1
|
Sun Y, Ma H. Application of three-dimensional cell culture technology in screening anticancer drugs. Biotechnol Lett 2023; 45:1073-1092. [PMID: 37421554 DOI: 10.1007/s10529-023-03410-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/10/2023]
Abstract
The drug development process involves a variety of drug activity evaluations, which can determine drug efficacy, strictly analyze the biological indicators after the drug action, and use these indicators as the preclinical drug evaluation criteria. At present, most of the screening of preclinical anticancer drugs mainly relies on traditional 2D cell culture. However, this traditional technology cannot simulate the tumor microenvironment in vivo, let alone reflect the characteristics of solid tumors in vivo, and has a relatively poor ability to predict drug activity. 3D cell culture is a technology between 2D cell culture and animal experiments, which can better reflect the biological state in vivo and reduce the consumption of animal experiments. 3D cell culture can link the individual study of cells with the study of the whole organism, reproduce in vitro the biological phenotype of cells in vivo more greatly, and thus predict the activity and resistance of anti-tumor drugs more accurately. In this paper, the common techniques of 3D cell culture are discussed, with emphasis on its main advantages and application in the evaluation of anti-tumor resistance, which can provide strategies for the screening of anti-tumor drugs.
Collapse
Affiliation(s)
- Yaqian Sun
- Oncology laboratory, Faculty of Environment and Life, Beijing University of Technology, Beijing, 100124, China.
| | - Haiyang Ma
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi, 030024, People's Republic of China
| |
Collapse
|
2
|
Uno K, Iyoshi S, Yoshihara M, Kitami K, Mogi K, Fujimoto H, Sugiyama M, Koya Y, Yamakita Y, Nawa A, Kanayama T, Tomita H, Enomoto A, Kajiyama H. Metastatic Voyage of Ovarian Cancer Cells in Ascites with the Assistance of Various Cellular Components. Int J Mol Sci 2022; 23:4383. [PMID: 35457198 PMCID: PMC9031612 DOI: 10.3390/ijms23084383] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/10/2022] [Accepted: 04/12/2022] [Indexed: 12/16/2022] Open
Abstract
Epithelial ovarian cancer (EOC) is the most lethal gynecologic malignancy and has a unique metastatic route using ascites, known as the transcoelomic root. However, studies on ascites and contained cellular components have not yet been sufficiently clarified. In this review, we focus on the significance of accumulating ascites, contained EOC cells in the form of spheroids, and interaction with non-malignant host cells. To become resistant against anoikis, EOC cells form spheroids in ascites, where epithelial-to-mesenchymal transition stimulated by transforming growth factor-β can be a key pathway. As spheroids form, EOC cells are also gaining the ability to attach and invade the peritoneum to induce intraperitoneal metastasis, as well as resistance to conventional chemotherapy. Recently, accumulating evidence suggests that EOC spheroids in ascites are composed of not only cancer cells, but also non-malignant cells existing with higher abundance than EOC cells in ascites, including macrophages, mesothelial cells, and lymphocytes. Moreover, hetero-cellular spheroids are demonstrated to form more aggregated spheroids and have higher adhesion ability for the mesothelial layer. To improve the poor prognosis, we need to elucidate the mechanisms of spheroid formation and interactions with non-malignant cells in ascites that are a unique tumor microenvironment for EOC.
Collapse
Affiliation(s)
- Kaname Uno
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Nagoya University, Nagoya 466-8560, Japan; (K.U.); (S.I.); (K.K.); (K.M.); (H.F.); (Y.Y.); (H.K.)
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, 223-62 Lund, Sweden
| | - Shohei Iyoshi
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Nagoya University, Nagoya 466-8560, Japan; (K.U.); (S.I.); (K.K.); (K.M.); (H.F.); (Y.Y.); (H.K.)
- Spemann Graduate School of Biology and Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Masato Yoshihara
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Nagoya University, Nagoya 466-8560, Japan; (K.U.); (S.I.); (K.K.); (K.M.); (H.F.); (Y.Y.); (H.K.)
| | - Kazuhisa Kitami
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Nagoya University, Nagoya 466-8560, Japan; (K.U.); (S.I.); (K.K.); (K.M.); (H.F.); (Y.Y.); (H.K.)
| | - Kazumasa Mogi
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Nagoya University, Nagoya 466-8560, Japan; (K.U.); (S.I.); (K.K.); (K.M.); (H.F.); (Y.Y.); (H.K.)
| | - Hiroki Fujimoto
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Nagoya University, Nagoya 466-8560, Japan; (K.U.); (S.I.); (K.K.); (K.M.); (H.F.); (Y.Y.); (H.K.)
- Discipline of Obstetrics and Gynecology, Adelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide 5005, Australia
| | - Mai Sugiyama
- Bell Research Center, Department of Obstetrics and Gynecology Collaborative Research, Graduate School of Medicine, Nagoya University, Nagoya 466-8560, Japan; (M.S.); (Y.K.); (A.N.)
| | - Yoshihiro Koya
- Bell Research Center, Department of Obstetrics and Gynecology Collaborative Research, Graduate School of Medicine, Nagoya University, Nagoya 466-8560, Japan; (M.S.); (Y.K.); (A.N.)
| | - Yoshihiko Yamakita
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Nagoya University, Nagoya 466-8560, Japan; (K.U.); (S.I.); (K.K.); (K.M.); (H.F.); (Y.Y.); (H.K.)
- Bell Research Center, Department of Obstetrics and Gynecology Collaborative Research, Graduate School of Medicine, Nagoya University, Nagoya 466-8560, Japan; (M.S.); (Y.K.); (A.N.)
| | - Akihiro Nawa
- Bell Research Center, Department of Obstetrics and Gynecology Collaborative Research, Graduate School of Medicine, Nagoya University, Nagoya 466-8560, Japan; (M.S.); (Y.K.); (A.N.)
| | - Tomohiro Kanayama
- Department of Tumor Pathology, Graduate School of Medicine, Gifu University, Gifu 501-1194, Japan; (T.K.); (H.T.)
| | - Hiroyuki Tomita
- Department of Tumor Pathology, Graduate School of Medicine, Gifu University, Gifu 501-1194, Japan; (T.K.); (H.T.)
| | - Atsushi Enomoto
- Department of Pathology, Graduate School of Medicine, Nagoya University, Nagoya 466-8560, Japan;
| | - Hiroaki Kajiyama
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Nagoya University, Nagoya 466-8560, Japan; (K.U.); (S.I.); (K.K.); (K.M.); (H.F.); (Y.Y.); (H.K.)
