1
|
Luo C, Li N, Wang Q, Li C. Sodium acetate promotes fat synthesis by suppressing TATA element modulatory factor 1 in bovine mammary epithelial cells. ANIMAL NUTRITION 2023; 13:126-136. [PMID: 37123620 PMCID: PMC10130354 DOI: 10.1016/j.aninu.2023.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 01/03/2023] [Accepted: 01/06/2023] [Indexed: 01/13/2023]
Abstract
Short-chain fatty acids are important nutrients that regulate milk fat synthesis. They regulate milk synthesis via the sterol regulatory element binding protein 1 (SREBP1) pathway; however, the details are still unknown. Here, the regulation and mechanism of sodium acetate (SA) in milk fat synthesis in bovine mammary epithelial cells (BMECs) were assessed. BMECs were treated with SA supplementation (SA+) or without SA supplementation (SA-), and milk fat synthesis and activation of the SREBP1 pathway were increased (P = 0.0045; P = 0.0042) by SA+ and decreased (P = 0.0068; P = 0.0031) by SA-, respectively. Overexpression or inhibition of SREBP1 demonstrated that SA promoted milk fat synthesis (P = 0.0045) via the SREBP1 pathway. Overexpression or inhibition of TATA element modulatory factor 1 (TMF1) demonstrated that TMF1 suppressed activation of the SREBP1 pathway (P = 0.0001) and milk fat synthesis (P = 0.0022) activated by SA+. Overexpression or inhibition of TMF1 and SREBP1 showed that TMF1 suppressed milk fat synthesis (P = 0.0073) through the SREBP1 pathway. Coimmunoprecipitation analysis revealed that TMF1 interacted with SREBP1 in the cytoplasm and suppressed the nuclear localization of SREBP1 (P = 0.0066). The absence or presence of SA demonstrated that SA inhibited the expression of TMF1 (P = 0.0002) and the interaction between TMF1 and SREBP1 (P = 0.0001). Collectively, our research suggested that TMF1 was a new negative regulator of milk fat synthesis. In BMECs, SA promoted the SREBP1 pathway and milk fat synthesis by suppressing TMF1. This study enhances the current understanding of the regulation of milk fat synthesis and provides new scientific data for the regulation of milk fat synthesis.
Collapse
|
2
|
D’Souza Z, Sumya FT, Khakurel A, Lupashin V. Getting Sugar Coating Right! The Role of the Golgi Trafficking Machinery in Glycosylation. Cells 2021; 10:cells10123275. [PMID: 34943782 PMCID: PMC8699264 DOI: 10.3390/cells10123275] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/17/2021] [Accepted: 11/19/2021] [Indexed: 12/18/2022] Open
Abstract
The Golgi is the central organelle of the secretory pathway and it houses the majority of the glycosylation machinery, which includes glycosylation enzymes and sugar transporters. Correct compartmentalization of the glycosylation machinery is achieved by retrograde vesicular trafficking as the secretory cargo moves forward by cisternal maturation. The vesicular trafficking machinery which includes vesicular coats, small GTPases, tethers and SNAREs, play a major role in coordinating the Golgi trafficking thereby achieving Golgi homeostasis. Glycosylation is a template-independent process, so its fidelity heavily relies on appropriate localization of the glycosylation machinery and Golgi homeostasis. Mutations in the glycosylation enzymes, sugar transporters, Golgi ion channels and several vesicle tethering factors cause congenital disorders of glycosylation (CDG) which encompass a group of multisystem disorders with varying severities. Here, we focus on the Golgi vesicle tethering and fusion machinery, namely, multisubunit tethering complexes and SNAREs and their role in Golgi trafficking and glycosylation. This review is a comprehensive summary of all the identified CDG causing mutations of the Golgi trafficking machinery in humans.
