1
|
Advani SM, Swartz MD, Loree J, Davis JS, Sarsashek AM, Lam M, Lee MS, Bressler J, Lopez DS, Daniel CR, Morris V, Shureqi I, Kee B, Dasari A, Vilar E, Overman M, Hamilton S, Maru D, Braithwaite D, Kopetz S. Epidemiology and Molecular-Pathologic Characteristics of CpG Island Methylator Phenotype (CIMP) in Colorectal Cancer. Clin Colorectal Cancer 2021; 20:137-147.e1. [PMID: 33229221 DOI: 10.1016/j.clcc.2020.09.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/15/2020] [Accepted: 09/18/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND CpG island methylator phenotype (CIMP) forms a distinct epigenetic phenotype in colorectal cancer (CRC). Though associated with distinct clinicopathologic characteristics, limited evidence exists of the association of CIMP with patient's reported lifestyle factors and tumor molecular characteristics. We assessed the associations of these characteristics in a pooled analysis of CRC patients. PATIENTS AND METHODS We pooled data from 3 CRC patient cohorts: Assessment of Targeted Therapies Against Colorectal Cancer (ATTACC), biomarker-based protocol (Integromics), and The Cancer Genome Atlas (TCGA). CIMP was measured using the classical 6-gene methylated-in-tumor (MINT) marker panel (MINT1, MINT2, MINT31, p14, p16, and MLH1) in ATTACC and genome-wide human methylation arrays in Integromics and TCGA, respectively. CIMP-High (CIMP-H) was defined as ≥ 3 of 6 methylated markers in ATTACC. In TCGA and Integromics, CIMP-H group was defined on the basis of clusters of methylation profiles and high levels of methylation in tumor samples. Baseline comparisons of characteristics across CIMP groups (CIMP-H vs. CIMP-0) were performed by Student t test or chi-square test for continuous or categorical variables, respectively. Further logistic regression analyses were performed to compute the odds ratio (OR) of these associations. RESULTS Pooled prevalence of CIMP-H was 22% across 3 data sets. CIMP-H CRC tumors were associated with older age at diagnosis (OR, 1.02; 95% confidence interval [CI], 1.01, 1.03), microsatellite instability-high (MSI-H) status (OR, 9.15; 95% CI, 4.45, 18.81), BRAF mutation (OR, 7.70; 95% CI, 4.98, 11.87), right-sided tumor location (OR, 2.40; 95% CI, 1.78, 3.22), poor differentiation (OR, 2.94; 95% CI, 1.95, 4.45), and mucinous histology (OR, 2.47; 95% CI, 1.77, 3.47), as reported previously in the literature. CIMP-H tumors were also found to be associated with self-reported history of alcohol consumption (OR, ever vs. never, 1.58; 95% CI, 1.07, 2.34). Pathologically, CIMP-H tumors were associated with the presence of intraepithelial lymphocytes (OR, 3.31; 95% CI, 1.41, 7.80) among patients in the Integromics cohort. CONCLUSION CIMP-H tumors were associated with history of alcohol consumption and presence of intraepithelial lymphocytes. In addition, we confirmed the previously known association of CIMP with age, MSI-H status, BRAF mutation, sidedness, and mucinous histology. Molecular pathologic epidemiology associations help us explore the underlying association of lifestyle and clinical factors with molecular subsets like CIMP and help guide cancer prevention and treatment strategies.
Collapse
Affiliation(s)
- Shailesh M Advani
- Social Behavioral Research Branch, National Human Genome Research Institute, National Institute of Health, Bethesda, MD; Division of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX; Department of Oncology, Georgetown University School of Medicine, Washington, DC.
| | - Michael D Swartz
- Department of Biostatistics and Data Science, University of Texas Health Science Center at Houston, Houston, TX
| | - Jonathan Loree
- Division of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Jennifer S Davis
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Amir Mehvarz Sarsashek
- Division of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Michael Lam
- Division of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Michael Sangmin Lee
- Division of Gastrointestinal Oncology, University of North Carolina Chapel Hill, Chapel Hill, NC
| | - Jan Bressler
- Department of Epidemiology, Human Genetics and Environmental Sciences, University of Texas Health Science Center at Houston, School of Public Health, Houston, TX
| | - David S Lopez
- Department of Preventive Medicine and Population Health, UTMB School of Medicine, Galveston, TX
| | - Carrie R Daniel
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Van Morris
- Division of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Imad Shureqi
- Division of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Bryan Kee
- Division of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Arvind Dasari
- Division of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Eduardo Vilar
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Michael Overman
- Division of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Stanley Hamilton
- Division of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Dipen Maru
- Division of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Dejana Braithwaite
- Department of Oncology, Georgetown University School of Medicine, Washington, DC
| | - Scott Kopetz
- Division of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX.