| |
Collapse
|
3
|
Ghoneum A, Almousa S, Warren B, Abdulfattah AY, Shu J, Abouelfadl H, Gonzalez D, Livingston C, Said N. Exploring the clinical value of tumor microenvironment in platinum-resistant ovarian cancer. Semin Cancer Biol 2021; 77:83-98. [PMID: 33476723 PMCID: PMC8286277 DOI: 10.1016/j.semcancer.2020.12.024] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 12/20/2020] [Accepted: 12/30/2020] [Indexed: 12/13/2022]
Abstract
Platinum resistance in epithelial ovarian cancer (OvCa) is rising at an alarming rate, with recurrence of chemo-resistant high grade serous OvCa (HGSC) in roughly 75 % of all patients. Additionally, HGSC has an abysmal five-year survival rate, standing at 39 % and 17 % for FIGO stages III and IV, respectively. Herein we review the crucial cellular interactions between HGSC cells and the cellular and non-cellular components of the unique peritoneal tumor microenvironment (TME). We highlight the role of the extracellular matrix (ECM), ascitic fluid as well as the mesothelial cells, tumor associated macrophages, neutrophils, adipocytes and fibroblasts in platinum-resistance. Moreover, we underscore the importance of other immune-cell players in conferring resistance, including natural killer cells, myeloid-derived suppressive cells (MDSCs) and T-regulatory cells. We show the clinical relevance of the key platinum-resistant markers and their correlation with the major pathways perturbed in OvCa. In parallel, we discuss the effect of immunotherapies in re-sensitizing platinum-resistant patients to platinum-based drugs. Through detailed analysis of platinum-resistance in HGSC, we hope to advance the development of more effective therapy options for this aggressive disease.
Collapse
Affiliation(s)
- Alia Ghoneum
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC, 27157, USA
| | - Sameh Almousa
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC, 27157, USA
| | - Bailey Warren
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC, 27157, USA
| | - Ammar Yasser Abdulfattah
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC, 27157, USA; Alexandria University School of Medicine, Alexandria, Egypt
| | - Junjun Shu
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC, 27157, USA; The Third Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Hebatullah Abouelfadl
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC, 27157, USA; Department of Genetics, Animal Health Research Institute, Dokki, Egypt
| | - Daniela Gonzalez
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC, 27157, USA
| | - Christopher Livingston
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC, 27157, USA
| | - Neveen Said
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC, 27157, USA; Departments of Urology, Wake Forest University School of Medicine, Winston Salem, NC, 27157, USA; Comprehensive Cancer Center, Winston Salem, NC, 27157, USA.
| |
Collapse
|
4
|
EL-Shahid ZA, Abd EL-Hady FK, Fayad W, Abdel-Aziz MS, Abd EL-Azeem EM, Ahmed EK. Antimicrobial, Cytotoxic, and α-Glucosidase Inhibitory Potentials Using the One Strain Many Compounds Technique for Red Sea Soft Corals Associated Fungi’ Secondary Metabolites and Chemical Composition Correlations. JOURNAL OF BIOLOGICALLY ACTIVE PRODUCTS FROM NATURE 2021; 11:467-489. [DOI: 10.1080/22311866.2021.1978862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 09/01/2023]
Affiliation(s)
- Zeinab A. EL-Shahid
- Chemistry of Natural and Microbial Products Department, National Research Centre, Giza, Egypt
| | - Faten K. Abd EL-Hady
- Chemistry of Natural and Microbial Products Department, National Research Centre, Giza, Egypt
| | - Walid Fayad
- Drug Bioassay-Cell Culture Laboratory, Pharmacognosy Department, National Research Centre, Giza, Egypt
| | | | | | - Emad K. Ahmed
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| |
Collapse
|
5
|
Lee HR, Kim DW, Jones VO, Choi Y, Ferry VE, Geller MA, Azarin SM. Sonosensitizer-Functionalized Graphene Nanoribbons for Adhesion Blocking and Sonodynamic Ablation of Ovarian Cancer Spheroids. Adv Healthc Mater 2021; 10:e2001368. [PMID: 34050609 PMCID: PMC8550295 DOI: 10.1002/adhm.202001368] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 03/18/2021] [Indexed: 11/05/2022]
Abstract
Advanced stage ovarian cancer is challenging to treat due to widespread seeding of tumor spheroids throughout the mesothelial lining of the peritoneal cavity. In this work, a therapeutic strategy using graphene nanoribbons (GNR) functionalized with 4-arm polyethylene glycol (PEG) and chlorin e6 (Ce6), a sonosensitizer, to target metastatic ovarian cancer spheroids is reported. GNR-PEG-Ce6 adsorbs onto the spheroids and disrupts their adhesion to extracellular matrix proteins or LP-9 mesothelial cells. Furthermore, for spheroids that do adhere, GNR-PEG-Ce6 delays spheroid disaggregation and spreading as well as mesothelial clearance, key metastatic processes following adhesion. Owing to the sonodynamic effects of Ce6 and its localized delivery via the biomaterial, GNR-PEG-Ce6 can kill ovarian cancer spheroids adhered to LP-9 cell monolayers when combined with mild ultrasound irradiation. The interaction with GNR-PEG-Ce6 also loosens cell-cell adhesions within the spheroids, rendering them more susceptible to treatment with the chemotherapeutic agents cisplatin and paclitaxel, which typically have difficulty in penetrating ovarian cancer spheroids. Thus, this material can facilitate effective chemotherapeutic and sonodynamic combination therapies. Finally, the adhesion inhibiting and sonodynamic effects of GNR-PEG-Ce6 are also validated with tumor spheroids derived from the ascites fluid of ovarian cancer patients, providing evidence of the translational potential of this biomaterial approach.
Collapse
Affiliation(s)
- Hak Rae Lee
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Dae Woo Kim
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Victoria O Jones
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Yunkyu Choi
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Vivian E Ferry
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Melissa A Geller
- Department of Obstetrics, Gynecology and Women's Health, Division of Gynecologic Oncology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Samira M Azarin
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, 55455, USA
| |
Collapse
|
6
|
Ding Y, Labitzky V, Legler K, Qi M, Schumacher U, Schmalfeldt B, Stürken C, Oliveira-Ferrer L. Molecular characteristics and tumorigenicity of ascites-derived tumor cells: mitochondrial oxidative phosphorylation as a novel therapy target in ovarian cancer. Mol Oncol 2021; 15:3578-3595. [PMID: 34060699 PMCID: PMC8637562 DOI: 10.1002/1878-0261.13028] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 04/16/2021] [Accepted: 05/28/2021] [Indexed: 12/13/2022] Open
Abstract
Ovarian cancer disseminates primarily intraperitoneally. Detached tumor cell aggregates (spheroids) from the primary tumor are regarded as ‘metastatic units’ that exhibit a low sensitivity to classical chemotherapy, probably due to their unique molecular characteristics. We have analyzed the cellular composition of ascites from OvCa patients, using flow cytometry, and studied their behavior in vitro and in vivo. We conclude that ascites‐derived cultured cells from OvCa patients give rise to two subpopulations: adherent cells and non‐adherent cells. Here, we found that the AD population includes mainly CD90+ cells with highly proliferative rates in vitro but no tumorigenic potential in vivo, whereas the NAD population contains principally tumor cell spheroids (EpCAM+/CD24+) with low proliferative potential in vitro. Enriched tumor cell spheroids from the ascites of high‐grade serous OvCA patients, obtained using cell strainers, were highly tumorigenic in vivo and their metastatic spread pattern precisely resembled the tumor dissemination pattern found in the corresponding patients. Comparative transcriptome analyses from ascites‐derived tumor cell spheroids (n = 10) versus tumor samples from different metastatic sites (n = 30) revealed upregulation of genes involved in chemoresistance (TGM1, HSPAs, MT1s), cell adhesion and cell‐barrier integrity (PKP3, CLDNs, PPL), and the oxidative phosphorylation process. Mitochondrial markers (mass and membrane potential) showed a reduced mitochondrial function in tumoroids from tumor tissue compared with ascites‐derived tumor spheroids in flow cytometry analysis. Interestingly, response to OXPHOS inhibition by metformin and IACS010759 in tumor spheroids correlated with the extent of mitochondrial membrane potential measured by fluorescence‐activated cell sorting. Our data contribute to a better understanding of the biology of ovarian cancer spheroids and identify the OXPHOS pathway as new potential treatment option in advanced ovarian cancer.