Collapse
|
3
|
Xu Y, Hu D, Hou X, Shen J, Liu J, Cen X, Fu J, Li X, Hu H, Xiong L. OsTMF attenuates cold tolerance by affecting cell wall properties in rice. THE NEW PHYTOLOGIST 2020; 227:498-512. [PMID: 32176820 DOI: 10.1111/nph.16549] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 03/04/2020] [Indexed: 05/15/2023]
Abstract
Plant cell wall composition and structure can be modified as plants adapt to environmental stresses; however, the underlying regulatory mechanisms remain elusive. Here, we report that OsTMF, a homologue of the human TATA modulatory factor (TMF) in rice (Oryza sativa) and highly conserved in plants, negatively regulates cold tolerance through modification of cell wall properties. Cold stress increased the expression of OsTMF and accumulation of OsTMF in the nucleus, where OsTMF acts as a transcription activator and modulates the expression of genes involved in pectin degradation (OsBURP16), cellulose biosynthesis (OsCesA4 and OsCesA9), and cell wall structural maintenance (genes encoding proline-rich proteins and peroxidases). OsTMF directly activated the expression of OsBURP16, OsCesA4, and OsCesA9 through binding to the TATA cis-elements in their promoters. Under cold stress conditions, OsTMF negatively regulated pectin content and peroxidase activity and positively regulated cellulose content, causing corresponding alterations to cell wall properties, all of which collectively contribute to the negative effect of OsTMF on cold tolerance. Our findings unravel a previously unreported molecular mechanism of a conserved plant TMF protein in the regulation of cell wall changes under cold stress.
Collapse
Affiliation(s)
- Yan Xu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Biofuels, Qingdao Engineering Research Center of Biomass Resources and Environment, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Dan Hu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Xin Hou
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Jianqiang Shen
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Juhong Liu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiang Cen
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Jie Fu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Xianghua Li
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Honghong Hu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Lizhong Xiong
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
4
|
Abstract
Introduction: Inflammatory bowel diseases (IBD) are on the rise worldwide. This review covers the current concepts of the etiology of Crohn´s disease and ulcerative colitis by focusing on an unbalanced interaction between the intestinal microbiota and the mucosal barrier. Understanding these issues is of paramount importance for the development of targeted therapies aiming at the disease cause.Area covered: Gut microbiota alterations and a dysfunctional intestinal mucosa are associated with IBD. Here we focus on specific defense structures of the mucosal barrier, namely antimicrobial peptides and the mucus layer, which keep the gut microbiota at a distance under healthy conditions and are defective in IBD.Expert commentary: The microbiology of both forms of IBD is different but characterized by a reduced bacterial diversity and richness. Abundance of certain bacterial species is altered, and the compositional changes are related to disease activity. In IBD the mucus layer above the epithelium is contaminated by bacteria and the immune reaction is dominated by the antibacterial response. Human genetics suggest that many of the basic deficiencies in the mucosal response, due to Paneth cell, defensin and mucus defects, are primary. Nutrition may also be important but so far there is no therapy targeting the mucosal barrier.
Collapse
Affiliation(s)
- Eduard F Stange
- Innere Medizin I, Medizinische Universitätsklinik, Tübingen, Germany
| | - Bjoern O Schroeder
- Laboratory for Molecular Infection Medicine Sweden (MIMS) -The Nordic EMBL Partnership for Molecular Medicine, and Department of Molecular Biology, Umeå University, Umeå, Sweden
| |
Collapse
|
5
|
Igelmann S, Neubauer HA, Ferbeyre G. STAT3 and STAT5 Activation in Solid Cancers. Cancers (Basel) 2019; 11:cancers11101428. [PMID: 31557897 PMCID: PMC6826753 DOI: 10.3390/cancers11101428] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/14/2019] [Accepted: 09/18/2019] [Indexed: 02/07/2023] Open
Abstract
The Signal Transducer and Activator of Transcription (STAT)3 and 5 proteins are activated by many cytokine receptors to regulate specific gene expression and mitochondrial functions. Their role in cancer is largely context-dependent as they can both act as oncogenes and tumor suppressors. We review here the role of STAT3/5 activation in solid cancers and summarize their association with survival in cancer patients. The molecular mechanisms that underpin the oncogenic activity of STAT3/5 signaling include the regulation of genes that control cell cycle and cell death. However, recent advances also highlight the critical role of STAT3/5 target genes mediating inflammation and stemness. In addition, STAT3 mitochondrial functions are required for transformation. On the other hand, several tumor suppressor pathways act on or are activated by STAT3/5 signaling, including tyrosine phosphatases, the sumo ligase Protein Inhibitor of Activated STAT3 (PIAS3), the E3 ubiquitin ligase TATA Element Modulatory Factor/Androgen Receptor-Coactivator of 160 kDa (TMF/ARA160), the miRNAs miR-124 and miR-1181, the Protein of alternative reading frame 19 (p19ARF)/p53 pathway and the Suppressor of Cytokine Signaling 1 and 3 (SOCS1/3) proteins. Cancer mutations and epigenetic alterations may alter the balance between pro-oncogenic and tumor suppressor activities associated with STAT3/5 signaling, explaining their context-dependent association with tumor progression both in human cancers and animal models.