| |
Collapse
|
2
|
Natsume A, Aoki K, Ohka F, Maeda S, Hirano M, Adilijiang A, Motomura K, Sumi M, Nishikawa R, Narita Y, Muragaki Y, Maruyama T, Ito T, Beppu T, Nakamura H, Kayama T, Sato S, Nagane M, Mishima K, Nakasu Y, Kurisu K, Yamasaki F, Sugiyama K, Onishi T, Iwadate Y, Terasaki M, Kobayashi H, Matsumura A, Ishikawa E, Sasaki H, Mukasa A, Matsuo T, Hirano H, Kumabe T, Shinoura N, Hashimoto N, Aoki T, Asai A, Abe T, Yoshino A, Arakawa Y, Asano K, Yoshimoto K, Shibui S, Okuno Y, Wakabayashi T. Genetic analysis in patients with newly diagnosed glioblastomas treated with interferon-beta plus temozolomide in comparison with temozolomide alone. J Neurooncol 2020; 148:17-27. [PMID: 32367437 DOI: 10.1007/s11060-020-03505-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 04/17/2020] [Indexed: 12/30/2022]
Abstract
PURPOSE This study aimed to explore the genetic alterations and to identify good responders in the experimental arm in the tumor samples from newly diagnosed glioblastoma (GBM) patients enrolled in JCOG0911; a randomized phase II trial was conducted to compare the efficacy of interferonβ (IFNβ) plus temozolomide (TMZ) with that of TMZ alone. EXPERIMENTAL DESIGN: Of 122 tumors, we performed deep targeted sequencing to determine the somatic mutations, copy number variations, and tumor mutation burden; pyrosequencing for O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation; Sanger sequencing for the telomerase reverse transcriptase (TERT) promoter; and microsatellite instability (MSI) testing in 95, 91, 91 and 72 tumors, respectively. We performed a multivariable Cox regression analysis using backward stepwise selection of variables including clinical factors (sex, age, performance status, residual tumor after resection, tumor location) and genetic alterations. RESULTS Deep sequencing detected an IDH1 mutation in 13 tumors (14%). The MGMT promoter methylation by quantitative pyrosequencing was observed in 41% of the tumors. A mutation in the TERT promoter was observed in 69% of the tumors. While high tumor mutation burden (> 10 mutations per megabase) was seen in four tumors, none of the tumors displayed MSI-high. The clinical and genetic factors considered as independent favorable prognostic factors were gross total resection (hazard ratio [HR]: 0.49, 95% confidence interval, 0.30-0.81, P = 0.0049) and MGMT promoter methylation (HR: 0.43, 0.21-0.88, P = 0.023). However, tumor location at the temporal lobe (HR: 1.90, 1.22-2.95, P = 0.0046) was an independent unfavorable prognostic factor. No predictive factors specific to the TMZ + IFNβ + Radiotherapy (RT) group were found. CONCLUSION This additional sub-analytical study of JCOG0911 among patients with newly diagnosed GBM showed that tumor location at the temporal lobe, gross total resection, and MGMT promoter methylation were significant prognostic factors, although no factors specific to IFNβ addition were identified.
Collapse
Affiliation(s)
- Atsushi Natsume
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Kosuke Aoki
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Fumiharu Ohka
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Sachi Maeda
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masaki Hirano
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Alimu Adilijiang
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kazuya Motomura
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Minako Sumi
- Radiation Oncology Department, Cancer Institute Hospital, Tokyo, Japan
| | - Ryo Nishikawa
- Department of Neuro-Oncology/Neurosurgery, Saitama Medical University International Medical Center, Saitama, Japan
| | - Yoshitaka Narita
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Yoshihiro Muragaki
- Department of Neurosurgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Takashi Maruyama
- Department of Neurosurgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Tamio Ito
- Department of Neurosurgery, Nakamura Memorial Hospital, Sapporo, Japan
| | - Takaaki Beppu
- Department of Neurosurgery, Iwate Medical University, Iwate, Japan
| | - Hideo Nakamura
- Department of Neurosurgery, Kumamoto University Graduate School of Medicine, Kumamoto, Japan
| | - Takamasa Kayama
- Department of Neurosurgery, Yamagata University Graduate School of Medicine, Yamagata, Japan
| | - Shinya Sato
- Department of Neurosurgery, Yamagata University Graduate School of Medicine, Yamagata, Japan
| | - Motoo Nagane
- Department of Neurosurgery, Faculty of Medicine, Kyorin University, Tokyo, Japan
| | - Kazuhiko Mishima
- Department of Neuro-Oncology/Neurosurgery, Saitama Medical University International Medical Center, Saitama, Japan
| | - Yoko Nakasu
- Department of Neurosurgery, Shizuoka Cancer Center, Shizuoka, Japan
| | - Kaoru Kurisu