Collapse
Affiliation(s)
- Yi Ding
- Department of Gynecology, University Medical Center Hamburg-Eppendorf, Germany
| | - Vera Labitzky
- Institute of Anatomy and Experimental Morphology, University Medical Center Hamburg-Eppendorf, Germany
| | - Karen Legler
- Department of Gynecology, University Medical Center Hamburg-Eppendorf, Germany
| | - Minyue Qi
- Bioinformatic Core Facility, University Medical Center Hamburg-Eppendorf, Germany
| | - Udo Schumacher
- Institute of Anatomy and Experimental Morphology, University Medical Center Hamburg-Eppendorf, Germany
| | - Barbara Schmalfeldt
- Department of Gynecology, University Medical Center Hamburg-Eppendorf, Germany
| | - Christine Stürken
- Institute of Anatomy and Experimental Morphology, University Medical Center Hamburg-Eppendorf, Germany
| | | |
Collapse
|
7
|
Koch J, Mönch D, Maaß A, Gromoll C, Hehr T, Leibold T, Schlitt HJ, Dahlke MH, Renner P. Three dimensional cultivation increases chemo- and radioresistance of colorectal cancer cell lines. PLoS One 2021; 16:e0244513. [PMID: 33395433 PMCID: PMC7781370 DOI: 10.1371/journal.pone.0244513] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 12/10/2020] [Indexed: 01/09/2023] Open
Abstract
Although 2D cell cultures are commonly used to predict therapy response, it has become clear that 3D cultures may better mimic the in vivo situation and offer the possibility of tailoring translational clinical approaches. Here, we compared the response of 2D and 3D colorectal cancer (CRC) cell lines to irradiation and chemotherapy. Classic 2D cultures and 3D spheroids of CRC cell lines (CaCo2, Colo205, HCT116, SW480) were thoroughly established, then irradiated with doses of 1, 4, or 10 Gy, using a clinical-grade linear accelerator. The response was assessed by immunohistochemistry, flow cytometry, and TUNEL assays. Upon irradiation, CRC 3D spheroids were morphologically altered. After irradiation with 10 Gy, annexin V/PI staining revealed a 1.8- to 4-fold increase in the apoptosis rate in the 2D cell cultures (95% CI 3.24±0.96), and a 1.5- to 2.4-fold increase in the 3D spheroids (95% CI 1.56±0.41). Irradiation with 1 Gy caused 3- and 4-fold increases in TUNEL positive cells in the CaCo2 and HCT116 (p = 0.01) 2D cultures, respectively, compared with a 2-fold increase in the 3D spheroids. Furthermore, the 2D and 3D cultures responded differently to chemotherapy; the 3D cultures were more resistant to 5-FU and cisplatin, but not to doxorubicin and mitomycin C, than the 2D cultures. Taken together, CRC cells cultured as 3D spheroids displayed markedly higher resistance to irradiation therapy and selected chemotherapeutic drugs than 2D cultures. This in vitro difference must be considered in future approaches for determining the ideal in vitro systems that mimic human disease.
Collapse
Affiliation(s)
- Jana Koch
- Dr. Margarete Fischer-Bosch Institute for Clinical Pharmacology, Stuttgart, Germany
- University of Tübingen, Tübingen, Germany
| | - Dina Mönch
- Dr. Margarete Fischer-Bosch Institute for Clinical Pharmacology, Stuttgart, Germany
- University of Tübingen, Tübingen, Germany
| | - Annika Maaß
- Dr. Margarete Fischer-Bosch Institute for Clinical Pharmacology, Stuttgart, Germany
- University of Tübingen, Tübingen, Germany
| | - Christian Gromoll
- Department of Radiation Therapy, Robert-Bosch-Krankenhaus, Stuttgart, Germany
- Department of Radiation Therapy, Marienhospital, Stuttgart, Germany
- University of Stuttgart, Stuttgart, Germany
| | - Thomas Hehr
- Department of Radiation Therapy, Robert-Bosch-Krankenhaus, Stuttgart, Germany
- Department of Radiation Therapy, Marienhospital, Stuttgart, Germany
| | - Tobias Leibold
- Department of General and Visceral Surgery, Robert-Bosch-Krankenhaus, Stuttgart, Germany
| | | | - Marc-H. Dahlke
- Department of General and Visceral Surgery, Robert-Bosch-Krankenhaus, Stuttgart, Germany
| | - Philipp Renner
- Department of General and Visceral Surgery, Robert-Bosch-Krankenhaus, Stuttgart, Germany
- University Medical Centre Regensburg, Regensburg, Germany
- * E-mail:
| |
Collapse
|
8
|
Lee SW, Jung DJ, Jeong GS. Gaining New Biological and Therapeutic Applications into the Liver with 3D In Vitro Liver Models. Tissue Eng Regen Med 2020; 17:731-745. [PMID: 32207030 PMCID: PMC7710770 DOI: 10.1007/s13770-020-00245-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Three-dimensional (3D) cell cultures with architectural and biomechanical properties similar to those of natural tissue have been the focus for generating liver tissue. Microarchitectural organization is believed to be crucial to hepatic function, and 3D cell culture technologies have enabled the construction of tissue-like microenvironments, thereby leading to remarkable progress in vitro models of human tissue and organs. Recently, to recapitulate the 3D architecture of tissues, spheroids and organoids have become widely accepted as new practical tools for 3D organ modeling. Moreover, the combination of bioengineering approach offers the promise to more accurately model the tissue microenvironment of human organs. Indeed, the employment of sophisticated bioengineered liver models show long-term viability and functional enhancements in biochemical parameters and disease-orient outcome. RESULTS Various 3D in vitro liver models have been proposed as a new generation of liver medicine. Likewise, new biomedical engineering approaches and platforms are available to more accurately replicate the in vivo 3D microarchitectures and functions of living organs. This review aims to highlight the recent 3D in vitro liver model systems, including micropatterning, spheroids, and organoids that are either scaffold-based or scaffold-free systems. Finally, we discuss a number of challenges that will need to be addressed moving forward in the field of liver tissue engineering for biomedical applications. CONCLUSION The ongoing development of biomedical engineering holds great promise for generating a 3D biomimetic liver model that recapitulates the physiological and pathological properties of the liver and has biomedical applications.