Collapse
Affiliation(s)
- Sebastian Igelmann
- Department of Biochemistry and Molecular Medicine, Université de Montréal, C.P. 6128, Succ. Centre-Ville, CRCHUM, Montréal, QC H3C 3J7, Canada.
- CRCHUM, 900 Saint-Denis St, Montréal, QC H2X 0A9, Canada.
| | - Heidi A Neubauer
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna 1210, Austria.
| | - Gerardo Ferbeyre
- Department of Biochemistry and Molecular Medicine, Université de Montréal, C.P. 6128, Succ. Centre-Ville, CRCHUM, Montréal, QC H3C 3J7, Canada.
- CRCHUM, 900 Saint-Denis St, Montréal, QC H2X 0A9, Canada.
| |
Collapse
|
6
|
Abstract
The role of the Golgi apparatus in carcinogenesis still remains unclear. A number of structural and functional cis-, medial-, and trans-Golgi proteins as well as a complexity of metabolic pathways which they mediate may indicate a central role of the Golgi apparatus in the development and progression of cancer. Pleiotropy of cellular function of the Golgi apparatus makes it a "metabolic heart" or a relay station of a cell, which combines multiple signaling pathways involved in carcinogenesis. Therefore, any damage to or structural abnormality of the Golgi apparatus, causing its fragmentation and/or biochemical dysregulation, results in an up- or downregulation of signaling pathways and may in turn promote tumor progression, as well as local nodal and distant metastases. Three alternative or parallel models of spatial and functional Golgi organization within tumor cells were proposed: (1) compacted Golgi structure, (2) normal Golgi structure with its increased activity, and (3) the Golgi fragmentation with ministacks formation. Regardless of the assumed model, the increased activity of oncogenesis initiators and promoters with inhibition of suppressor proteins results in an increased cell motility and migration, increased angiogenesis, significantly activated trafficking kinetics, proliferation, EMT induction, decreased susceptibility to apoptosis-inducing factors, and modulating immune response to tumor cell antigens. Eventually, this will lead to the increased metastatic potential of cancer cells and an increased risk of lymph node and distant metastases. This chapter provided an overview of the current state of knowledge of selected Golgi proteins, their role in cytophysiology as well as potential involvement in tumorigenesis.