- Department of Neurosurgery, Hiroshima University Hospital, Hiroshima, Japan
| | - Fumiyuki Yamasaki
- Department of Neurosurgery, Hiroshima University Hospital, Hiroshima, Japan
| | - Kazuhiko Sugiyama
- Department of Clinical Oncology & Neuro-Oncology Program, Hiroshima University Hospital, Hiroshima, Japan
| | - Takanori Onishi
- Department of Neurosurgery, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Yasuo Iwadate
- Department of Neurological Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Mizuhiko Terasaki
- Department of Neurosurgery, Kurume University Graduate School of Medicine, Kurume, Japan
| | - Hiroyuki Kobayashi
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Akira Matsumura
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Eiichi Ishikawa
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Hikaru Sasaki
- Department of Neurosurgery, Keio University School of Medicine, Tokyo, Japan
| | - Akitake Mukasa
- Department of Neurosurgery, The University of Tokyo Hospital, Tokyo, Japan
| | - Takayuki Matsuo
- Department of Neurosurgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Hirofumi Hirano
- Department of Neurosurgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Toshihiro Kumabe
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Nobusada Shinoura
- Department of Neurosurgery, Tokyo Metropolitan Cancer and Infectious Disease Center Komagome Hospital, Tokyo, Japan
| | - Naoya Hashimoto
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Tomokazu Aoki
- Department of Neurosurgery, Kitano Hospital, Osaka, Japan
| | - Akio Asai
- Department of Neurosurgery, Kansai Medical University, Osaka, Japan
| | - Tatsuya Abe
- Department of Neurosurgery, Faculty of Medicine, Oita University, Oita, Japan
| | - Atsuo Yoshino
- Department of Neurological Surgery, Nihon University Graduate School of Medicine, Tokyo, Japan
| | - Yoshiki Arakawa
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kenichiro Asano
- Department of Neurosurgery, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Koji Yoshimoto
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyusyu University, Fukuoka, Japan
| | - Soichiro Shibui
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Yusuke Okuno
- Center for Advanced Medicine and Clinical Research, Nagoya University Hospital, Nagoya, Japan
| | - Toshihiko Wakabayashi
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | |
Collapse
|
3
|
Salama RH, Sayed ZEAA, Ashmawy AM, Elsewify WA, Ezzat GM, Mahmoud MA, Alsanory AA, Alsanory TA. Interrelations of Apoptotic and Cellular Senescence Genes Methylation in Inflammatory Bowel Disease Subtypes and Colorectal Carcinoma in Egyptians Patients. Appl Biochem Biotechnol 2019; 189:330-343. [PMID: 30989570 DOI: 10.1007/s12010-019-03017-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 03/27/2019] [Indexed: 12/24/2022]
Abstract
Ras-related domain family member 1 transcript variant A (RASSF1A) controls apoptosis and cell proliferation while p14/ARF gene has a regulatory role in cellular senescence. Failure of apoptosis and cellular senescence occurs during inflammatory bowel disease (IBD) and colorectal cancer (CRC). To reveal the role of peripheral leukocyte promoter methylation of RASSF1A and p14/ARF in the pathogenesis of IBD subtypes and CRC we investigated the methylation state of the two genes by methylation-specific polymerase chain reaction (MSP-PCR) in 60 CRC patients, 60 patients with IBD; 27 with ulcerative colitis and 33 had Crohn's disease and also in 30 healthy subjects. Methylated RASSF1A and p14/ARF genes were detected in 55% and 60% of CRC, while the frequency of the methylated RASSF1A and p14/ARF genes was 23.3% and 43.3% in IBD patients and 3.3% and 13.3% in the control group (P = 0.000 each). Also, the frequency of methylated RASSF1A gene was significantly higher in ulcerative colitis than in Crohn's disease, while a non-significant frequency of methylated p14/ARF was detected between ulcerative colitis and Crohn's disease. Furthermore, methylated RASSF1A and p14/ARF were associated with the grade of CRC but not associated with the age of patients, family history, or tumor location. Results suggest that methylated RASSF1A and p14/ARF are related to CRC and IBD pathogenesis and may be used as molecular biomarkers for early detection of CRC and IBD.
Collapse
Affiliation(s)
- Ragaa H Salama
- Department of Medical Biochemistry, Faculty of Medicine, Assiut University, Assiut, Egypt
| | | | - Ahmed M Ashmawy
- Department of Internal Medicine, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Wael A Elsewify
- Department of Internal Medicine, Faculty of Medicine, Aswan University, Aswan, Egypt
| | - Ghada M Ezzat
- Department of Medical Biochemistry, Faculty of Medicine, Assiut University, Assiut, Egypt.
