1
|
A novel mathematical model of heterogeneous cell proliferation. J Math Biol 2021; 82:34. [PMID: 33712945 DOI: 10.1007/s00285-021-01580-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 10/21/2020] [Accepted: 02/14/2021] [Indexed: 12/22/2022]
Abstract
We present a novel mathematical model of heterogeneous cell proliferation where the total population consists of a subpopulation of slow-proliferating cells and a subpopulation of fast-proliferating cells. The model incorporates two cellular processes, asymmetric cell division and induced switching between proliferative states, which are important determinants for the heterogeneity of a cell population. As motivation for our model we provide experimental data that illustrate the induced-switching process. Our model consists of a system of two coupled delay differential equations with distributed time delays and the cell densities as functions of time. The distributed delays are bounded and allow for the choice of delay kernel. We analyse the model and prove the nonnegativity and boundedness of solutions, the existence and uniqueness of solutions, and the local stability characteristics of the equilibrium points. We find that the parameters for induced switching are bifurcation parameters and therefore determine the long-term behaviour of the model. Numerical simulations illustrate and support the theoretical findings, and demonstrate the primary importance of transient dynamics for understanding the evolution of many experimental cell populations.
Collapse
|
2
|
Regulation of viability, differentiation and death of human melanoma cells carrying neural stem cell biomarkers: a possibility for neural trans-differentiation. Apoptosis 2016; 20:996-1015. [PMID: 25953317 DOI: 10.1007/s10495-015-1131-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
During embryonic development, melanoblasts, the precursors of melanocytes, emerge from a subpopulation of the neural crest stem cells and migrate to colonize skin. Melanomas arise during melanoblast differentiation into melanocytes and from young proliferating melanocytes through somatic mutagenesis and epigenetic regulations. In the present study, we used several human melanoma cell lines from the sequential phases of melanoma development (radial growth phase, vertical growth phase and metastatic phase) to compare: (i) the frequency and efficiency of the induction of cell death via apoptosis and necroptosis; (ii) the presence of neural and cancer stem cell biomarkers as well as death receptors, DR5 and FAS, in both adherent and spheroid cultures of melanoma cells; (iii) anti-apoptotic effects of the endogenous production of cytokines and (iv) the ability of melanoma cells to perform neural trans-differentiation. We demonstrated that programed necrosis or necroptosis, could be induced in two metastatic melanoma lines, FEMX and OM431, while the mitochondrial pathway of apoptosis was prevalent in a vast majority of melanoma lines. All melanoma lines used in the current study expressed substantial levels of pluripotency markers, SOX2 and NANOG. There was a trend for increasing expression of Nestin, an early neuroprogenitor marker, during melanoma progression. Most of the melanoma lines, including WM35, FEMX and A375, can grow as a spheroid culture in serum-free media with supplements. It was possible to induce neural trans-differentiation of 1205Lu and OM431 melanoma cells in serum-free media supplemented with insulin. This was confirmed by the expression of neuronal markers, doublecortin and β3-Tubulin, by significant growth of neurites and by the negative regulation of this process by a dominant-negative Rac1N17. These results suggest a relative plasticity of differentiated melanoma cells and a possibility for their neural trans-differentiation without the necessity for preliminary dedifferentiation.
Collapse
|
3
|
Weledji EP, Ngowe MN, Abba JS. Burkitt's lymphoma masquerading as appendicitis--two case reports and review of the literature. World J Surg Oncol 2014; 12:187. [PMID: 24942062 PMCID: PMC4075545 DOI: 10.1186/1477-7819-12-187] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 06/12/2014] [Indexed: 12/15/2022] Open
Abstract
Two cases of Burkitt’s lymphoma masquerading as appendicitis are reported herein. The diagnoses were made post-operatively from the appendix specimen in one case and from an ileocecal resection specimen for cecal fistula complicating an appendicectomy in the second case. These cases highlight the importance of routine histological examination of appendicectomy specimens.
Collapse
Affiliation(s)
- Elroy P Weledji
- Department of Surgery, Faculty of Health Sciences, University of Buea, P,O, Box 12, Buea, S,W, Region, Cameroon.
