1
|
Asgharzadeh F, Memarzia A, Alikhani V, Beigoli S, Boskabady MH. Peroxisome proliferator-activated receptors: Key regulators of tumor progression and growth. Transl Oncol 2024; 47:102039. [PMID: 38917593 PMCID: PMC11254173 DOI: 10.1016/j.tranon.2024.102039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 04/30/2024] [Accepted: 06/20/2024] [Indexed: 06/27/2024] Open
Abstract
One of the main causes of death on the globe is cancer. Peroxisome-proliferator-activated receptors (PPARs) are nuclear hormone receptors, including PPARα, PPARδ and PPARγ, which are important in regulating cancer cell proliferation, survival, apoptosis, and tumor growth. Activation of PPARs by endogenous or synthetic compounds regulates tumor progression in various tissues. Although each PPAR isotype suppresses or promotes tumor development depending on the specific tissues or ligands, the mechanism is still unclear. PPARs are receiving interest as possible therapeutic targets for a number of disorders. Numerous clinical studies are being conducted on PPARs as possible therapeutic targets for cancer. Therefore, this review will focus on the existing and future uses of PPARs agonists and antagonists in treating malignancies. PubMed, Science Direct, and Scopus databases were searched regarding the effect of PPARs on various types of cancers until the end of May 2023. The results of the review articles showed the therapeutic influence of PPARs on a wide range of cancer on in vitro, in vivo and clinical studies. However, further experimental and clinical studies are needed to be conducted on the influence of PPARs on various cancers.
Collapse
Affiliation(s)
- Fereshteh Asgharzadeh
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arghavan Memarzia
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vida Alikhani
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Physiology, Faculty of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Sima Beigoli
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Hossein Boskabady
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Jagomast T, Idel C, Klapper L, Kuppler P, Offermann A, Dreyer E, Bruchhage KL, Ribbat-Idel J, Perner S. CDK7 Predicts Worse Outcome in Head and Neck Squamous-Cell Cancer. Cancers (Basel) 2022; 14:492. [PMID: 35158760 PMCID: PMC8833595 DOI: 10.3390/cancers14030492] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/03/2022] [Accepted: 01/17/2022] [Indexed: 02/04/2023] Open
Abstract
HNSCC is the sixth most common cancer worldwide and the prognosis is still poor. Here, we investigated the prognostic implications of CDK7 and pMED1. Both proteins affect transcription, and their expression is altered throughout different tumor entities. pMED1 is phosphorylated by CDK7. Importantly, CDK7 and MED1 have been ascribed prognostic implications by various studies. However, their prognostic value in head and neck squamous-cell cancer (HNSCC) remains elusive. We applied immunohistochemical staining of CDK7 and pMED1 on our large and clinically well-characterized HNSCC tissue cohort comprising 419 patients. Software-aided quantification of staining intensity was performed as a measure of protein expression. The following results were linked to the clinicopathological features of our cohort and correlated in different tissue types (primary tumor, lymph node metastasis, distant metastasis, recurrence). Upregulation CDK7 was associated with worse 5-year overall survival as well as disease-free survival in HNSCC while being independent of other known prognostic factors such as p16-status. Also, CDK7 expression was significantly elevated in immune cell infiltrated tumors. In HNSCC CDK7 might serve as a novel prognostic marker to indicate the prognosis of patients. Furthermore, in vitro studies proved the feasibility of CDK7 inhibition with attenuating effects on cell proliferation underlining its remarkable translational potential for future therapeutic regimes.
Collapse
Affiliation(s)
- Tobias Jagomast
- Institute of Pathology, University of Luebeck and University Hospital Schleswig-Holstein, Campus Luebeck, Ratzeburger Allee 160, 23538 Luebeck, Germany; (L.K.); (P.K.); (A.O.); (E.D.); (S.P.)
| | - Christian Idel
- Department of Otorhinolaryngology, University of Luebeck, Ratzeburger Allee 160, 23538 Luebeck, Germany; (C.I.); (K.-L.B.)
| | - Luise Klapper
- Institute of Pathology, University of Luebeck and University Hospital Schleswig-Holstein, Campus Luebeck, Ratzeburger Allee 160, 23538 Luebeck, Germany; (L.K.); (P.K.); (A.O.); (E.D.); (S.P.)
| | - Patrick Kuppler
- Institute of Pathology, University of Luebeck and University Hospital Schleswig-Holstein, Campus Luebeck, Ratzeburger Allee 160, 23538 Luebeck, Germany; (L.K.); (P.K.); (A.O.); (E.D.); (S.P.)