Collapse
Affiliation(s)
- Sang Woo Lee
- Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center, 88 Olympic-Ro 43 Gil, Songpa-Gu, Seoul, 05505, Republic of Korea
| | - Da Jung Jung
- Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center, 88 Olympic-Ro 43 Gil, Songpa-Gu, Seoul, 05505, Republic of Korea
| | - Gi Seok Jeong
- Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center, 88 Olympic-Ro 43 Gil, Songpa-Gu, Seoul, 05505, Republic of Korea.
- Department of Convergence Medicine, University of Ulsan College of Medicine, 88 Olympic-Ro 43 Gil, Songpa-Gu, Seoul, 05505, Republic of Korea.
| |
Collapse
|
9
|
Alzeeb G, Metges JP, Corcos L, Le Jossic-Corcos C. Three-Dimensional Culture Systems in Gastric Cancer Research. Cancers (Basel) 2020; 12:E2800. [PMID: 33003476 PMCID: PMC7601358 DOI: 10.3390/cancers12102800] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/25/2020] [Accepted: 09/27/2020] [Indexed: 12/14/2022] Open
Abstract
Gastric cancer (GC), which includes cancer of the esophagus, the oesophagogastric junction, and the stomach fundus, is highly deadly with strong regional influence, Asia being the most affected. GC is often detected at late stages, with 30% of metastatic cases at diagnosis. Many authors have devised models to both unravel the mechanisms of GC development and to evaluate candidate therapeutics. Among these models, 2D-cell cultures are progressively replaced by 3D-cell cultures that recapitulate, much more comprehensively, tumor cellular and genetic heterogeneity, as well as responsiveness to environmental changes, such as exposure to drugs or irradiation. With respect to the specifics of GC, there are high hopes from such model systems, especially with the aim of identifying prognostic markers and novel drug targets.
Collapse
Affiliation(s)
- George Alzeeb
- Inserm, University Brest, EFS, UMR 1078, GGB, F-29200 Brest, France; (G.A.); (L.C.)
| | - Jean-Philippe Metges
- CHU de Brest, Inserm, University Brest, EFS, UMR 1078, GGB, F-29200 Brest, France;
| | - Laurent Corcos
- Inserm, University Brest, EFS, UMR 1078, GGB, F-29200 Brest, France; (G.A.); (L.C.)
- CHU de Brest, Inserm, University Brest, EFS, UMR 1078, GGB, F-29200 Brest, France;
| | | |
Collapse
|
10
|
Savić A, Gligorijević N, Aranđelović S, Dojčinović B, Kaczmarek AM, Radulović S, Van Deun R, Van Hecke K. Antitumor activity of organoruthenium complexes with chelate aromatic ligands, derived from 1,10-phenantroline: Synthesis and biological activity. J Inorg Biochem 2020; 202:110869. [DOI: 10.1016/j.jinorgbio.2019.110869] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/16/2019] [Accepted: 09/24/2019] [Indexed: 02/08/2023]
|
11
|
Perego P, Hempel G, Linder S, Bradshaw TD, Larsen AK, Peters GJ, Phillips RM. Cellular pharmacology studies of anticancer agents: recommendations from the EORTC-PAMM group. Cancer Chemother Pharmacol 2017; 81:427-441. [PMID: 29285635 DOI: 10.1007/s00280-017-3502-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 12/17/2017] [Indexed: 02/07/2023]
|
12
|
Tanenbaum LM, Mantzavinou A, Subramanyam KS, del Carmen MG, Cima MJ. Ovarian cancer spheroid shrinkage following continuous exposure to cisplatin is a function of spheroid diameter. Gynecol Oncol 2017; 146:161-169. [DOI: 10.1016/j.ygyno.2017.04.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 04/18/2017] [Accepted: 04/20/2017] [Indexed: 10/19/2022]
|
13
|
Cirigliano SM, Díaz Bessone MI, Berardi DE, Flumian C, Bal de Kier Joffé ED, Perea SE, Farina HG, Todaro LB, Urtreger AJ. The synthetic peptide CIGB-300 modulates CK2-dependent signaling pathways affecting the survival and chemoresistance of non-small cell lung cancer cell lines. Cancer Cell Int 2017; 17:42. [PMID: 28373828 PMCID: PMC5374619 DOI: 10.1186/s12935-017-0413-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Accepted: 03/26/2017] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Lung cancer is the most frequently diagnosed cancer and the leading cause of cancer-related deaths worldwide. Up to 80% of cancer patients are classified as non-small-cell lung cancer (NSCLC) and cisplatin remains as the gold standard chemotherapy treatment, despite its limited efficacy due to both intrinsic and acquired resistance. The CK2 is a Ser/Thr kinase overexpressed in various types of cancer, including lung cancer. CIGB-300 is an antitumor peptide with a novel mechanism of action, since it binds to CK2 substrates thus preventing the enzyme activity. The aim of this work was to analyze the effects of CIGB-300 treatment targeting CK2-dependent signaling pathways in NSCLC cell lines and whether it may help improve current chemotherapy treatment. METHODS The human NSCLC cell lines NCI-H125 and NIH-A549 were used. Tumor spheroids were obtained through the hanging-drop method. A cisplatin resistant A549 cell line was obtained by chronic administration of cisplatin. Cell viability, apoptosis, immunoblotting, immunofluorescence and luciferase reporter assays were used to assess CIGB-300 effects. A luminescent assay was used to monitor proteasome activity. RESULTS We demonstrated that CIGB-300 induces an anti-proliferative response both in monolayer- and three-dimensional NSCLC models, presenting rapid and complete peptide uptake. This effect was accompanied by the inhibition of the CK2-dependent canonical NF-κB pathway, evidenced by reduced RelA/p65 nuclear levels and NF-κB protein targets modulation in both lung cancer cell lines, as well as conditionally reduced NF-κB transcriptional activity. In addition, NF-κB modulation was associated with enhanced proteasome activity, possibly through its α7/C8 subunit. Neither the peptide nor a classical CK2 inhibitor affected cytoplasmic β-CATENIN basal levels. Given that NF-κB activation has been linked to cisplatin-induced resistance, we explored whether CIGB-300 could bring additional therapeutic benefits to the standard cisplatin treatment. We established a resistant cell line that showed higher p65 nuclear levels after cisplatin treatment as compared with the parental cell line. Remarkably, the cisplatin-resistant cell line became more sensitive to CIGB-300 treatment. CONCLUSIONS Our data provide new insights into CIGB-300 mechanism of action and suggest clinical potential on current NSCLC therapy.