Collapse
|
7
|
Papadopoulos N, Lennartsson J, Heldin CH. PDGFRβ translocates to the nucleus and regulates chromatin remodeling via TATA element-modifying factor 1. J Cell Biol 2018; 217:1701-1717. [PMID: 29545370 PMCID: PMC5940298 DOI: 10.1083/jcb.201706118] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 01/05/2018] [Accepted: 02/01/2018] [Indexed: 12/24/2022] Open
Abstract
PDGFRβ translocates to the nucleus in a ligand-dependent manner tethered by TATA element–modifying factor 1 (TMF-1). Papadopoulos et al. show that PDGFRβ interacts with TMF-1 and Fer kinase in the nucleus, regulating chromatin remodeling by the SWI–SNF complex and controlling proliferation via a p21-dependent mechanism. Translocation of full-length or fragments of receptors to the nucleus has been reported for several tyrosine kinase receptors. In this paper, we show that a fraction of full-length cell surface platelet-derived growth factor (PDGF) receptor β (PDGFRβ) accumulates in the nucleus at the chromatin and the nuclear matrix after ligand stimulation. Nuclear translocation of PDGFRβ was dependent on PDGF-BB–induced receptor dimerization, clathrin-mediated endocytosis, β-importin, and intact Golgi, occurring in both normal and cancer cells. In the nucleus, PDGFRβ formed ligand-inducible complexes with the tyrosine kinase Fer and its substrate, TATA element–modifying factor 1 (TMF-1). PDGF-BB stimulation decreased TMF-1 binding to the transcriptional regulator Brahma-related gene 1 (Brg-1) and released Brg-1 from the SWI–SNF chromatin remodeling complex. Moreover, knockdown of TMF-1 by small interfering RNA decreased nuclear translocation of PDGFRβ and caused significant up-regulation of the Brg-1/p53-regulated cell cycle inhibitor CDKN1A (encoding p21) without affecting PDGFRβ-inducible immediate-early genes. In conclusion, nuclear interactions of PDGFRβ control proliferation by chromatin remodeling and regulation of p21 levels.
Collapse
Affiliation(s)
- Natalia Papadopoulos
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.,Science for Life Laboratory, Ludwig Institute for Cancer Research, Uppsala University, Uppsala, Sweden
| | - Johan Lennartsson
- Science for Life Laboratory, Ludwig Institute for Cancer Research, Uppsala University, Uppsala, Sweden.,Department of Pharmaceutical Biomedicine, Uppsala University, Uppsala, Sweden
| | - Carl-Henrik Heldin
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden .,Science for Life Laboratory, Ludwig Institute for Cancer Research, Uppsala University, Uppsala, Sweden
| |
Collapse
|
8
|
Identification of novel prognostic indicators for triple-negative breast cancer patients through integrative analysis of cancer genomics data and protein interactome data. Oncotarget 2018; 7:71620-71634. [PMID: 27690302 PMCID: PMC5342106 DOI: 10.18632/oncotarget.12287] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 09/22/2016] [Indexed: 12/31/2022] Open
Abstract
Triple negative breast cancers (TNBCs) are highly heterogeneous and aggressive without targeted treatment. Here, we aim to systematically dissect TNBCs from a prognosis point of view by building a subnetwork atlas for TNBC prognosis through integrating multi-dimensional cancer genomics data from The Cancer Genome Atlas (TCGA) project and the interactome data from three different interaction networks. The subnetworks are represented as the protein-protein interaction modules perturbed by multiple genetic and epigenetic interacting mechanisms contributing to patient survival. Predictive power of these subnetwork-derived prognostic models is evaluated using Monte Carlo cross-validation and the concordance index (C-index). We uncover subnetwork biomarkers of low oncogenic GTPase activity, low ubiquitin/proteasome degradation, effective protection from oxidative damage, and tightly immune response are linked to better prognosis. Such a systematic approach to integrate massive amount of cancer genomics data into clinical practice for TNBC prognosis can effectively dissect the molecular mechanisms underlying TNBC patient outcomes and provide potential opportunities to optimize treatment and develop therapeutics.
Collapse
|
9
|
Yaffe E, Hikri E, Elkis Y, Cohen O, Segal A, Makovski A, Varvak A, Shpungin S, Nir U. Oncogenic properties of a spermatogenic meiotic variant of fer kinase expressed in somatic cells. Cancer Res 2014; 74:6474-85. [PMID: 25237066 DOI: 10.1158/0008-5472.can-14-0058] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The kinase Fer and its spermatogenic meiotic variant, FerT, are coexpressed in normal testes and cancerous tumors, but whether they exert related roles in spermatogenic or malignant cells has not been known. Here, we show that Fer and FerT reside in the mitochondria of spermatogenic cells and are harnessed to the reprogrammed mitochondria of colon carcinoma cells. Both kinases bound complex I of the mitochondrial electron transport chain (ETC) in spermatogenic and in colon carcinoma cells, and silencing of either Fer or FerT was sufficient to impair the activity of this complex. Directed mitochondrial accumulation of FerT in nonmalignant NIH3T3 cells increased their ETC complex I activity, ATP production, and survival, contingent upon stress conditions caused by nutrient and oxygen deprivation. Strikingly, directed mitochondrial accumulation of FerT endowed nonmalignant cells with tumor-forming ability. Thus, recruitment of a meiotic mitochondrial component to cancer cell mitochondria highlights a pivotal role for reprogrammed mitochondria in tumorigenesis.