| | - Mahmoud A Mahmoud
- Department of Internal Medicine, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Aya A Alsanory
- Students at Faculty of Medicine, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Tasneem A Alsanory
- Students at Faculty of Medicine, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| |
Collapse
|
4
|
Liu R, Su X, Long Y, Zhou D, Zhang X, Ye Z, Ma J, Tang T, Wang F, He C. A systematic review and quantitative assessment of methylation biomarkers in fecal DNA and colorectal cancer and its precursor, colorectal adenoma. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2019; 779:45-57. [PMID: 31097151 DOI: 10.1016/j.mrrev.2019.01.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 11/15/2018] [Accepted: 01/16/2019] [Indexed: 02/06/2023]
Abstract
Colorectal cancer (CRC) arises from accumulated genetic and epigenetic alterations, which provide the possibility to identify tumor-specific biomarkers by analyzing fecal DNA. Methylation status in human genes from tumor tissue is highlighted as promising biomarker in the early detection of CRC. A number of studies have documented altered methylation levels in DNA extracted from stool samples, but generated heterogeneous results. We performed a systematic review and quantitative assessment of existing studies to compare levels of DNA methylation in most frequently studied genes and their diagnostic value in CRC and its precursor, colorectal adenoma, with their counterparts in healthy subjects. Robust searches of the literature were performed in our study with explicit strategies and definite inclusion/exclusion criteria. Pooled data revealed that methylation levels of SFRP2, SFRP1, TFPI2, BMP3, NDRG4, SPG20, and BMP3 plus NDRG4 genes exceeded a sensitivity of 70% and a specificity of 80% for CRC detection. The DOR of the seven candidate biomarkers ranged from 19.80 to 334.33, indicating a good diagnostic power in discriminating cancer from normal tissues. The AUC range was from 0.88 to 0.95, indicating a good or very good discriminatory performance. When test results for BMP3 and NDRG4 were combined, the DOR of CRC detection was 98.36, which was higher than that for BMP3 and NDRG4 separately. As for adenoma detection, the DOR of methylated NDRG4 is higher than that for CRC (CRC vs. adenoma: 54.86 vs. 57.22). Both the sensitivity and specificity of NDRG4 for adenoma detection exceeded 70%. These findings demonstrate the eligibility and feasibility of DNA methylation as a minimally invasive biomarker in feces in the diagnosis of CRC and adenoma. The use of DNA from human stools has the potential to be readily applicable to detect aberrant DNA methylation levels among many subjects for CRC early screening.
Collapse
Affiliation(s)
- Rongbin Liu
- Department of Molecular Diagnostics, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China; Department of Ultrasound, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xuan Su
- Department of Head and Neck, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, China
| | - Yakang Long
- Department of Molecular Diagnostics, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Dalei Zhou
- Department of Molecular Diagnostics, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Xiao Zhang
- Department of Molecular Diagnostics, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Zulu Ye
- Department of Molecular Diagnostics, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Jiangjun Ma
- Department of Molecular Diagnostics, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Tao Tang
- Department of Molecular Diagnostics, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Fang Wang
- Department of Molecular Diagnostics, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.
| | - Caiyun He
- Department of Molecular Diagnostics, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.
| |
Collapse
|
5
|
Clinical, Pathological, and Molecular Characteristics of CpG Island Methylator Phenotype in Colorectal Cancer: A Systematic Review and Meta-analysis. Transl Oncol 2018; 11:1188-1201. [PMID: 30071442 PMCID: PMC6080640 DOI: 10.1016/j.tranon.2018.07.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 07/10/2018] [Accepted: 07/10/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND: CpG island methylator phenotype (CIMP) tumors, comprising 20% of colorectal cancers, are associated with female sex, age, right-sided location, and BRAF mutations. However, other factors potentially associated with CIMP have not been robustly examined. This meta-analysis provides a comprehensive assessment of the clinical, pathologic, and molecular characteristics that define CIMP tumors. METHODS: We conducted a comprehensive search of the literature from January 1999 through April 2018 and identified 122 articles, on which comprehensive data abstraction was performed on the clinical, pathologic, molecular, and mutational characteristics of CIMP subgroups, classified based on the extent of DNA methylation of tumor suppressor genes assessed using a variety of laboratory methods. Associations of CIMP with outcome parameters were estimated using pooled odds ratio or standardized mean differences using random-effects model. RESULTS: We confirmed prior associations including female sex, older age, right-sided tumor location, poor differentiation, and microsatellite instability. In addition to the recognized association with BRAF mutations, CIMP was also associated with PIK3CA mutations and lack of mutations in KRAS and TP53. Evidence of an activated immune response was seen with high rates of tumor-infiltrating lymphocytes (but not peritumoral lymphocytes), Crohn-like infiltrates, and infiltration with Fusobacterium nucleatum bacteria. Additionally, CIMP tumors were associated with advance T-stage and presence of perineural and lymphovascular invasion. CONCLUSION: The meta-analysis highlights key features distinguishing CIMP in colorectal cancer, including molecular characteristics of an active immune response. Improved understanding of this unique molecular subtype of colorectal cancer may provide insights into prevention and treatment.