Collapse
Affiliation(s)
- Stéfano M Cirigliano
- Universidad de Buenos Aires, Instituto de Oncología "Ángel H. Roffo", Área Investigaciones, Av. San Martín 5481, Buenos Aires, Argentina.,CONICET, Buenos Aires, Argentina
| | - María I Díaz Bessone
- Universidad de Buenos Aires, Instituto de Oncología "Ángel H. Roffo", Área Investigaciones, Av. San Martín 5481, Buenos Aires, Argentina.,CONICET, Buenos Aires, Argentina
| | - Damián E Berardi
- Universidad de Buenos Aires, Instituto de Oncología "Ángel H. Roffo", Área Investigaciones, Av. San Martín 5481, Buenos Aires, Argentina
| | - Carolina Flumian
- Universidad de Buenos Aires, Instituto de Oncología "Ángel H. Roffo", Área Investigaciones, Av. San Martín 5481, Buenos Aires, Argentina
| | - Elisa D Bal de Kier Joffé
- Universidad de Buenos Aires, Instituto de Oncología "Ángel H. Roffo", Área Investigaciones, Av. San Martín 5481, Buenos Aires, Argentina.,CONICET, Buenos Aires, Argentina
| | - Silvio E Perea
- Laboratorio de Oncología Molecular, División de Productos Farmacéuticos, Centro de Genética Ingeniería y Biotecnología (CIGB), Havana, Cuba
| | - Hernán G Farina
- CONICET, Buenos Aires, Argentina.,Laboratorio de Oncología Molecular, Universidad Nacional de Quilmes, Bernal, Buenos Aires, Argentina
| | - Laura B Todaro
- Universidad de Buenos Aires, Instituto de Oncología "Ángel H. Roffo", Área Investigaciones, Av. San Martín 5481, Buenos Aires, Argentina.,CONICET, Buenos Aires, Argentina
| | - Alejandro J Urtreger
- Universidad de Buenos Aires, Instituto de Oncología "Ángel H. Roffo", Área Investigaciones, Av. San Martín 5481, Buenos Aires, Argentina.,CONICET, Buenos Aires, Argentina
| |
Collapse
|
14
|
Kim S, Kim B, Song YS. Ascites modulates cancer cell behavior, contributing to tumor heterogeneity in ovarian cancer. Cancer Sci 2016; 107:1173-8. [PMID: 27297561 PMCID: PMC5021036 DOI: 10.1111/cas.12987] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 06/09/2016] [Accepted: 06/13/2016] [Indexed: 02/06/2023] Open
Abstract
Malignant ascites constitute a unique tumor microenvironment providing a physical structure for the accumulation of cellular and acellular components. Ascites is initiated and maintained by physical and biological factors resulting from underlying disease and forms an ecosystem that contributes to disease progression. It has been demonstrated that the cellular contents and the molecular signatures of ascites change continuously during the course of a disease. Over the past decade, increasing attention has been given to the characterization of components of ascites and their role in the progression of ovarian cancer, the most malignant gynecologic cancer in women. This review will discuss the role of ascites in disease progression, in terms of modulating cancer cell behavior and contributing to tumor heterogeneity.
Collapse
Affiliation(s)
- Soochi Kim
- Interdisciplinary Program in Cancer Biology, College of Medicine, Seoul National University, Seoul, Korea.,Cancer Research Institute, Seoul National University, Seoul, Korea
| | - Boyun Kim
- Cancer Research Institute, Seoul National University, Seoul, Korea.,Nano System Institute, Seoul National University, Seoul, Korea
| | - Yong Sang Song
- Interdisciplinary Program in Cancer Biology, College of Medicine, Seoul National University, Seoul, Korea. .,Cancer Research Institute, Seoul National University, Seoul, Korea. .,Biomodulation, Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea. .,Department of Obstetrics and Gynecology, Seoul National University, Seoul, Korea.
| |
Collapse
|
15
|
Chariou PL, Lee KL, Pokorski JK, Saidel GM, Steinmetz NF. Diffusion and Uptake of Tobacco Mosaic Virus as Therapeutic Carrier in Tumor Tissue: Effect of Nanoparticle Aspect Ratio. J Phys Chem B 2016; 120:6120-9. [PMID: 27045770 DOI: 10.1021/acs.jpcb.6b02163] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Nanoparticle-based technologies, including platforms derived from plant viruses, hold great promise for targeting and delivering cancer therapeutics to solid tumors by overcoming dose-limiting toxicities associated with chemotherapies. A growing body of data indicates advantageous margination and penetration properties of high aspect-ratio nanoparticles, which enhance payload delivery, resulting in increased efficacy. Our lab has demonstrated that elongated rod-shaped and filamentous macromolecular nucleoprotein assemblies from plant viruses have higher tissue diffusion rates than spherical particles. In this study, we developed a mathematical model to quantify diffusion and uptake of tobacco mosaic virus (TMV) in a spheroid system approximating a capillary-free segment of a solid tumor. Model simulations predict TMV concentration distribution with time in a tumor spheroid for different sizes and cell densities. From simulations of TMV concentration distribution, we can quantify the effect of TMV aspect ratio (e.g., nanorod length-to-width) with and without cellular uptake by modulated surface chemistry. This theoretical analysis can be applied to other viral or nonviral delivery systems to complement the experimental development of the next generation of nanotherapeutics.