Collapse
Affiliation(s)
- Etai Yaffe
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Elad Hikri
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Yoav Elkis
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Ortal Cohen
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Ariela Segal
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Adar Makovski
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Alexander Varvak
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Sally Shpungin
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Uri Nir
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel.
| |
Collapse
|
10
|
Kawashima H, Obayashi A, Kawamura M, Masaki S, Tamada S, Iguchi T, Uchida J, Kuratsukuri K, Tanaka T, Nakatani T. Galectin 9 and PINCH, novel immunotherapy targets of renal cell carcinoma: a rationale to find potential tumour antigens and the resulting cytotoxic T lymphocytes induced by the derived peptides. BJU Int 2014; 113:320-32. [PMID: 24895689 DOI: 10.1111/bju.12499] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE To analyse and then generalize the mechanism by which partial or complete response is achieved among a limited number of patients with metastatic renal cell carcinoma (RCC) treated with interferon or interleukin-2. MATERIALS AND METHODS An expression library of RCC (clear-cell carcinoma) was screened using the sera of patients with metastatic RCC who benefited from partial or complete response to cytokine therapy, the postulation being that those remarkable responders obtained specific cellular immunity against RCC with the antibodies to react with the cancer antigen. Peripheral blood mononuclear-cells (PBMCs) from healthy volunteers were stimulated with the antigen-derived peptides to induce specific cytotoxic T lymphocytes (CTLs). Specific activities of CTLs were measured by ⁵¹Cr-releasing assay. RESULTS Among 15 positive clones isolated, two novel genes, galectin 9 and PINCH, were expressed at much higher levels in cancerous lesions than in normal tissues in all the patients with clear-cell carcinoma who were examined. Both HLA-A*2402-restricted and HLA-A*0201-restricted CTLs were induced by each antigen-derived peptide to exhibit specific and highly cytotoxic activities towards RCC cells. Specific CTLs were induced abundantly, as shown by flow cytometry analysis of the CTLs labelled with fluorescein isothiocyanate anti-CD107a and APC anti-CD8. The clonal expansion of the CTLs was shown by the clonality of T-cell receptor Vβ repertoires. CONCLUSION A novel approach based on clinical observations yielded promising tumour antigens as immunotherapy targets of RCC.
Collapse
|
11
|
Nakamura N. Ubiquitination regulates the morphogenesis and function of sperm organelles. Cells 2013; 2:732-50. [PMID: 24709878 PMCID: PMC3972651 DOI: 10.3390/cells2040732] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 11/12/2013] [Accepted: 11/29/2013] [Indexed: 11/29/2022] Open
Abstract
It is now understood that protein ubiquitination has diverse cellular functions in eukaryotes. The molecular mechanism and physiological significance of ubiquitin-mediated processes have been extensively studied in yeast, Drosophila and mammalian somatic cells. Moreover, an increasing number of studies have emphasized the importance of ubiquitination in spermatogenesis and fertilization. The dysfunction of various ubiquitin systems results in impaired sperm development with abnormal organelle morphology and function, which in turn is highly associated with male infertility. This review will focus on the emerging roles of ubiquitination in biogenesis, function and stability of sperm organelles in mammals.