Collapse
|
6
|
Freitas M, Ferreira F, Carvalho S, Silva F, Lopes P, Antunes L, Salta S, Diniz F, Santos LL, Videira JF, Henrique R, Jerónimo C. A novel DNA methylation panel accurately detects colorectal cancer independently of molecular pathway. J Transl Med 2018; 16:45. [PMID: 29486770 PMCID: PMC6389195 DOI: 10.1186/s12967-018-1415-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Accepted: 02/16/2018] [Indexed: 12/14/2022] Open
Abstract
Background Colorectal cancer (CRC) is one of the most incident cancers, associated with significant morbidity and mortality, and usually classified into three main molecular pathways: chromosomal instability, microsatellite instability (MSI) and CpG island methylator phenotype (CIMP). Currently, available screening methods are either costly or of limited specificity, impairing global implementation. More cost-effective strategies, including DNA methylation-based tests, might prove advantageous. Although some are already available, its performance is suboptimal, entailing the need for better candidate biomarkers. Herein, we tested whether combined use of APC, IGF2, MGMT, RASSF1A, and SEPT9 promoter methylation might accurately detect CRC irrespective of molecular subtype. Methods Selected genes were validated using formalin-fixed paraffin-embedded tissues from 214 CRC and 50 non-malignant colorectal mucosae (CRN). Promoter methylation levels were assessed using real-time quantitative methylation-specific PCR. MSI and CIMP status were determined. Molecular data were correlated with standard clinicopathological features. Diagnostic and prognostic performances were evaluated by receiver operator characteristics curve and survival analyses, respectively. Results Except for IGF2, promoter methylation levels were significantly higher in CRC compared to CRN. A three-gene panel (MGMT, RASSF1A, SEPT9) identified malignancy with 96.6% sensitivity, 74.0% specificity and 91.5 positive predictive value (area under the curve: 0.97), independently of tumor location, stage, and molecular pathway. Conclusions Combined promoter methylation analysis of MGMT/RASSF1A/SEPT9 displays a better performance than currently available epigenetic-based biomarkers for CRC, providing the basis for the development of a non-invasive assay to detect CRC irrespective of the molecular pathway. Electronic supplementary material The online version of this article (10.1186/s12967-018-1415-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Micaela Freitas
- Cancer Biology & Epigenetics Group-Research Center (CI-IPOP), Research Center-LAB 3, Portuguese Oncology Institute of Porto (IPO Porto), F Bdg, 1st Floor, Rua Dr António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Fábio Ferreira
- Cancer Biology & Epigenetics Group-Research Center (CI-IPOP), Research Center-LAB 3, Portuguese Oncology Institute of Porto (IPO Porto), F Bdg, 1st Floor, Rua Dr António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Sónia Carvalho
- Cancer Biology & Epigenetics Group-Research Center (CI-IPOP), Research Center-LAB 3, Portuguese Oncology Institute of Porto (IPO Porto), F Bdg, 1st Floor, Rua Dr António Bernardino de Almeida, 4200-072, Porto, Portugal.,Departments of Pathology, Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal
| | - Fernanda Silva
- Departments of Pathology, Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal
| | - Paula Lopes
- Cancer Biology & Epigenetics Group-Research Center (CI-IPOP), Research Center-LAB 3, Portuguese Oncology Institute of Porto (IPO Porto), F Bdg, 1st Floor, Rua Dr António Bernardino de Almeida, 4200-072, Porto, Portugal.,Departments of Pathology, Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal
| | - Luís Antunes
- Departments of Epidemiology, Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal
| | - Sofia Salta
- Cancer Biology & Epigenetics Group-Research Center (CI-IPOP), Research Center-LAB 3, Portuguese Oncology Institute of Porto (IPO Porto), F Bdg, 1st Floor, Rua Dr António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Francisca Diniz
- Cancer Biology & Epigenetics Group-Research Center (CI-IPOP), Research Center-LAB 3, Portuguese Oncology Institute of Porto (IPO Porto), F Bdg, 1st Floor, Rua Dr António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Lúcio Lara Santos
- Departments of Surgical Oncology, Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal
| | - José Flávio Videira
- Departments of Surgical Oncology, Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal
| | - Rui Henrique
- Cancer Biology & Epigenetics Group-Research Center (CI-IPOP), Research Center-LAB 3, Portuguese Oncology Institute of Porto (IPO Porto), F Bdg, 1st Floor, Rua Dr António Bernardino de Almeida, 4200-072, Porto, Portugal. .,Departments of Pathology, Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal. .,Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira n.º 228, 4050-313, Porto, Portugal.
| | - Carmen Jerónimo
- Cancer Biology & Epigenetics Group-Research Center (CI-IPOP), Research Center-LAB 3, Portuguese Oncology Institute of Porto (IPO Porto), F Bdg, 1st Floor, Rua Dr António Bernardino de Almeida, 4200-072, Porto, Portugal. .,Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira n.º 228, 4050-313, Porto, Portugal.