Collapse
Affiliation(s)
- Paul L Chariou
- Department of Biomedical Engineering, Case Western Reserve University Schools of Medicine and Engineering , Cleveland, Ohio 44106, United States
| | - Karin L Lee
- Department of Biomedical Engineering, Case Western Reserve University Schools of Medicine and Engineering , Cleveland, Ohio 44106, United States
| | - Jonathan K Pokorski
- Department of Radiology, Case Western Reserve University School of Engineering , Cleveland, Ohio 44106, United States
| | - Gerald M Saidel
- Department of Biomedical Engineering, Case Western Reserve University Schools of Medicine and Engineering , Cleveland, Ohio 44106, United States
| | - Nicole F Steinmetz
- Department of Biomedical Engineering, Case Western Reserve University Schools of Medicine and Engineering , Cleveland, Ohio 44106, United States.,Department of Radiology, Case Western Reserve University School of Engineering , Cleveland, Ohio 44106, United States.,Department of Materials Science and Engineering, Case Western Reserve University School of Engineering , Cleveland, Ohio 44106, United States.,Department of Macromolecular Science and Engineering, Case Western Reserve University School of Engineering , Cleveland, Ohio 44106, United States.,Department of Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine , Cleveland, Ohio 44106, United States
| |
Collapse
|
16
|
Planells-Cases R, Lutter D, Guyader C, Gerhards NM, Ullrich F, Elger DA, Kucukosmanoglu A, Xu G, Voss FK, Reincke SM, Stauber T, Blomen VA, Vis DJ, Wessels LF, Brummelkamp TR, Borst P, Rottenberg S, Jentsch TJ. Subunit composition of VRAC channels determines substrate specificity and cellular resistance to Pt-based anti-cancer drugs. EMBO J 2015; 34:2993-3008. [PMID: 26530471 PMCID: PMC4687416 DOI: 10.15252/embj.201592409] [Citation(s) in RCA: 187] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 10/05/2015] [Indexed: 11/25/2022] Open
Abstract
Although platinum‐based drugs are widely used chemotherapeutics for cancer treatment, the determinants of tumor cell responsiveness remain poorly understood. We show that the loss of subunits LRRC8A and LRRC8D of the heteromeric LRRC8 volume‐regulated anion channels (VRACs) increased resistance to clinically relevant cisplatin/carboplatin concentrations. Under isotonic conditions, about 50% of cisplatin uptake depended on LRRC8A and LRRC8D, but neither on LRRC8C nor on LRRC8E. Cell swelling strongly enhanced LRRC8‐dependent cisplatin uptake, bolstering the notion that cisplatin enters cells through VRAC. LRRC8A disruption also suppressed drug‐induced apoptosis independently from drug uptake, possibly by impairing VRAC‐dependent apoptotic cell volume decrease. Hence, by mediating cisplatin uptake and facilitating apoptosis, VRAC plays a dual role in the cellular drug response. Incorporation of the LRRC8D subunit into VRAC substantially increased its permeability for cisplatin and the cellular osmolyte taurine, indicating that LRRC8 proteins form the channel pore. Our work suggests that LRRC8D‐containing VRACs are crucial for cell volume regulation by an important organic osmolyte and may influence cisplatin/carboplatin responsiveness of tumors.
Collapse
Affiliation(s)
- Rosa Planells-Cases
- Leibniz-Institut für Molekulare Pharmakologie (FMP) Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany
| | - Darius Lutter
- Leibniz-Institut für Molekulare Pharmakologie (FMP) Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany
| | - Charlotte Guyader
- Division of Molecular Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Nora M Gerhards
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Florian Ullrich
- Leibniz-Institut für Molekulare Pharmakologie (FMP) Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany
| | - Deborah A Elger
- Leibniz-Institut für Molekulare Pharmakologie (FMP) Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany
| | - Asli Kucukosmanoglu
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Guotai Xu
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Felizia K Voss
- Leibniz-Institut für Molekulare Pharmakologie (FMP) Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany
| | - S Momsen Reincke
- Leibniz-Institut für Molekulare Pharmakologie (FMP) Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany
| | - Tobias Stauber
- Leibniz-Institut für Molekulare Pharmakologie (FMP) Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany
| | - Vincent A Blomen
- Division of Biochemistry, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Daniel J Vis
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Lodewyk F Wessels
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Thijn R Brummelkamp
- Division of Biochemistry, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Piet Borst
- Division of Molecular Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Sven Rottenberg
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Thomas J Jentsch
- Leibniz-Institut für Molekulare Pharmakologie (FMP) Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany NeuroCure Cluster of Excellence, Charité Universitätsmedizin, Berlin, Germany
| |
Collapse
|
17
|
Kadletz L, Heiduschka G, Domayer J, Schmid R, Enzenhofer E, Thurnher D. Evaluation of spheroid head and neck squamous cell carcinoma cell models in comparison to monolayer cultures. Oncol Lett 2015; 10:1281-1286. [PMID: 26622664 DOI: 10.3892/ol.2015.3487] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 04/24/2015] [Indexed: 02/06/2023] Open
Abstract
Two-dimensional (2D) monolayer cell culture models are the most common method used to investigate tumor cells in vitro. In the few last decades, a multicellular spheroid model has gained attention due to its adjacency to tumors in vivo. The aim of the present study was to investigate immunohistochemical differences between these two cell culture systems. The FaDu, CAL27 and SCC25 head and neck squamous cell carcinoma (HNSCC) cell lines were seeded out in monolayer and multicellular spheroids. The FaDu and SCC25 cells were treated with increasing doses of cisplatin and irradiation. CAL27 cells were not used in theproliferation experiments, since the spheroids of CAL27 cells were not able to process the reagent in CCK-8 assays. Furthermore, they were stained to present alterations of the following antigens: Ki-67, vascular endothelial growth factor receptor, epithelial growth factor and survivin. Differences in growth rates and expression patterns were detected in certain HNSCC cell lines. The proliferation rates showed a significant divergence of cells grown in the three-dimensional model compared with cells grown in the 2D model. Overall, multicellular spheroids are a promising method to reproduce the immunohistochemical aspects and characteristics of tumor cells, and may show different response rates to therapeutic options.
Collapse
Affiliation(s)
- Lorenz Kadletz
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, Vienna A-1090, Austria
| | - Gregor Heiduschka
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, Vienna A-1090, Austria
| | - Julian Domayer
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, Vienna A-1090, Austria
| | - Rainer Schmid
- Department of Radiotherapy, Medical University of Vienna, Vienna A-1090, Austria
| | - Elisabeth Enzenhofer
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, Vienna A-1090, Austria
| | - Dietmar Thurnher
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, Vienna A-1090, Austria
| |
Collapse
|
18
|
Wurz GT, DeGregorio MW. Activating adaptive cellular mechanisms of resistance following sublethal cytotoxic chemotherapy: implications for diagnostic microdosing. Int J Cancer 2014; 136:1485-93. [PMID: 24510760 DOI: 10.1002/ijc.28773] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 01/30/2014] [Indexed: 11/07/2022]
Abstract
As Phase 0 studies have proven to be reasonably predictive of therapeutic dose pharmacokinetics, the application of microdosing has expanded into metabolism, drug-drug interactions and now diagnostics. One potentially serious issue with this application of microdosing that has not been previously discussed is the possibility of activating cellular mechanisms of drug resistance. Here, we provide an overview of Phase 0 microdosing and drug resistance, with an emphasis on cisplatin resistance, followed by a discussion of the potential for inducing acquired resistance to platinum-based or other types of chemotherapy in cancer patients participating in Phase 0 diagnostic microdosing studies. A number of alternative approaches to diagnostic microdosing, such as the human tumor cloning assay and the use of peripheral blood mononuclear cells as a surrogate for measuring DNA adducts, are discussed that would avoid exposing cancer patients to low doses of first-line chemotherapy and the possible risk of triggering cellular mechanisms of acquired resistance. Until it has been established that diagnostic microdosing in cancer patients poses no risk of acquired drug resistance, such studies should be approached with caution.