Collapse
Affiliation(s)
- Nobuhiro Nakamura
- Department of Biological Sciences, Tokyo Institute of Technology, 4259-B13 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan.
| |
Collapse
|
12
|
Liu X, Busby J, John C, Wei J, Yuan X, Lu ML. Direct interaction between AR and PAK6 in androgen-stimulated PAK6 activation. PLoS One 2013; 8:e77367. [PMID: 24130878 PMCID: PMC3795072 DOI: 10.1371/journal.pone.0077367] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Accepted: 09/02/2013] [Indexed: 01/14/2023] Open
Abstract
A p21-activated kinase 6 (PAK6) was previously identified to be an androgen receptor (AR) interacting protein through a yeast two-hybrid screening. We used hormone responsive prostate cancer LAPC4 and LNCap cell lines as models to study the signaling events associated with androgen stimulation and PAK6. An androgen-stimulated PAK6 kinase activation was observed in LAPC4 cells expressing endogenous PAK6 and in LNCap cells ectopically expressing a wild type PAK6. This activation was likely mediated through a direct interaction between AR and PAK6 since siRNA knock-down of AR in LAPC4 cells downregulated androgen-stimulated PAK6 activation. In addition, LNCap cells expressing a non-AR-interacting PAK6 mutant exhibited dampened androgen-stimulated kinase activation. As a consequence of androgen-stimulated activation, PAK6 was phosphorylated at multiple serine/threonine residues including the AR-interacting domain of PAK6. Furthermore, androgen-stimulation promoted prostate cancer cell motility and invasion were demonstrated in LNCap cells ectopically expressing PAK6-WT. In contrast, LNCap expressing non-AR-interacting mutant PAK6 did not respond to androgen stimulation with increased cell motility and invasion. Our results demonstrate that androgen-stimulated PAK6 activation is mediated through a direct interaction between AR and PAK6 and PAK6 activation promotes prostate cancer cells motility and invasion.
Collapse
Affiliation(s)
- Xia Liu
- Urologic Research, Brigham and Women's Hospital, Department of Surgery, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jennifer Busby
- Department of Molecular Therapeutics, Scripps South Florida, Jupiter, Florida, United States of America
| | - Ciny John
- Department of Biomedical Science, Florida Atlantic University, Boca Raton, Florida, United States of America
| | - Jianning Wei
- Department of Biomedical Science, Florida Atlantic University, Boca Raton, Florida, United States of America
| | - Xin Yuan
- Division of Hematology-Oncology, Beth Israel Deaconess Medical Center, Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Michael L. Lu
- Department of Biomedical Science, Florida Atlantic University, Boca Raton, Florida, United States of America
- * E-mail:
| |
Collapse
|
13
|
Lando M, Wilting SM, Snipstad K, Clancy T, Bierkens M, Aarnes EK, Holden M, Stokke T, Sundfør K, Holm R, Kristensen GB, Steenbergen RDM, Lyng H. Identification of eight candidate target genes of the recurrent 3p12-p14 loss in cervical cancer by integrative genomic profiling. J Pathol 2013; 230:59-69. [PMID: 23335387 DOI: 10.1002/path.4168] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 11/23/2012] [Accepted: 12/31/2012] [Indexed: 12/12/2022]
Abstract
The pathogenetic role, including its target genes, of the recurrent 3p12-p14 loss in cervical cancer has remained unclear. To determine the onset of the event during carcinogenesis, we used microarray techniques and found that the loss was the most frequent 3p event, occurring in 61% of 92 invasive carcinomas, in only 2% of 43 high-grade intraepithelial lesions (CIN2/3), and in 33% of 6 CIN3 lesions adjacent to invasive carcinomas, suggesting a role in acquisition of invasiveness or early during the invasive phase. We performed an integrative DNA copy number and expression analysis of 77 invasive carcinomas, where all genes within the recurrent region were included. We selected eight genes, THOC7, PSMD6, SLC25A26, TMF1, RYBP, SHQ1, EBLN2, and GBE1, which were highly down-regulated in cases with loss, as confirmed at the protein level for RYBP and TMF1 by immunohistochemistry. The eight genes were subjected to network analysis based on the expression profiles, revealing interaction partners of proteins encoded by the genes that were coordinately regulated in tumours with loss. Several partners were shared among the eight genes, indicating crosstalk in their signalling. Gene ontology analysis showed enrichment of biological processes such as apoptosis, proliferation, and stress response in the network and suggested a relationship between down-regulation of the eight genes and activation of tumourigenic pathways. Survival analysis showed prognostic impact of the eight-gene signature that was confirmed in a validation cohort of 74 patients and was independent of clinical parameters. These results support the role of the eight candidate genes as targets of the 3p12-p14 loss in cervical cancer and suggest that the strong selection advantage of the loss during carcinogenesis might be caused by a synergetic effect of several tumourigenic processes controlled by these targets.
