of p53, ER, PR and Ki-67 at 52, 38, 39 and 61%, respectively). In six cases, the leiomyoma-like and uterine leiomyosarcoma areas from each case were examined using high-density oligonucleotide array-CGH to determine genetic aberrations in the two areas. Nearly all the genetic aberrations found in leiomyoma-like areas were also found in the corresponding uterine leiomyosarcoma areas. In addition, uterine leiomyosarcoma areas had additional genetic aberrations. The immunohistochemical profiles and genetic aberrations of the examined cases suggest that uterine leiomyosarcoma could arise from the preexisting leiomyoma-like areas that often have a symplastic or cellular morphology.
Collapse
Affiliation(s)
- Khush R Mittal
- Department of Pathology, New York University School of Medicine, 462 First Avenue, New York, NY 10016, USA.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Bernabeu C, Lopez-Novoa JM, Quintanilla M. The emerging role of TGF-beta superfamily coreceptors in cancer. Biochim Biophys Acta Mol Basis Dis 2009; 1792:954-73. [PMID: 19607914 DOI: 10.1016/j.bbadis.2009.07.003] [Citation(s) in RCA: 195] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2009] [Revised: 07/02/2009] [Accepted: 07/06/2009] [Indexed: 12/23/2022]
Abstract
The transforming growth factor beta (TGF-beta) signaling pathway plays a key role in different physiological processes such as development, cellular proliferation, extracellular matrix synthesis, angiogenesis or immune responses and its deregulation may result in tumor development. The TGF-beta coreceptors endoglin and betaglycan are emerging as modulators of the TGF-beta response with important roles in cancer. Endoglin is highly expressed in the tumor-associated vascular endothelium with prognostic significance in selected neoplasias and with potential to be a prime vascular target for antiangiogenic cancer therapy. On the other hand, the expression of endoglin and betaglycan in tumor cells themselves appears to play an important role in the progression of cancer, influencing cell proliferation, motility, invasiveness and tumorigenicity. In addition, experiments in vitro and in vivo in which endoglin or betaglycan expression is modulated have provided evidence that they act as tumor suppressors. The purpose of this review was to highlight the potential of membrane and soluble forms of the endoglin and betaglycan proteins as molecular targets in cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Carmelo Bernabeu
- Centro de Investigaciones Biologicas, Consejo Superior de Investigaciones Cientificas (CSIC), and CIBER de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), 28040 Madrid, Spain.
| | | | | |
Collapse
|