Collapse
Affiliation(s)
- Gregory T Wurz
- Division of Hematology and Oncology Department of Internal Medicine, University of California, Davis, Sacramento, CA
| | | |
Collapse
|
19
|
Mohanty C, Fayad W, Olofsson MH, Larsson R, De Milito A, Fryknäs M, Linder ST. Massive induction of apoptosis of multicellular tumor spheroids by a novel compound with a calmodulin inhibitor-like mechanism. ACTA ACUST UNITED AC 2013. [DOI: 10.7243/2049-7962-2-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
20
|
Wintzell M, Hjerpe E, Åvall Lundqvist E, Shoshan M. Protein markers of cancer-associated fibroblasts and tumor-initiating cells reveal subpopulations in freshly isolated ovarian cancer ascites. BMC Cancer 2012; 12:359. [PMID: 22901285 PMCID: PMC3517779 DOI: 10.1186/1471-2407-12-359] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 07/31/2012] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND In ovarian cancer, massive intraperitoneal dissemination is due to exfoliated tumor cells in ascites. Tumor-initiating cells (TICs or cancer stem cells) and cells showing epithelial-mesenchymal-transition (EMT) are particularly implicated. Spontaneous spherical cell aggregates are sometimes observed, but although similar to those formed by TICs in vitro, their significance is unclear. METHODS Cells freshly isolated from malignant ascites were separated into sphere samples (S-type samples, n=9) and monolayer-forming single-cell suspensions (M-type, n=18). Using western blot, these were then compared for expression of protein markers of EMT, TIC, and of cancer-associated fibroblasts (CAFs). RESULTS S-type cells differed significantly from M-type by expressing high levels of E-cadherin and no or little vimentin, integrin-β3 or stem cell transcription factor Oct-4A. By contrast, M-type samples were enriched for CD44, Oct-4A and for CAF markers. Independently of M- and S-type, there was a strong correlation between TIC markers Nanog and EpCAM. The CAF marker α-SMA correlated with clinical stage IV. This is the first report on CAF markers in malignant ascites and on SUMOylation of Oct-4A in ovarian cancer. CONCLUSIONS In addition to demonstrating potentially high levels of TICs in ascites, the results suggest that the S-type population is the less tumorigenic one. Nanog(high)/EpCAM(high) samples represent a TIC subset which may be either M- or S-type, and which is separate from the CD44(high)/Oct-4A(high) subset observed only in M-type samples. This demonstrates a heterogeneity in TIC populations in vivo which has practical implications for TIC isolation based on cell sorting. The biological heterogeneity will need to be addressed in future therapeutical strategies.
Collapse
Affiliation(s)
- My Wintzell
- Department of Oncology-Pathology, Cancer Center Karolinska CCK R8:03 Karolinska Institutet, Stockholm S-171 76, Sweden.
| | | | | | | |
Collapse
|
21
|
Perche F, Torchilin VP. Cancer cell spheroids as a model to evaluate chemotherapy protocols. Cancer Biol Ther 2012; 13:1205-13. [PMID: 22892843 DOI: 10.4161/cbt.21353] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
To determine whether the spheroid culture can be used to evaluate drug efficacy, we have evaluated the toxicity of free or carrier-associated doxorubicin as a single drug or in combination with other antineoplastic agents using the spheroid cultures of drug-resistant cancer cells. Paclitaxel, cisplatin, dexamethasone, mitoxantrone, sclareol or methotrexate were used in combination with doxorubicin. The effect of the treatment protocols on free, micellar and liposomal doxorubicin accumulation in spheroids and on resulting toxicity was evaluated by fluorescence and lactate dehydrogenase release, respectively. Enhanced doxorubicin accumulation and toxicity were observed after spheroid pretreatment with mitoxantrone or paclitaxel. Effects of the drug combination with doxorubicin were sequence dependent, use of doxorubicin as the first drug being the least inducer of toxicity. Finally, spheroids were recognized by a cancer cell-specific antibody. Our results suggest the usefulness of spheroids to evaluate chemotherapy combinations.
Collapse
Affiliation(s)
- Federico Perche
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA, USA
| | | |
Collapse
|
22
|
Wållberg H, Grafström J, Cheng Q, Lu L, Martinsson Ahlzén HS, Samén E, Thorell JO, Johansson K, Dunås F, Olofsson MH, Stone-Elander S, Arnér ES, Ståhl S. HER2-Positive Tumors Imaged Within 1 Hour Using a Site-Specifically 11C-Labeled Sel-Tagged Affibody Molecule. J Nucl Med 2012; 53:1446-53. [DOI: 10.2967/jnumed.111.102194] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
23
|
Gamarra-Luques CD, Goyeneche AA, Hapon MB, Telleria CM. Mifepristone prevents repopulation of ovarian cancer cells escaping cisplatin-paclitaxel therapy. BMC Cancer 2012; 12:200. [PMID: 22642877 PMCID: PMC3381704 DOI: 10.1186/1471-2407-12-200] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 05/29/2012] [Indexed: 01/28/2023] Open
Abstract
Background Advanced ovarian cancer is treated with cytoreductive surgery and combination platinum- and taxane-based chemotherapy. Although most patients have acute clinical response to this strategy, the disease ultimately recurs. In this work we questioned whether the synthetic steroid mifepristone, which as monotherapy inhibits the growth of ovarian cancer cells, is capable of preventing repopulation of ovarian cancer cells if given after a round of lethal cisplatin-paclitaxel combination treatment. Methods We established an in vitro approach wherein ovarian cancer cells with various sensitivities to cisplatin or paclitaxel were exposed to a round of lethal doses of cisplatin for 1 h plus paclitaxel for 3 h. Thereafter, cells were maintained in media with or without mifepristone, and short- and long-term cytotoxicity was assessed. Results Four days after treatment the lethality of cisplatin-paclitaxel was evidenced by reduced number of cells, increased hypodiploid DNA content, morphological features of apoptosis, DNA fragmentation, and cleavage of caspase-3, and of its downstream substrate PARP. Short-term presence of mifepristone either enhanced or did not modify such acute lethality. Seven days after receiving cisplatin-paclitaxel, cultures showed signs of relapse with escaping colonies that repopulated the plate in a time-dependent manner. Conversely, cultures exposed to cisplatin-paclitaxel followed by mifepristone not only did not display signs of repopulation following initial chemotherapy, but they also had their clonogenic capacity drastically reduced when compared to cells repopulating after cisplatin-paclitaxel. Conclusions Cytostatic concentrations of mifepristone after exposure to lethal doses of cisplatin and paclitaxel in combination blocks repopulation of remnant cells surviving and escaping the cytotoxic drugs.