| | - Anne Offermann
- Institute of Pathology, University of Luebeck and University Hospital Schleswig-Holstein, Campus Luebeck, Ratzeburger Allee 160, 23538 Luebeck, Germany; (L.K.); (P.K.); (A.O.); (E.D.); (S.P.)
| | - Eva Dreyer
- Institute of Pathology, University of Luebeck and University Hospital Schleswig-Holstein, Campus Luebeck, Ratzeburger Allee 160, 23538 Luebeck, Germany; (L.K.); (P.K.); (A.O.); (E.D.); (S.P.)
| | - Karl-Ludwig Bruchhage
- Department of Otorhinolaryngology, University of Luebeck, Ratzeburger Allee 160, 23538 Luebeck, Germany; (C.I.); (K.-L.B.)
| | - Julika Ribbat-Idel
- Institute of Pathology, University of Luebeck and University Hospital Schleswig-Holstein, Campus Luebeck, Ratzeburger Allee 160, 23538 Luebeck, Germany; (L.K.); (P.K.); (A.O.); (E.D.); (S.P.)
| | - Sven Perner
- Institute of Pathology, University of Luebeck and University Hospital Schleswig-Holstein, Campus Luebeck, Ratzeburger Allee 160, 23538 Luebeck, Germany; (L.K.); (P.K.); (A.O.); (E.D.); (S.P.)
- Pathology, Research Center Borstel, Leibniz Lung Center, Parkallee 1-40, 23845 Borstel, Germany
| |
Collapse
|
3
|
Vageli DP, Doukas SG, Doukas PG, Judson BL. Bile reflux and hypopharyngeal cancer (Review). Oncol Rep 2021; 46:244. [PMID: 34558652 PMCID: PMC8485019 DOI: 10.3892/or.2021.8195] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 08/24/2021] [Indexed: 12/26/2022] Open
Abstract
Laryngopharyngeal reflux, a variant of gastroesophageal reflux disease, has been considered a risk factor in the development of hypopharyngeal cancer. Bile acids are frequently present in the gastroesophageal refluxate and their effect has been associated with inflammatory and neoplastic changes in the upper aerodigestive tract. Recent in vitro and in vivo studies have provided direct evidence of the role of acidic bile refluxate in hypopharyngeal carcinogenesis and documented the crucial role of NF-κB as a key mediator of early oncogenic molecular events in this process and also suggested a contribution of STAT3. Acidic bile can cause premalignant changes and invasive squamous cell cancer in the affected hypopharynx accompanied by DNA damage, elevated p53 expression and oncogenic mRNA and microRNA alterations, previously linked to head and neck cancer. Weakly acidic bile can also increase the risk for hypopharyngeal carcinogenesis by inducing DNA damage, exerting anti-apoptotic effects and causing precancerous lesions. The most important findings that strongly support bile reflux as an independent risk factor for hypopharyngeal cancer are presented in the current review and the underlying mechanisms are provided.
Collapse
Affiliation(s)
- Dimitra P Vageli
- The Yale Larynx Laboratory, Department of Surgery, Yale School of Medicine, New Haven, CT 06510, USA
| | - Sotirios G Doukas
- The Yale Larynx Laboratory, Department of Surgery, Yale School of Medicine, New Haven, CT 06510, USA
| | - Panagiotis G Doukas
- The Yale Larynx Laboratory, Department of Surgery, Yale School of Medicine, New Haven, CT 06510, USA
| | - Benjamin L Judson
- The Yale Larynx Laboratory, Department of Surgery, Yale School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
4
|
Gül D, Habtemichael N, Dietrich D, Dietrich J, Gößwein D, Khamis A, Deuss E, Künzel J, Schneider G, Strieth S, Stauber RH. Identification of cytokeratin24 as a tumor suppressor for the management of head and neck cancer. Biol Chem 2021; 403:869-890. [PMID: 34450690 DOI: 10.1515/hsz-2021-0287] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 07/28/2021] [Indexed: 12/19/2022]
Abstract
To improve management of head and neck squamous cell carcinoma patients, we need to increase our understanding of carcinogenesis, to identify biomarkers, and drug targets. This study aimed to identify novel biomarkers by providing transcriptomics profiles of matched primary tumors, lymph node metastasis, and non-malignant tissue of 20 HNSCC patients as well as by bioinformatic analyses of a TCGA HNSCC cohort, comprising 554 patients. We provide cancer cell signaling networks differentially expressed in tumors versus metastases, such as mesenchymal-epithelial transition, and structural integrity networks. As a proof of principle study, we exploited the data sets and performed functional analyses of a novel cytokeratin, cytokeratin24 (cKRT24), which had not been described as biomarker for tumors before. Survival analysis revealed that low cKRT24 expression correlated with poor overall survival in HNSCC. Experimentally, downregulation of cKRT24 in primary tumors, metastases, and HNSCC cell lines was verified on mRNA and protein level. Cloning and ectopic overexpression of cKRT24 not only affected viability and growth of HNSSC cell lines, but also inhibited tumor growth in murine xenograft studies. We conclude that cKRT24 functions as a tumor suppressor in HNSCC, and may serve as an additional prognostic biomarker and novel target to support current HNSCC treatments.