| |
Collapse
|
7
|
Sawada T, Yamamoto E, Yamano HO, Nojima M, Harada T, Maruyama R, Ashida M, Aoki H, Matsushita HO, Yoshikawa K, Harada E, Tanaka Y, Wakita S, Niinuma T, Kai M, Eizuka M, Sugai T, Suzuki H. Assessment of epigenetic alterations in early colorectal lesions containing BRAF mutations. Oncotarget 2018; 7:35106-18. [PMID: 27145369 PMCID: PMC5085213 DOI: 10.18632/oncotarget.9044] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 04/11/2016] [Indexed: 12/29/2022] Open
Abstract
To clarify the molecular and clinicopathological characteristics of colorectal serrated lesions, we assessed the DNA methylation of cancer-associated genes in a cohort of BRAF-mutant precancerous lesions from 94 individuals. We then compared those results with the lesions' clinicopathological features, especially colorectal subsites. The lesions included hyperplastic polyps (n = 16), traditional serrated adenomas (TSAs) (n = 15), TSAs with sessile serrated adenomas (SSAs) (n = 6), SSAs (n = 49) and SSAs with dysplasia (n = 16). The prevalence of lesions exhibiting the CpG island methylator phenotype (CIMP) was lower in the sigmoid colon and rectum than in other bowel subsites, including the cecum, ascending, transverse and descending colon. In addition, several cancer-associated genes showed higher methylation levels within lesions in the proximal to sigmoid colon than in the sigmoid colon and rectum. These results indicate that the methylation status of lesions with BRAF mutation is strongly associated with their location, histological findings and neoplastic pathways. By contrast, no difference in aberrant DNA methylation was observed in normal-appearing background colonic mucosa along the bowel subsites, which may indicate the absence of an epigenetic field defect.
Collapse
Affiliation(s)
- Takeshi Sawada
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan.,Department of Advanced Research in Community Medicine, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Eiichiro Yamamoto
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan.,Department of Gastroenterology, Rheumatology and Clinical Immunology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hiro-O Yamano
- Department of Gastroenterology, Akita Red Cross Hospital, Akita, Japan
| | - Masanori Nojima
- Center for Translational Research, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Taku Harada
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Reo Maruyama
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Masami Ashida
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hironori Aoki
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hiro-O Matsushita
- Department of Gastroenterology, Akita Red Cross Hospital, Akita, Japan
| | - Kenjiro Yoshikawa
- Department of Gastroenterology, Akita Red Cross Hospital, Akita, Japan
| | - Eiji Harada
- Department of Gastroenterology, Akita Red Cross Hospital, Akita, Japan
| | - Yoshihito Tanaka
- Department of Gastroenterology, Akita Red Cross Hospital, Akita, Japan
| | - Shigenori Wakita
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | - Takeshi Niinuma
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Masahiro Kai
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Makoto Eizuka
- Department of Molecular Diagnostic Pathology, Iwate Medical University School of Medicine, Morioka, Japan
| | - Tamotsu Sugai
- Department of Molecular Diagnostic Pathology, Iwate Medical University School of Medicine, Morioka, Japan
| | - Hiromu Suzuki
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
8
|
Gregory KJ, Morin SM, Schneider SS. Regulation of early growth response 2 expression by secreted frizzled related protein 1. BMC Cancer 2017; 17:473. [PMID: 28687085 PMCID: PMC5501954 DOI: 10.1186/s12885-017-3426-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 06/12/2017] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Secreted frizzled-related protein 1 (SFRP1) expression is down-regulated in a multitude of cancers, including breast cancer. Loss of Sfrp1 also exacerbates weight gain as well as inflammation. Additionally, loss of SFRP1 enhances TGF-β signaling and the downstream MAPK pathway. TGF-β has been shown to increase the expression of Early Growth Response 2 (EGR2), a transcription factor implicated in immune function in a wide variety of cell types. The work described here was initiated to determine whether SFRP1 modulation affects TGF-β mediated EGR2 expression in mammary tissues as well as macrophage polarization. METHODS Real-time PCR analysis was performed to examine EGR2 expression in human and murine mammary epithelial cells and tissues in response to SFRP1 modulation. Chemical inhibition was employed to investigate the roles TGF-β and MAPK signaling play in the control of EGR2 expression in response to SFRP1 loss. Primary murine macrophages were isolated from Sfrp1-/- mice and stimulated to become either M1 or M2 macrophages, treated with recombinant SFRP1, and real-time PCR was used to measure the expression of murine specific M1/M2 markers [Egr2 (M2) and Gpr18 (M1)]. Immunohistochemical analysis was used to measure the expression of human specific M1/M2 markers [CD163 (M2) and HLA-DRA (M2)] in response to rSFRP1 treatment in human mammary explant tissue. RESULTS Knockdown of SFRP1 expression increases the expression of EGR2 mRNA in human mammary epithelial cells and addition of rSFRP1 decreases the expression of EGR2 when added to explant mammary gland tissues. Chemical inhibition of both TGF-β and MAPK signaling in Sfrp1-/- or knockdown mammary epithelial cells results in decreased expression of EGR2. Stimulated murine macrophages obtained from Sfrp1-/- mice and treated with rSFRP1 exhibit a reduction in Egr2 expression and an increase in Gpr18 mRNA expression. Human mammary explant tissue treated with rSFRP1 decreases CD163 protein expression whereas there was no effect on the expression of HLA-DRA. CONCLUSIONS Loss of SFRP1 likely contributes to tumor progression by altering the expression of a critical transcription factor in both the epithelium and the immune system.