Collapse
Affiliation(s)
- Malin Lando
- Department of Radiation Biology, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Elkis Y, Bel S, Lerer-Goldstein T, Nyska A, Creasy DM, Shpungin S, Nir U. Testosterone deficiency accompanied by testicular and epididymal abnormalities in TMF(-/-) mice. Mol Cell Endocrinol 2013; 365:52-63. [PMID: 23000399 DOI: 10.1016/j.mce.2012.09.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 08/01/2012] [Accepted: 09/06/2012] [Indexed: 10/27/2022]
Abstract
TMF/ARA160 is a Golgi-associated protein, which is essential for spermiogenesis. In this study, we show that lack of TMF/ARA160 leads to defects in both the testis and the epididymis. In the testis, spermatid retention and extensive proliferation of Leydig cells were observed. Concomitantly, the serum levels of luteinizing hormone (LH), a stimulator of Leydig cell proliferation, were significantly increased in TMF(-/-) mice. Structural and functional defects were also seen in the epididymis. These included apoptosis of epithelial epididymal cells and sperm stasis in the cauda. Notably, the serum testosterone levels of TMF(-/-) mice were significantly lower than those of wt mice, and external testosterone administration decreased the number of apoptotic epithelial epididymal cells in TMF(-/-) animals. In summary, we show here for the first time that TMF/ARA160 participates in the control of serum testosterone levels in males, and its absence results in major testicular and epididymal defects.
Collapse
Affiliation(s)
- Yoav Elkis
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | | | | | | | | | | | | |
Collapse
|
15
|
Hou CC, Yang WX. New insights to the ubiquitin–proteasome pathway (UPP) mechanism during spermatogenesis. Mol Biol Rep 2012; 40:3213-30. [DOI: 10.1007/s11033-012-2397-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2012] [Accepted: 12/17/2012] [Indexed: 12/12/2022]
|
16
|
Migita T, Inoue S. Implications of the Golgi apparatus in prostate cancer. Int J Biochem Cell Biol 2012; 44:1872-6. [PMID: 22721754 DOI: 10.1016/j.biocel.2012.06.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2012] [Revised: 06/07/2012] [Accepted: 06/07/2012] [Indexed: 11/16/2022]
Abstract
The classical view of the Golgi apparatus is of a small membranous organelle involved in protein transport and secretion. Recent descriptions of the molecular network connecting the Golgi to other organelles demonstrate the essential roles of the Golgi in cellular activities as a stress sensor, apoptosis trigger, lipid/protein modifier, mitotic checkpoint, and a mediator of malignant transformation. Thus, the Golgi function should have a fundamental impact on cancer cell survival. Prostate cancer is initially responsive to androgenic hormones; however, it almost invariably progresses to a castration-refractory or hormone-insensitive state. Nevertheless, androgen signaling remains active at this stage and is important as a therapeutic target. Certain Golgi-associated molecules have recently been demonstrated to be regulated by androgen action, and the Golgi is emerging as a new therapeutic target in prostate cancer. The key Golgi-associated molecules essential for prostate cancer development and the potential therapeutic options targeting the Golgi apparatus are discussed.