Collapse
Affiliation(s)
- Désirée Gül
- Department of Otorhinolaryngology Head and Neck Surgery, Molecular and Cellular Oncology, University Medical Center, D-55131Mainz, Germany
| | - Negusse Habtemichael
- Department of Otorhinolaryngology Head and Neck Surgery, Molecular and Cellular Oncology, University Medical Center, D-55131Mainz, Germany
| | - Dimo Dietrich
- Department of Otorhinolaryngology,University Medical Center Bonn, D-53127Bonn, Germany
| | - Jörn Dietrich
- Department of Otorhinolaryngology,University Medical Center Bonn, D-53127Bonn, Germany
| | - Dorothee Gößwein
- Department of Otorhinolaryngology Head and Neck Surgery, Molecular and Cellular Oncology, University Medical Center, D-55131Mainz, Germany
| | - Aya Khamis
- Department of Otorhinolaryngology Head and Neck Surgery, Molecular and Cellular Oncology, University Medical Center, D-55131Mainz, Germany
| | - Eric Deuss
- Department of Otorhinolaryngology Head and Neck Surgery, Molecular and Cellular Oncology, University Medical Center, D-55131Mainz, Germany.,Department of Otorhinolaryngology Head and Neck Surgery, University Hospital, D-45147Essen, Germany
| | - Julian Künzel
- Ear, Nose and Throat Department, University Hospital, D-93053Regensburg, Germany
| | - Günter Schneider
- Ear, Nose and Throat Department, University Hospital, D-93053Regensburg, Germany
| | - Sebastian Strieth
- Department of Otorhinolaryngology,University Medical Center Bonn, D-53127Bonn, Germany
| | - Roland H Stauber
- Department of Otorhinolaryngology Head and Neck Surgery, Molecular and Cellular Oncology, University Medical Center, D-55131Mainz, Germany
| |
Collapse
|
5
|
van de Goor RMGE, van Hooren MRA, Henatsch D, Kremer B, Kross KW. Detecting head and neck squamous carcinoma using a portable handheld electronic nose. Head Neck 2020; 42:2555-2559. [PMID: 32490555 PMCID: PMC7496705 DOI: 10.1002/hed.26293] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 04/14/2020] [Accepted: 05/12/2020] [Indexed: 12/29/2022] Open
Abstract
INTRODUCTION Detecting volatile organic compounds in exhaled breath enables the diagnosis of cancer. We investigated whether a handheld version of an electronic nose is able to discriminate between patients with head and neck squamous cell cancer (HNSCC) and healthy controls. METHODS Ninety-one patients with HNSCC and 72 controls exhaled through an e-nose. An artificial neural network based model was built to separate between HNSCC patients and healthy controls. Additionally, three models were created for separating between the oral, oropharyngeal, and glottic subsites respectively, and healthy controls. RESULTS The results showed a diagnostic accuracy of 72% at a sensitivity of 79%, specificity of 63%, and area under the curve (AUC) of 0.75. Results for the subsites showed an AUC of 0.85, 0.82, and 0.83 respectively for oral, oropharyngeal, and glottic HNSCC. CONCLUSION This feasibility study showed that this portable noninvasive diagnostic tool can differentiate between HNSCC patients and healthy controls.