Collapse
Affiliation(s)
- Kelly J Gregory
- Pioneer Valley Life Sciences Institute, Baystate Medical Center, 3601 Main St, Springfield, MA, 01199, USA. .,Department of Biology, University of Massachusetts, Amherst, MA, 01003, USA.
| | - Stephanie M Morin
- Department of Biology, University of Massachusetts, Amherst, MA, 01003, USA
| | - Sallie S Schneider
- Pioneer Valley Life Sciences Institute, Baystate Medical Center, 3601 Main St, Springfield, MA, 01199, USA. .,Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, 01003, USA.
| |
Collapse
|
9
|
A CpG island methylator phenotype in acute myeloid leukemia independent of IDH mutations and associated with a favorable outcome. Leukemia 2017; 31:2011-2019. [PMID: 28074068 PMCID: PMC5537054 DOI: 10.1038/leu.2017.12] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 12/09/2016] [Accepted: 12/13/2016] [Indexed: 12/12/2022]
Abstract
Genetic changes are infrequent in acute myeloid leukemia (AML) compared to other malignancies and often involve epigenetic regulators, suggesting that an altered epigenome may underlie AML biology and outcomes. In 96 AML cases including 65 pilot samples selected for cured/not-cured, we found higher CpG island (CGI) promoter methylation in cured patients. Expanded genome-wide digital restriction enzyme analysis of methylation (DREAM) data revealed a CGI methylator phenotype independent of IDH1/2 mutations we term AML-CIMP (A-CIMP+). A-CIMP was associated with longer overall survival (OS) in this dataset (median OS, years: A-CIMP+ = Not reached, A-CIMP− =1.17; P=0.08). For validation we used 194 samples from The Cancer Genome Atlas interrogated with Illumina 450k methylation arrays where we confirmed longer OS in A-CIMP (median OS, years: A-CIMP+ =2.34, A-CIMP− =1.00; P=0.01). Hypermethylation in A-CIMP favored CGIs (OR: CGI/non-CGI=5.21), and while A-CIMP was enriched in CEBPA (P=0.002) and WT1 mutations (P=0.02), 70% of cases lacked either mutation. Hypermethylated genes in A-CIMP function in pluripotency maintenance, and a gene expression signature of A-CIMP was associated with outcomes in multiple datasets. We conclude that CIMP in AML cannot be explained solely by gene mutations (e.g. IDH1/2, TET2), and that curability in A-CIMP+ AML should be validated prospectively.
Collapse
|
10
|
Matthaios D, Balgkouranidou I, Karayiannakis A, Bolanaki H, Xenidis N, Amarantidis K, Chelis L, Romanidis K, Chatzaki A, Lianidou E, Trypsianis G, Kakolyris S. Methylation status of the APC and RASSF1A promoter in cell-free circulating DNA and its prognostic role in patients with colorectal cancer. Oncol Lett 2016; 12:748-756. [PMID: 27347211 DOI: 10.3892/ol.2016.4649] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 04/29/2016] [Indexed: 01/26/2023] Open
Abstract
DNA methylation is the most frequent epigenetic alteration. Using methylation-specific polymerase chain reaction (MSP), the methylation status of the adenomatous polyposis coli (APC) and Ras association domain family 1 isoform A (RASSF1A) genes was examined in cell-free circulating DNA from 155 plasma samples obtained from patients with early and advanced colorectal cancer (CRC). APC and RASSF1A hypermethylation was frequently observed in both early and advanced disease, and was significantly associated with a poorer disease outcome. The methylation status of the APC and RASSF1A promoters was investigated in cell-free DNA of patients with CRC. Using MSP, the promoter methylation status of APC and RASSF1A was examined in 155 blood samples obtained from patients with CRC, 88 of whom had operable CRC (oCRC) and 67 had metastatic CRC (mCRC). The frequency of APC methylation in patients with oCRC was 33%. Methylated APC promoter was significantly associated with older age (P=0.012), higher stage (P=0.014) and methylated RASSF1A status (P=0.050). The frequency of APC methylation in patients with mCRC was 53.7%. In these patients, APC methylation was significantly associated with methylated RASSF1A status (P=0.016). The frequency of RASSF1A methylation in patients with oCRC was 25%. Methylated RASSF1A in oCRC was significantly associated with higher stage (P=0.021). The frequency of RASSF1A methylation in mCRC was 44.8%. Methylated RASSF1A in mCRC was associated with moderate differentiation (P=0.012), high levels of carcinoembryonic antigen (P=0.023) and methylated APC status (P=0.016). Patients with an unmethylated APC gene had better survival in both early (81±5 vs. 27±4 months, P<0.001) and advanced disease (37±7 vs. 15±3 months, P<0.001), compared with patients with methylated APC. Patients with an unmethylated RASSF1A gene had better survival in both early (71±6 vs. 46±8 months, P<0.001) and advanced disease (28±4 vs. 16±3 months, P<0.001) than patients with methylated RASSF1A. The observed significant correlations between APC and RASSF1A promoter methylation status and survival may be indicative of a prognostic role for these genes in CRC, which requires additional testing in larger studies.