Collapse
Affiliation(s)
- Toshiro Migita
- Department of Anti-Aging Medicine, Graduate School of Medicine, The University of Tokyo, Japan
| | | |
Collapse
|
17
|
Bel S, Elkis Y, Lerer-Goldstein T, Nyska A, Shpungin S, Nir U. Loss of TMF/ARA160 protein renders colonic mucus refractory to bacterial colonization and diminishes intestinal susceptibility to acute colitis. J Biol Chem 2012; 287:25631-9. [PMID: 22553199 DOI: 10.1074/jbc.m112.364786] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
TMF/ARA160 is a Golgi-associated protein with several cellular functions, among them direction of the NF-κB subunit, p65 RelA, to ubiquitination and proteasomal degradation in stressed cells. We sought to investigate the role of TMF/ARA160 under imposed stress conditions in vivo. TMF(-/-) and wild-type (WT) mice were treated with the ulcerative agent dextran sulfate sodium (DSS), and the severity of the inflicted acute colitis was determined. TMF(-/-) mice were found to be significantly less susceptible to DSS-induced colitis, with profoundly less bacterial penetration into the colonic epithelia. Surprisingly, unlike in WT mice, no bacterial colonies were visualized in colons of healthy untreated TMF(-/-) mice, indicating the constitutive resistance of TMF(-/-) colonic mucus to bacterial retention and penetration. Gene expression analysis of colon tissues from unchallenged TMF(-/-) mice revealed 5-fold elevated transcription of the muc2 gene, which encodes the major component of the colonic mucus gel, the MUC2 mucin. Accordingly, the morphology of the colonic mucus in TMF(-/-) mice was found to differ from the mucus structure in WT colons. The NF-κB subunit, p65, a well known transcription inducer of muc2, was up-regulated significantly in TMF(-/-) intestinal epithelial cells. However, this did not cause spontaneous inflammation or increased colonic crypt cell proliferation. Collectively, our findings demonstrate that absence of TMF/ARA160 renders the colonic mucus refractory to bacterial colonization and the large intestine less susceptible to the onset of colitis.
Collapse
Affiliation(s)
- Shai Bel
- The Mina and Everard Goodman Faculty of Life-Science, Bar-Ilan University, Ramat-Gan 52900, Israel
| | | | | | | | | | | |
Collapse
|
18
|
Mosakhani N, Sarhadi VK, Borze I, Karjalainen-Lindsberg ML, Sundström J, Ristamäki R, Osterlund P, Knuutila S. MicroRNA profiling differentiates colorectal cancer according to KRAS status. Genes Chromosomes Cancer 2011; 51:1-9. [PMID: 21922590 DOI: 10.1002/gcc.20925] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Accepted: 08/08/2011] [Indexed: 02/06/2023] Open
Abstract
Recent studies have shown the important role of microRNAs (miRNAs) in a variety of biological processes, and in its ability to distinguish tumors according to their prognostic and predictive properties. To identify miRNA signatures associated with colorectal carcinoma (CRC) and with KRAS status, we studied, using Agilent's miRNA microarrays, miRNA expression in primary tumors from 55 metastatic CRC patients, including 15 with mutant and 40 with wild-type KRAS. Comparing these with normal colon tissue, we identified 49 miRNAs--including 19 novel miRNAs--significantly deregulated in tumor tissue. The presence of the KRAS mutation was associated with up-regulation of miR-127-3p, miR-92a, and miR-486-3p and down-regulation of miR-378. Increased expression of miR-127-3p and miR-92a in KRAS mutant tumors was significantly confirmed by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) (P < 0.05). We identified some predicted target genes of differentially expressed miRNAs between mutated and wild-type KRAS, such as RSG3 and TOB1, which are involved in apoptosis and proliferation. Target prediction and pathway analysis suggest a possible role for deregulated miRNAs in nicotinamide adenine dinucleotide phosphate (NADPH) regeneration and G protein-coupled receptor signaling pathways.
Collapse
Affiliation(s)
- Neda Mosakhani
- Department of Pathology, Haartman Institute and HUSLAB, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Lerer-Goldshtein T, Bel S, Shpungin S, Pery E, Motro B, Goldstein RS, Bar-Sheshet SI, Breitbart H, Nir U. TMF/ARA160: A key regulator of sperm development. Dev Biol 2010; 348:12-21. [DOI: 10.1016/j.ydbio.2010.07.033] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2010] [Revised: 07/21/2010] [Accepted: 07/27/2010] [Indexed: 11/28/2022]
|