Collapse
Affiliation(s)
- Rens M G E van de Goor
- Department of Otorhinolaryngology, Head and Neck Surgery, Maastricht University Medical Center, Maastricht, The Netherlands.,Department of Otorhinolaryngology, Head and Neck Surgery, Bernhoven Medical Center, Uden, The Netherlands
| | - Michel R A van Hooren
- Department of Otorhinolaryngology, Head and Neck Surgery, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Darius Henatsch
- Department of Otorhinolaryngology, Head and Neck Surgery, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Bernd Kremer
- Department of Otorhinolaryngology, Head and Neck Surgery, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Kenneth W Kross
- Department of Otorhinolaryngology, Head and Neck Surgery, Maastricht University Medical Center, Maastricht, The Netherlands
| |
Collapse
|
6
|
The Progressive Mutagenic Effects of Acidic Bile Refluxate in Hypopharyngeal Squamous Cell Carcinogenesis: New Insights. Cancers (Basel) 2020; 12:cancers12051064. [PMID: 32344873 PMCID: PMC7281001 DOI: 10.3390/cancers12051064] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 04/21/2020] [Accepted: 04/22/2020] [Indexed: 12/16/2022] Open
Abstract
Cancers of the laryngopharynx represent the most devastating of the head and neck malignancies and additional risk factors are now epidemiologically linked to this disease. Using an in vivo model (Mus musculus C57Bl/6J), we provide novel evidence that acidic bile (pH 3.0) progressively promotes invasive cancer in the hypopharynx. Malignant lesions are characterized by increasing: i) oxidative DNA-damage, ii) γH2AX expression, iii) NF-κB activation, and iv) p53 expression. Histopathological changes observed in murine hypopharyngeal mucosa exposed to acidic bile were preceded by the overexpression of Tnf, Il6, Bcl2, Egfr, Rela, Stat3, and the deregulation of miR-21, miR-155, miR-192, miR-34a, miR-375, and miR-451a. This is the first study to document that acidic bile is carcinogenic in the upper aerodigestive tract. We showed that oxidative DNA-damage produced by acidic bile in combination with NF-κB-related anti-apoptotic deregulation further supports the underlying two-hit hypothesized mechanism. Just as importantly, we reproduced the role of several biomarkers of progression that served as valuable indicators of early neoplasia in our experimental model. These findings provide a sound basis for proposing translational studies in humans by exposing new opportunities for early detection and prevention.
Collapse
|
7
|
Klimek L, Casper I, Wollenberg B, Stauber R, Koennecke M. [Histamine receptors in chronic inflammatory diseases of the nose and paranasal sinuses]. HNO 2019; 67:389-400. [PMID: 30944947 DOI: 10.1007/s00106-019-0649-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Release of histamine from mast cells and basophils in inflammatory diseases of the nose and paranasal sinuses has been demonstrated in allergic and non-allergic processes. METHODS A selective literature search was conducted in PubMed and Medline, and publications in German-language journals were additionally analyzed. RESULTS The histamine receptors H1-H4 play a role in otorhinolaryngologic inflammatory diseases. To date, the histamine receptor subtype 4 (H4R), which is functionally expressed by immune cells in chronic inflammatory diseases, has received little attention. Stimulation of H4R influences the release of cytokines and chemokines as well as the migration behavior of immune cells. In animal models blockade of H4R reduced inflammation symptoms and pruritus. CONCLUSIONS H4R plays a key role in the pathogenesis of chronic inflammatory diseases and may represent an interesting future therapeutic target.
Collapse
Affiliation(s)
- L Klimek
- Zentrum für Rhinologie und Allergologie Wiesbaden, An den Quellen 10, 65183, Wiesbaden, Deutschland.
| | - I Casper
- Zentrum für Rhinologie und Allergologie Wiesbaden, An den Quellen 10, 65183, Wiesbaden, Deutschland
| | - B Wollenberg
- HNO-Universitätsklinik Lübeck, Lübeck, Deutschland
| | - R Stauber
- HNO-Universitätsklinik Mainz, Mainz, Deutschland
| | - M Koennecke
- HNO-Universitätsklinik Lübeck, Lübeck, Deutschland
| |
Collapse
|
8
|
Differential Expression of Prostaglandin I2 Synthase Associated with Arachidonic Acid Pathway in the Oral Squamous Cell Carcinoma. JOURNAL OF ONCOLOGY 2018; 2018:6301980. [PMID: 30532780 PMCID: PMC6250001 DOI: 10.1155/2018/6301980] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 10/16/2018] [Indexed: 12/11/2022]
Abstract
Introduction Differential expression of genes encoding cytochrome P450 (CYP) and other oxygenases enzymes involved in biotransformation mechanisms of endogenous and exogenous compounds can lead to oral tumor development. Objective We aimed to identify the expression profile of these genes, searching for susceptibility biomarkers in oral squamous cell carcinoma. Patients and Methods Sixteen oral squamous cell carcinoma samples were included in this study (eight tumor and eight adjacent non-tumor tissues). Gene expression quantification was performed using TaqMan Array Human CYP450 and other Oxygenases 96-well plate (Applied Biosystems) by real time qPCR. Protein quantification was performed by ELISA and IHC methods. Bioinformatics tools were used to find metabolic pathways related to the enzymes encoded by differentially expressed genes. Results. CYP27B1, CYP27A1, CYP2E1, CYP2R1, CYP2J2, CYP2U1, CYP4F12, CYP4X1, CYP4B1, PTGIS, ALOX12, and MAOB genes presented differential expression in the oral tumors. After correction by multiple tests, only the PTGIS (Prostaglandin I2 Synthase) gene presented significant differential expression (P < 0.05). The PTGIS gene and protein were reduced in oral tumors. Conclusion PTGIS presents downexpression in oral tumors. PTGIS play an important role in the arachidonic acid metabolism. Arachidonic acid and/or metabolites are derived from this pathway, which can influence the regulation of important physiological mechanisms in tumorigenesis process.