| | | | | |
Collapse
|
4
|
Mirkina I, Hadzijusufovic E, Krepler C, Mikula M, Mechtcheriakova D, Strommer S, Stella A, Jensen-Jarolim E, Höller C, Wacheck V, Pehamberger H, Valent P. Phenotyping of human melanoma cells reveals a unique composition of receptor targets and a subpopulation co-expressing ErbB4, EPO-R and NGF-R. PLoS One 2014; 9:e84417. [PMID: 24489649 PMCID: PMC3906015 DOI: 10.1371/journal.pone.0084417] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 11/18/2013] [Indexed: 11/18/2022] Open
Abstract
Malignant melanoma is a life-threatening skin cancer increasingly diagnosed in the western world. In advanced disease the prognosis is grave. Growth and metastasis formation in melanomas are regulated by a network of cytokines, cytokine-receptors, and adhesion molecules. However, little is known about surface antigens and target expression profiles in human melanomas. We examined the cell surface antigen profile of human skin melanoma cells by multicolor flow cytometry, and compared their phenotype with 4 melanoma cell lines (A375, 607B, Mel-Juso, SK-Mel28). Melanoma cells were defined as CD45-/CD31- cells co-expressing one or more melanoma-related antigens (CD63, CD146, CD166). In most patients, melanoma cells exhibited ErbB3/Her3, CD44/Pgp-1, ICAM-1/CD54 and IGF-1-R/CD221, but did not express CD20, ErbB2/Her2, KIT/CD117, AC133/CD133 or MDR-1/CD243. Melanoma cell lines were found to display a similar phenotype. In most patients, a distinct subpopulation of melanoma cells (4-40%) expressed the erythropoietin receptor (EPO-R) and ErbB4 together with PD-1 and NGF-R/CD271. Both the EPO-R+ and EPO-R- subpopulations produced melanoma lesions in NOD/SCID IL-2Rgamma(null) (NSG) mice in first and secondary recipients. Normal skin melanocytes did not express ErbB4 or EPO-R, but expressed a functional KIT receptor (CD117) as well as NGF-R, ErbB3/Her3, IGF-1-R and CD44. In conclusion, melanoma cells display a unique composition of surface target antigens and cytokine receptors. Malignant transformation of melanomas is accompanied by loss of KIT and acquisition of EPO-R and ErbB4, both of which are co-expressed with NGF-R and PD-1 in distinct subfractions of melanoma cells. However, expression of EPO-R/ErbB4/PD-1 is not indicative of a selective melanoma-initiating potential.
Collapse
MESH Headings
- Animals
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Cell Line, Tumor
- ErbB Receptors/genetics
- ErbB Receptors/metabolism
- Female
- Flow Cytometry
- Gene Expression Regulation, Neoplastic
- Humans
- Immunophenotyping
- Male
- Melanoma/genetics
- Melanoma/metabolism
- Melanoma/pathology
- Mice
- Mice, Inbred NOD
- Neoplasm Transplantation
- Programmed Cell Death 1 Receptor/genetics
- Programmed Cell Death 1 Receptor/metabolism
- Proto-Oncogene Proteins c-kit/deficiency
- Proto-Oncogene Proteins c-kit/genetics
- Receptor, ErbB-4
- Receptor, Nerve Growth Factor/genetics
- Receptor, Nerve Growth Factor/metabolism
- Receptors, Erythropoietin/genetics
- Receptors, Erythropoietin/metabolism
- Skin Neoplasms/genetics
- Skin Neoplasms/metabolism
- Skin Neoplasms/pathology
Collapse
Affiliation(s)
- Irina Mirkina
- Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, Vienna, Austria
| | - Emir Hadzijusufovic
- Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, Vienna, Austria
- Division of Hematology & Hemostaseology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
- Department/Clinic for Companion Animals and Horses, Clinic for Small Animals, Clinical Unit of Internal Medicine, University of Veterinary Medicine Vienna, Austria
| | - Clemens Krepler
- Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, Vienna, Austria
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Mario Mikula
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
- Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| | - Diana Mechtcheriakova
- Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, Vienna, Austria
- Department of Pathophysiology & Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Sabine Strommer
- Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| | - Alexander Stella
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Erika Jensen-Jarolim
- Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, Vienna, Austria
- Department of Pathophysiology & Allergy Research, Medical University of Vienna, Vienna, Austria
- Comparative Medicine, Messerli Research Institute, University of Veterinary Medicine, Medical University of Vienna and University Vienna, Vienna, Austria
| | - Christoph Höller
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Volker Wacheck
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Hubert Pehamberger
- Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, Vienna, Austria
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Peter Valent
- Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, Vienna, Austria
- Division of Hematology & Hemostaseology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
- * E-mail:
| |
Collapse
|
5
|
Sette G, Fecchi K, Salvati V, Lotti F, Pilozzi E, Duranti E, Biffoni M, Pagliuca A, Martinetti D, Memeo L, Milella M, De Maria R, Eramo A. Mek inhibition results in marked antitumor activity against metastatic melanoma patient-derived melanospheres and in melanosphere-generated xenografts. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2013; 32:91. [PMID: 24238212 PMCID: PMC3874650 DOI: 10.1186/1756-9966-32-91] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 11/13/2013] [Indexed: 01/07/2023]
Abstract