Collapse
Affiliation(s)
- Carlos D Gamarra-Luques
- Division of Basic Biomedical Sciences, Sanford School of Medicine of The University of South Dakota, 414 East Clark Street, Vermillion, SD, USA
| | | | | | | |
Collapse
|
24
|
Chitcholtan K, Sykes PH, Evans JJ. The resistance of intracellular mediators to doxorubicin and cisplatin are distinct in 3D and 2D endometrial cancer. J Transl Med 2012; 10:38. [PMID: 22394685 PMCID: PMC3316127 DOI: 10.1186/1479-5876-10-38] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Accepted: 03/06/2012] [Indexed: 11/24/2022] Open
Abstract
Background Advanced endometrial cancer often shows resistance to clinical chemotherapy although potencies of anticancer drugs in vitro are promising. The disparity suggests that in vivo microenvironments are not recapitulated by in vitro models used for preclinical testing. However, spheroids replicate some important properties of tumours in vivo. Therefore, for the first time, we compared effects of doxorubicin and cisplatin on 3D multicellular structures and 2D cell monolayers of endometrial cancer cells. Methods 3D multicellular structures were generated by culturing cancer cells on non-adherent surfaces; and for comparison cell monolayers were cultured on adherent culture plates. Ishikawa, RL95-2, and KLE cell lines were studied. Morphologies of 3D multicellular structures were examined. After 48 hours treatment with anticancer drugs, apoptosis, proliferation, glucose metabolism and vascular endothelial growth factor (VEGF) were analysed. Immunostaining of PCNA, Glut-1, p-Erk1/2, SOD-1 and p-Akt1/2/3 was also performed. Results Distinct 3D multicellular morphologies were formed by three different endometrial cancer cell lines. Doxorubicin induced less apoptosis in 3D multicellular structures of high grade cancer cells (RL95-2 and KLE cell lines) than in cell monolayers. Parallel alterations in Erk1/2 phosphorylation and cell proliferation might suggest they were linked and again doxorubicin had less effect on 3D multicellular structures than cell monolayers. On the other hand, there was no correlation between altered glucose metabolism and proliferation. The responses depended on cancer cell lines and were apparently not mediated by altered Glut-1 levels. The level of SOD-1 was high in 3D cell cultures. The effects on VEGF secretion were various and cancer cell line dependent. Importantly, both doxorubicin and cisplatin had selective paradoxical stimulatory effects on VEGF secretion. The microenvironment within 3D multicellular structures sustained Akt phosphorylation, consistent with it having a role in anchorage-independent pathways. Conclusions The cancer cells responded to microenvironments in a distinctive manner. 3D multicellular structures exhibited greater resistance to the agents than 2D monolayers, and the differences between the culture formats were dependent on cancer cell lines. The effects of anticancer drugs on the intracellular mediators were not similar in 3D and 2D cultures. Therefore, using 3D cell models may have a significant impact on conclusions derived from screening drugs for endometrial carcinomas.
Collapse
Affiliation(s)
- Kenny Chitcholtan
- Department of Obstetrics and Gynaecology, University of Otago, 2 Riccarton Avenue, Christchurch 8011, New Zealand.
| | | | | |
Collapse
|
25
|
Hernlund E, Olofsson MH, Fayad W, Fryknäs M, Lesiak-Mieczkowska K, Zhang X, Brnjic S, Schmidt V, D’Arcy P, Sjöblom T, Milito AD, Larsson R, Linder S. The phosphoinositide 3-kinase/mammalian target of rapamycin inhibitor NVP-BEZ235 is effective in inhibiting regrowth of tumour cells after cytotoxic therapy. Eur J Cancer 2012; 48:396-406. [DOI: 10.1016/j.ejca.2011.11.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 09/23/2011] [Accepted: 11/10/2011] [Indexed: 01/24/2023]
|
26
|
Dufau I, Frongia C, Sicard F, Dedieu L, Cordelier P, Ausseil F, Ducommun B, Valette A. Multicellular tumor spheroid model to evaluate spatio-temporal dynamics effect of chemotherapeutics: application to the gemcitabine/CHK1 inhibitor combination in pancreatic cancer. BMC Cancer 2012; 12:15. [PMID: 22244109 PMCID: PMC3280152 DOI: 10.1186/1471-2407-12-15] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Accepted: 01/13/2012] [Indexed: 11/17/2022] Open
Abstract
Background The multicellular tumor spheroid (MCTS) is an in vitro model associating malignant-cell microenvironment and 3D organization as currently observed in avascular tumors. Methods In order to evaluate the relevance of this model for pre-clinical studies of drug combinations, we analyzed the effect of gemcitabine alone and in combination with the CHIR-124 CHK1 inhibitor in a Capan-2 pancreatic cell MCTS model. Results Compared to monolayer cultures, Capan-2 MCTS exhibited resistance to gemcitabine cytotoxic effect. This resistance was amplified in EGF-deprived quiescent spheroid suggesting that quiescent cells are playing a role in gemcitabine multicellular resistance. After a prolonged incubation with gemcitabine, DNA damages and massive apoptosis were observed throughout the spheroid while cell cycle arrest was restricted to the outer cell layer, indicating that gemcitabine-induced apoptosis is directly correlated to DNA damages. The combination of gemcitabine and CHIR-124 in this MCTS model, enhanced the sensitivity to the gemcitabine antiproliferative effect in correlation with an increase in DNA damage and apoptosis. Conclusions These results demonstrate that our pancreatic MCTS model, suitable for both screening and imaging analysis, is a valuable advanced tool for evaluating the spatio-temporal effect of drugs and drug combinations in a chemoresistant and microenvironment-depending tumor model.
Collapse
Affiliation(s)
- Isabelle Dufau
- USR 3388 CNRS/Pierre Fabre, Centre de Recherche et Développement Pierre Fabre, Toulouse, France.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Fayad W, Rickardson L, Haglund C, Olofsson MH, D'Arcy P, Larsson R, Linder S, Fryknäs M. Identification of agents that induce apoptosis of multicellular tumour spheroids: enrichment for mitotic inhibitors with hydrophobic properties. Chem Biol Drug Des 2011; 78:547-57. [PMID: 21726416 DOI: 10.1111/j.1747-0285.2011.01170.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cell-based anticancer drug screening generally utilizes rapidly proliferating tumour cells grown as monolayer cultures. Hit compounds from such screens are not necessarily effective on hypoxic and slowly proliferating cells in 3-D tumour tissue. The aim of this study was to examine the potential usefulness of 3-D cultured tumour cells for anticancer drug screening. We used colon carcinoma multicellular spheroids containing hypoxic and quiescent cells in core areas for this purpose. Three libraries (∼11 000 compounds) were screened using antiproliferative activity and/or apoptosis as end-points. Screening of monolayer and spheroid cultures was found to identify different sets of hit compounds. Spheroid screening enriched for hydrophobic compounds: median XLogP values of 4.3 and 4.4 were observed for the hits in two independent screening campaigns. Mechanistic analysis revealed that the majority of spheroid screening hits were microtubuli inhibitors. One of these inhibitors was examined in detail and found to be effective against non-dividing cells in the hypoxic centres of spheroids. Spheroid screening represents a conceptually new strategy for anticancer drug discovery. Our findings have implications for drug library design and hit selection in projects aimed to develop drugs for the treatment of solid tumours.
Collapse
Affiliation(s)
- Walid Fayad
- Department of Oncology-Pathology, Karolinska Institute, S-17176 Stockholm, Sweden
| | | | | | | | | | | | | | | |
Collapse
|