Collapse
|
9
|
Gribko A, Hahlbrock A, Strieth S, Becker S, Hagemann J, Deichelbohrer M, Hildebrandt A, Habtemichael N, Wünsch D. Disease-relevant signalling-pathways in head and neck cancer: Taspase1's proteolytic activity fine-tunes TFIIA function. Sci Rep 2017; 7:14937. [PMID: 29097782 PMCID: PMC5668323 DOI: 10.1038/s41598-017-14814-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 10/16/2017] [Indexed: 12/23/2022] Open
Abstract
Head and neck cancer (HNC) is the seventh most common malignancy in the world and its prevailing form, the head and neck squamous cell carcinoma (HNSCC), is characterized as aggressive and invasive cancer type. The transcription factor II A (TFIIA), initially described as general regulator of RNA polymerase II-dependent transcription, is part of complex transcriptional networks also controlling mammalian head morphogenesis. Posttranslational cleavage of the TFIIA precursor by the oncologically relevant protease Taspase1 is crucial in this process. In contrast, the relevance of Taspase1-mediated TFIIA cleavage during oncogenesis of HNSCC is not characterized yet. Here, we performed genome-wide expression profiling of HNSCC which revealed significant downregulation of the TFIIA downstream target CDKN2A. To identify potential regulatory mechanisms of TFIIA on cellular level, we characterized nuclear-cytoplasmic transport and Taspase1-mediated cleavage of TFIIA variants. Unexpectedly, we identified an evolutionary conserved nuclear export signal (NES) counteracting nuclear localization and thus, transcriptional activity of TFIIA. Notably, proteolytic processing of TFIIA by Taspase1 was found to mask the NES, thereby promoting nuclear localization and transcriptional activation of TFIIA target genes, such as CDKN2A. Collectively, we here describe a hitherto unknown mechanism how cellular localization and Taspase1 cleavage fine-tunes transcriptional activity of TFIIA in HNSCC.
Collapse
Affiliation(s)
- Alena Gribko
- Department of Otorhinolaryngology, Molecular and Cellular Oncology, University Hospital of Mainz, Langenbeckstrasse 1, Mainz, 55101, Germany
| | - Angelina Hahlbrock
- Department of Otorhinolaryngology, Molecular and Cellular Oncology, University Hospital of Mainz, Langenbeckstrasse 1, Mainz, 55101, Germany
| | - Sebastian Strieth
- Department of Otorhinolaryngology, Molecular and Cellular Oncology, University Hospital of Mainz, Langenbeckstrasse 1, Mainz, 55101, Germany
| | - Sven Becker
- Department of Otorhinolaryngology, Molecular and Cellular Oncology, University Hospital of Mainz, Langenbeckstrasse 1, Mainz, 55101, Germany
| | - Jan Hagemann
- Department of Otorhinolaryngology, Molecular and Cellular Oncology, University Hospital of Mainz, Langenbeckstrasse 1, Mainz, 55101, Germany
| | - Max Deichelbohrer
- Department of Otorhinolaryngology, Molecular and Cellular Oncology, University Hospital of Mainz, Langenbeckstrasse 1, Mainz, 55101, Germany
| | - Andreas Hildebrandt
- Scientific Computing and Bioinformatics, Johannes Gutenberg University, Staudingerweg 9, Mainz, 55128, Germany
| | - Negusse Habtemichael
- Department of Otorhinolaryngology, Molecular and Cellular Oncology, University Hospital of Mainz, Langenbeckstrasse 1, Mainz, 55101, Germany
| | - D Wünsch
- Department of Otorhinolaryngology, Molecular and Cellular Oncology, University Hospital of Mainz, Langenbeckstrasse 1, Mainz, 55101, Germany.