One of the key oncogenic pathways involved in melanoma aggressiveness, development and progression is the RAS/BRAF/MEK pathway, whose alterations are found in most patients. These molecular anomalies are promising targets for more effective anti-cancer therapies. Some Mek inhibitors showed promising antitumor activity, although schedules and doses associated with low systemic toxicity need to be defined. In addition, it is now accepted that cancers can arise from and be maintained by the cancer stem cells (CSC) or tumor-initiating cells (TIC), commonly expanded in vitro as tumorspheres from several solid tumors, including melanoma (melanospheres). Here, we investigated the potential targeting of MEK pathway by exploiting highly reliable in vitro and in vivo pre-clinical models of melanomas based on melanospheres, as melanoma initiating cells (MIC) surrogates. MEK inhibition, through PD0325901, provided a successful strategy to affect survival of mutated-BRAF melanospheres and growth of wild type-BRAF melanospheres. A marked citotoxicity was observed in differentated melanoma cells regardless BRAF mutational status. PD0325901 treatment, dramatically inhibited growth of melanosphere-generated xenografts and determined impaired tumor vascularization of both mutated- and wild type-BRAF tumors, in the absence of mice toxicity. These results suggest that MEK inhibition might represent a valid treatment option for patients with both mutated- or wild type-BRAF melanomas, affecting tumor growth through multiple targets.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Adriana Eramo
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, viale Regina Elena 299, Rome 00161, Italy.
| |
Collapse
|
6
|
Monga J, Sharma M, Tailor N, Ganesh N. Antimelanoma and radioprotective activity of alcoholic aqueous extract of different species of Ocimum in C(57)BL mice. PHARMACEUTICAL BIOLOGY 2011; 49:428-436. [PMID: 21428866 DOI: 10.3109/13880209.2010.521513] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
CONTEXT Various Ocimum species (Labiateae) are commonly used for the treatment of inflammation, stress, diarrhea, and as an antioxidant drug in the Indian ethnic system of medicine. OBJECTIVE The present study was carried out to investigate the antimelanoma and radioprotective activity of different species of Ocimum in C(57)BL and Swiss albino mice. MATERIALS AND METHODS The antimelanoma activity of 50% alcoholic aqueous leaf extract of five species of Ocimum [Ocimum sanctum (SE), Ocimum gratissimum (GE), Ocimum basilicum (BE), Ocimum canum (CE), and Ocimum kilimandscharicum (KE)] alone or in combination with radiotherapy was determined on the basis of tumor volume, body weight, and survival rate of animals. The radioprotective potential of different species of Ocimum was determined by chromosomal aberration assay. The effect of the alcoholic aqueous extract of different species of Ocimum was also evaluated for the estimation of glutathione level and glutathione S-transferase activity in Swiss albino mice. RESULTS The 50% alcoholic aqueous extract of different species of Ocimum administered orally (200 mg/kg, p.o.) resulted in significant reduction in tumor volume, increase in average body weight, and survival rate of mice. The various extracts showed modulatory influence against lethal irradiation doses of gamma radiation in terms of radiation-induced chromosomal damage, while at the same time induced an increase in reduced glutathione level and GST activity. DISCUSSION AND CONCLUSION These findings demonstrate that Ocimum species have antimelanoma and radioprotective activity against B(16)F(10) metastatic melanoma cell line-induced metastasis and could be exploited as one of the potential sources for plant-based pharmaceutical products.
Collapse
Affiliation(s)
- Jitender Monga
- Research Department, Jawaharlal Nehru Cancer Hospital and Research Center, Idgah Hills, Bhopal, Madhya Pradesh, India
| | | | | | | |
Collapse
|
7
|
Genetic factors in metastatic progression of cutaneous melanoma: the future role of circulating melanoma cells in prognosis and management. Clin Exp Metastasis 2011; 28:327-36. [PMID: 21311956 DOI: 10.1007/s10585-010-9368-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Accepted: 12/13/2010] [Indexed: 01/01/2023]
Abstract
The greatest potential for improvement of outcome for patients with Cutaneous Malignant Melanoma lies in the prevention of systemic metastasis. Despite extensive investigation, current prognostic indicators either alone or in combination, although related to melanoma progression, are not sufficient to accurately predict the pattern of progression and outcome for any individual patient. Metastasis related death has been recorded in patients initially diagnosed with early stage tumour as well as in patients many years after initial tumour removal. The trouble finding a predictable pattern in the puzzle of melanoma progression may be linked to the fact that most of the material studied for prognosis is either, cutaneous primaries or metastatic deposits, rather than the melanoma cells in the circulatory system which are responsible for disease progression. In this review article we discuss the potential use of circulating tumour cell (CTC) detection and quantification for identifying patients at risk of metastatic deposits. We also discuss current therapies for the treatment of metastatic melanoma and analyse how CTCs may be used to evaluate the effectiveness of current therapies and to pinpoint patients who require further treatment.