| |
Collapse
|
10
|
Zafari V, Hashemzadeh S, Hosseinpour Feizi M, Pouladi N, Rostami Zadeh L, Sakhinia E. mRNA expression of nuclear factor of activated T-cells, cytoplasmic 2 (NFATc2) and peroxisome proliferator-activated receptor gamma (PPARG) transcription factors in colorectal carcinoma. Bosn J Basic Med Sci 2017; 17:255-261. [PMID: 28504924 DOI: 10.17305/bjbms.2017.1886] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 03/17/2017] [Accepted: 02/24/2017] [Indexed: 02/06/2023] Open
Abstract
Transcription factors are involved in cell cycle and apoptosis regulation and thus have a key role in the carcinogenesis of different tumors. Nuclear factor of activated T-cells, cytoplasmic 2 (NFATc2) and peroxisome proliferator-activated receptor gamma (PPARG) transcription factors are important in the carcinogenesis of colorectal cancer (CRC). In this study, we examined whether the expression of NFATc2 and PPARG genes is significantly altered during the carcinogenesis of CRC. A total of 47 tumor samples and matched normal tissue margins were collected during surgery from patients with CRC. In addition, three CRC cell lines (HCT119, SW480, and HT29) and healthy cell line were used. After total RNA extraction and cDNA synthesis, mRNA expression levels of NFATc2 and PPARG were examined by real-time polymerase chain reaction. The results showed that NFATc2 is overexpressed in the tumor tissues compared with normal tissue margins (p ≤ 0.05). However, the mRNA expression levels of PPARG were not significantly different between the tumor tissues and tissue margins. Our results indicate that NFATc2 may be used as an early diagnostic or predictive biomarker for CRC as well as a therapeutic target, providing that upcoming studies confirm these results.
Collapse
Affiliation(s)
- Venus Zafari
- Department of Biochemistry and Clinical Laboratories, Division of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Tuberculosis and Lung Disease Research Center of Tabriz University of Medical Sciences, Tabriz, Iran.
| | | | | | | | | | | |
Collapse
|
11
|
Grsic K, Opacic IL, Sitic S, Milkovic Perisa M, Suton P, Sarcevic B. The prognostic significance of estrogen receptor β in head and neck squamous cell carcinoma. Oncol Lett 2016; 12:3861-3865. [PMID: 27895741 PMCID: PMC5104185 DOI: 10.3892/ol.2016.5142] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 08/04/2016] [Indexed: 11/28/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the fifth most common cancer in the world. Although multimodal and targeted therapy is now used in therapeutic procedures, the survival of patients with HNSCC has remained unchanged over the last 30 years. A number of studies have demonstrated that the increased expression of intranuclear ERβ in breast, lung and colon cancer is a favorable prognostic marker associated with higher survival rates. However, the clinical significance of sex hormone receptors in HNSCC remains unclear. The current study aimed to assess the expression of ERβ in HNSCC immunohistochemically and investigate any possible association between ERβ expression, and clinical and histopathological factors, disease recurrence and patient survival. The present study included 174 patients (165 males and 9 females) with a median age of 60.8 years (range, 39–79) with HNSCC who were primary surgically treated between January 2000 and December 2006. Immunohistochemical reactions for ERβ demonstrated that 73 patients (42%) exhibited positive ERβ expression. Distribution of ERβ status among different head and neck subsites indicated that >40% of all negative cases were located in laryngeal primaries, while incidence of other sublocalization within positive cases was similar and comparable (P=0.04). Furthermore, a correlation was observed between ERβ immunopositivity and the survival of patients, with respect to the primary tumor site. Patients with ERβ positive oropharyngeal cancer had a survival rate of 35.3% at 5-years compared with 25% for patients with negative expression. However, ERβ status was not significantly correlated with any other clinical or histopathological parameter. After an average follow-up time of 38.5 months (range, 3–60 months), 54 patients (31.1%) had succumbed to disease recurrence while 50 (28.7%) succumbed to other causes. In conclusion, ERβ positivity indicates improved survival of patients with oropharyngeal cancer. Further research is required in order to implement novel therapeutic strategies.
Collapse
Affiliation(s)
- Kresimir Grsic
- Division of Head and Neck Surgery, Department of Surgical Oncology, University Hospital for Tumors, Clinical Hospital Center Sisters of Charity, 10000 Zagreb, Croatia
| | - Iva Ledinsky Opacic
- Division of Head and Neck Surgery, Department of Surgical Oncology, University Hospital for Tumors, Clinical Hospital Center Sisters of Charity, 10000 Zagreb, Croatia
| | - Sanda Sitic
- Department of Clinical Pathology, University Hospital for Tumors, Clinical Hospital Center Sisters of Charity, 10000 Zagreb, Croatia
| | - Marija Milkovic Perisa
- Department of Clinical Pathology, University Hospital for Tumors, Clinical Hospital Center Sisters of Charity, 10000 Zagreb, Croatia
| | - Petar Suton
- Division of Radiation Oncology, Department of Radiotherapy and Medical Oncology, University Hospital for Tumors, Clinical Hospital Center Sisters of Charity, 10000 Zagreb, Croatia
| | - Bozena Sarcevic
- Department of Clinical Pathology, University Hospital for Tumors, Clinical Hospital Center Sisters of Charity, 10000 Zagreb, Croatia
| |
Collapse
|
12
|
Targeting PPARγ Signaling Cascade for the Prevention and Treatment of Prostate Cancer. PPAR Res 2012; 2012:968040. [PMID: 23213321 PMCID: PMC3504464 DOI: 10.1155/2012/968040] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 10/08/2012] [Accepted: 10/18/2012] [Indexed: 12/21/2022] Open
Abstract
The peroxisome proliferator-activated receptor-gamma (PPARγ) is a member of the hormone-activated nuclear receptor superfamily. PPARγ can be activated by a diverse group of agents, such as endogenous polyunsaturated fatty acids, 15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2), and thiazolidinedione (TZD) drugs. PPARγ induces antiproliferative, antiangiogenic, and prodifferentiation pathways in several tissue types, thus making it a highly useful target for downregulation of carcinogenesis. These TZD-derived novel therapeutic agents, alone or in combination with other anticancer drugs, have translational relevance in fostering effective strategies for cancer treatment. TZDs have been proven for antitumor activity in a wide variety of experimental cancer models, both in vitro and in vivo, by affecting the cell cycle, inducing cell differentiation and apoptosis, as well as by inhibiting tumor angiogenesis. Angiogenesis inhibition mechanisms of TZDs include direct inhibition of endothelial cell proliferation and migration, as well as reduction in tumor cell vascular endothelial growth factor production. In prostate cancer, PPARγ ligands such as troglitazone and 15d-PGJ2 have also shown to inhibit tumor growth. This paper will focus on current discoveries in PPARγ activation, targeting prostate carcinogenesis as well as the role of PPARγ as a possible anticancer therapeutic option. Here, we review PPARγ as an antitumor agent and summarize the antineoplastic effects of PPARγ agonists in prostate cancer.
Collapse
|
13
|
PPARG Epigenetic Deregulation and Its Role in Colorectal Tumorigenesis. PPAR Res 2012; 2012:687492. [PMID: 22848209 PMCID: PMC3405724 DOI: 10.1155/2012/687492] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 04/21/2012] [Indexed: 12/12/2022] Open
Abstract
Peroxisome proliferator-activated receptor gamma (PPARγ) plays critical roles in lipid storage, glucose metabolism, energy homeostasis, adipocyte differentiation, inflammation, and cancer. Its function in colon carcinogenesis has largely been debated; accumulating evidence, however, supports a role as tumor suppressor through modulation of crucial pathways in cell differentiation, apoptosis, and metastatic dissemination. Epigenetics adds a further layer of complexity to gene regulation in several biological processes. In cancer, the relationship with epigenetic modifications has provided important insights into the underlying molecular mechanisms. These studies have highlighted how epigenetic modifications influence PPARG gene expression in colorectal tumorigenesis. In this paper, we take a comprehensive look at the current understanding of the relationship between PPARγ and cancer development. The role that epigenetic mechanisms play is also addressed disclosing novel crosstalks between PPARG signaling and the epigenetic machinery and suggesting how this dysregulation may contribute to colon cancer development.
Collapse
|
14
|
Vamecq J, Colet JM, Vanden Eynde JJ, Briand G, Porchet N, Rocchi S. PPARs: Interference with Warburg' Effect and Clinical Anticancer Trials. PPAR Res 2012; 2012:304760. [PMID: 22654896 PMCID: PMC3357561 DOI: 10.1155/2012/304760] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 02/15/2012] [Accepted: 02/19/2012] [Indexed: 02/07/2023] Open
Abstract
The metabolic/cell signaling basis of Warburg's effect ("aerobic glycolysis") and the general metabolic phenotype adopted by cancer cells are first reviewed. Several bypasses are adopted to provide a panoramic integrated view of tumoral metabolism, by attributing a central signaling role to hypoxia-induced factor (HIF-1) in the expression of aerobic glycolysis. The cancer metabolic phenotype also results from alterations of other routes involving ras, myc, p53, and Akt signaling and the propensity of cancer cells to develop signaling aberrances (notably aberrant surface receptor expression) which, when present, offer unique opportunities for therapeutic interventions. The rationale for various emerging strategies for cancer treatment is presented along with mechanisms by which PPAR ligands might interfere directly with tumoral metabolism and promote anticancer activity. Clinical trials using PPAR ligands are reviewed and followed by concluding remarks and perspectives for future studies. A therapeutic need to associate PPAR ligands with other anticancer agents is perhaps an important lesson to be learned from the results of the clinical trials conducted to date.