Collapse
|
8
|
RANK is expressed in metastatic melanoma and highly upregulated on melanoma-initiating cells. J Invest Dermatol 2011; 131:944-55. [PMID: 21270824 DOI: 10.1038/jid.2010.377] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Melanoma accounts for ∼ 79% of skin cancer-related deaths, and the receptor activator of NF-κB (RANK)-receptor activator of NF-κB ligand (RANKL) pathway has been shown to be involved in the migration and metastasis of epithelial tumor cells. In this study, we demonstrate that RANK was significantly increased in peripheral circulating melanoma cells, primary melanomas, and metastases from stage IV melanoma patients compared with tumor cells from stage I melanoma patients. However, upregulated RANK expression was not found in stage IV melanoma patients with bone metastases compared with stage IV melanoma patients without bone metastases, providing a possible explanation for the clinical observation that melanoma cells do not preferentially metastasize to bone tissue. Strikingly, RANK-expressing melanoma cells from peripheral blood, primary tumors, or metastases of stage IV patients coexpressed ATP-binding cassette (ABC) B5 and CD133, both markers characteristic of melanoma-initiating cells, suggesting a tumor stem cell-like phenotype. In support of this hypothesis, RANK-expressing melanoma cells showed a reduced Ki67 proliferation index compared with RANK(-) melanoma cells from the same patient and are able to induce tumor growth in immunodeficient mice. Together, our data demonstrate that RANK expression is increased in metastatic melanoma and highly upregulated on melanoma-initiating cells, suggesting that RANK might be involved in the development and maintenance of melanoma-initiating cells and possibly in metastatic spreading.
Collapse
|
9
|
Guimarães FSF, Andrade LF, Martins ST, Abud APR, Sene RV, Wanderer C, Tiscornia I, Bollati-Fogolín M, Buchi DF, Trindade ES. In vitro and in vivo anticancer properties of a Calcarea carbonica derivative complex (M8) treatment in a murine melanoma model. BMC Cancer 2010; 10:113. [PMID: 20338038 PMCID: PMC2859384 DOI: 10.1186/1471-2407-10-113] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Accepted: 03/25/2010] [Indexed: 12/31/2022] Open
Abstract
Background Melanoma is the most aggressive form of skin cancer and the most rapidly expanding cancer in terms of worldwide incidence. Chemotherapeutic approaches to treat melanoma have had only marginal success. Previous studies in mice demonstrated that a high diluted complex derived from Calcarea carbonica (M8) stimulated the tumoricidal response of activated lymphocytes against B16F10 melanoma cells in vitro. Methods Here we describe the in vitro inhibition of invasion and the in vivo anti-metastatic potential after M8 treatment by inhalation in the B16F10 lung metastasis model. Results We found that M8 has at least two functions, acting as both an inhibitor of cancer cell adhesion and invasion and as a perlecan expression antagonist, which are strongly correlated with several metastatic, angiogenic and invasive factors in melanoma tumors. Conclusion The findings suggest that this medication is a promising non-toxic therapy candidate by improving the immune response against tumor cells or even induce direct dormancy in malignancies.
Collapse
Affiliation(s)
- Fernando S F Guimarães
- Laboratório de Pesquisa em Células Inflamatórias e Neoplásicas Depto de Biologia Celular, Setor de Ciências Biológicas, Federal University of Paraná, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Witz IP. The tumor microenvironment: the making of a paradigm. CANCER MICROENVIRONMENT 2009; 2 Suppl 1:9-17. [PMID: 19701697 PMCID: PMC2756342 DOI: 10.1007/s12307-009-0025-8] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Accepted: 08/06/2009] [Indexed: 12/17/2022]
Abstract
What has been will be again, what has been done will be done again; there is nothing new under the sun (Ecclesiastes 1:9) Stephen Paget was the conceptual father of the role played by the Tumor Microenvironment (TME) in tumor progression. The focus of this essay is the developmental phase of the post Paget TME research. Attempts will be made to highlight some of the pioneering work of scientists from the late sixties through the eighties of last century who laid the foundations for the contemporary scientific achievements of TME research but whose ground breaking studies are rarely cited. This review should serve as a small tribute to their great work.
Collapse
Affiliation(s)
- Isaac P Witz
- Faculty of Life Sciences, Department of Cell Research & Immunology, Tel Aviv University, Ramat Aviv, Tel Aviv, 69978, Israel,
| |
Collapse
|