Collapse
Affiliation(s)
- Joseph Vamecq
- Inserm, HMNO, CBP, CHRU Lille, 59037 Lille, France
- Biochemistry and Molecular Biology, HMNO, CBP, CHRU Lille, 59037 Lille, France
| | - Jean-Marie Colet
- Department of Human Biology and Toxicology, Faculty of Medicine and Pharmacy, UMons, 7000 Mons, Belgium
| | | | - Gilbert Briand
- Biochemistry and Molecular Biology, HMNO, CBP, CHRU Lille, 59037 Lille, France
| | - Nicole Porchet
- Biochemistry and Molecular Biology, HMNO, CBP, CHRU Lille, 59037 Lille, France
| | - Stéphane Rocchi
- Inserm U1065, IFR 50, Mediterranean Center of Molecular Medicine, 06204 Nice, France
| |
Collapse
|
15
|
Väisänen S, Matilainen J, Carlberg C. Dynamic nature of transcriptional regulation of nuclear receptor target genes in the context of chromatin organization. DERMATO-ENDOCRINOLOGY 2011; 3:125-9. [PMID: 22110771 DOI: 10.4161/derm.3.3.15803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Accepted: 04/11/2011] [Indexed: 01/08/2023]
Abstract
Many members of the nuclear receptor (NR) superfamily are expressed in the skin making them a highly interesting subject of dermato-endocrine research. Natural and synthetic NR ligands are used for the treatment of various skin disorders. We discuss here the impact of the dynamic nature of chromatin organization, i.e., the spatio-temporal changes of chromatin region of NR target genes. This dynamics is triggered by environmental changes, of which for NRs the exposure with their ligands is most critical. For an understanding of skin disorders, which involve the actions of NRs, this means that the parameter time should be carefully considered in context of other factors that may influence the chromatin organization, and by this the responsiveness, of key NR target genes.
Collapse
Affiliation(s)
- Sami Väisänen
- Department of Biosciences; University of Kuopio; Kuopio, Finland
| | | | | |
Collapse
|
16
|
Hakim M, Billan S, Tisch U, Peng G, Dvrokind I, Marom O, Abdah-Bortnyak R, Kuten A, Haick H. Diagnosis of head-and-neck cancer from exhaled breath. Br J Cancer 2011; 104:1649-55. [PMID: 21505455 PMCID: PMC3101906 DOI: 10.1038/bjc.2011.128] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background: Head-and-neck cancer (HNC) is the eighth most common malignancy worldwide. It is often diagnosed late due to a lack of screening methods and overall cure is achieved in <50% of patients. Head-and-neck cancer sufferers often develop a second primary tumour that can affect the entire aero-digestive tract, mostly HNC or lung cancer (LC), making lifelong follow-up necessary. Methods: Alveolar breath was collected from 87 volunteers (HNC and LC patients and healthy controls) in a cross-sectional clinical trial. The discriminative power of a tailor-made Nanoscale Artificial Nose (NA-NOSE) based on an array of five gold nanoparticle sensors was tested, using 62 breath samples. The NA-NOSE signals were analysed to detect statistically significant differences between the sub-populations using (i) principal component analysis with ANOVA and Student's t-test and (ii) support vector machines and cross-validation. The identification of NA-NOSE patterns was supported by comparative analysis of the chemical composition of the breath through gas chromatography in conjunction with mass spectrometry (GC–MS), using 40 breath samples. Results: The NA-NOSE could clearly distinguish between (i) HNC patients and healthy controls, (ii) LC patients and healthy controls, and (iii) HNC and LC patients. The GC–MS analysis showed statistically significant differences in the chemical composition of the breath of the three groups. Conclusion: The presented results could lead to the development of a cost-effective, fast, and reliable method for the differential diagnosis of HNC that is based on breath testing with an NA-NOSE, with a future potential as screening tool.
Collapse
Affiliation(s)
- M Hakim
- The Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|