Collapse
Affiliation(s)
- Dimitrios Matthaios
- Department of Medical Oncology, Medical School, Democritus University of Thrace, University General Hospital of Alexandroupolis, Alexandroupolis 68100, Greece
| | - Ioanna Balgkouranidou
- Department of Medical Oncology, Medical School, Democritus University of Thrace, University General Hospital of Alexandroupolis, Alexandroupolis 68100, Greece
| | - Anastasios Karayiannakis
- Second Department of Surgery, Medical School, Democritus University of Thrace, University General Hospital of Alexandroupolis, Alexandroupolis 68100, Greece
| | - Helen Bolanaki
- Second Department of Surgery, Medical School, Democritus University of Thrace, University General Hospital of Alexandroupolis, Alexandroupolis 68100, Greece
| | - Nikolaos Xenidis
- Department of Medical Oncology, Medical School, Democritus University of Thrace, University General Hospital of Alexandroupolis, Alexandroupolis 68100, Greece
| | - Kyriakos Amarantidis
- Department of Medical Oncology, Medical School, Democritus University of Thrace, University General Hospital of Alexandroupolis, Alexandroupolis 68100, Greece
| | - Leonidas Chelis
- Department of Medical Oncology, Medical School, Democritus University of Thrace, University General Hospital of Alexandroupolis, Alexandroupolis 68100, Greece
| | - Konstantinos Romanidis
- Second Department of Surgery, Medical School, Democritus University of Thrace, University General Hospital of Alexandroupolis, Alexandroupolis 68100, Greece
| | - Aikaterini Chatzaki
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, University General Hospital of Alexandroupolis, Alexandroupolis 68100, Greece
| | - Evi Lianidou
- Laboratory of Analytical Chemistry, Department of Chemistry, University of Athens, Athens 15771, Greece
| | - Grigorios Trypsianis
- Laboratory of Statistics, Medical School, Democritus University of Thrace, University General Hospital of Alexandroupolis, Alexandroupolis 68100, Greece
| | - Stylianos Kakolyris
- Department of Medical Oncology, Medical School, Democritus University of Thrace, University General Hospital of Alexandroupolis, Alexandroupolis 68100, Greece
| |
Collapse
|
11
|
Zong L, Abe M, Ji J, Zhu WG, Yu D. Tracking the Correlation Between CpG Island Methylator Phenotype and Other Molecular Features and Clinicopathological Features in Human Colorectal Cancers: A Systematic Review and Meta-Analysis. Clin Transl Gastroenterol 2016; 7:e151. [PMID: 26963001 PMCID: PMC4822093 DOI: 10.1038/ctg.2016.14] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 01/21/2016] [Indexed: 01/08/2023] Open
Abstract
Objectives: The controversy of CpG island methylator phenotype (CIMP) in colorectal cancers (CRCs) persists, despite many studies that have been conducted on its correlation with molecular and clinicopathological features. To drive a more precise estimate of the strength of this postulated relationship, a meta-analysis was performed. Methods: A comprehensive search for studies reporting molecular and clinicopathological features of CRCs stratified by CIMP was performed within the PubMed, EMBASE, and Cochrane Library. CIMP was defined by either one of the three panels of gene-specific CIMP markers (Weisenberger panel, classic panel, or a mixture panel of the previous two) or the genome-wide DNA methylation profile. The associations of CIMP with outcome parameters were estimated using odds ratio (OR) or weighted mean difference (WMD) or hazard ratios (HRs) with 95% confidence interval (CI) for each study using a fixed effects or random effects model. Results: A total of 29 studies involving 9,393 CRC patients were included for analysis. We observed more BRAF mutations (OR 34.87; 95% CI, 22.49–54.06) and microsatellite instability (MSI) (OR 12.85 95% CI, 8.84–18.68) in CIMP-positive vs. -negative CRCs, whereas KRAS mutations were less frequent (OR 0.47; 95% CI, 0.30–0.75). Subgroup analysis showed that only the genome-wide methylation profile-defined CIMP subset encompassed all BRAF-mutated CRCs. As expected, CIMP-positive CRCs displayed significant associations with female (OR 0.64; 95% CI, 0.56–0.72), older age at diagnosis (WMD 2.77; 95% CI, 1.15–4.38), proximal location (OR 6.91; 95% CI, 5.17–9.23), mucinous histology (OR 3.81; 95% CI, 2.93–4.95), and poor differentiation (OR 4.22; 95% CI, 2.52–7.08). Although CIMP did not show a correlation with tumor stage (OR 1.10; 95% CI, 0.82–1.46), it was associated with shorter overall survival (HR 1.73; 95% CI, 1.27–2.37). Conclusions: The meta-analysis highlights that CIMP-positive CRCs take their own molecular feature, especially overlapping with BRAF mutations, and clinicopathological features and worse prognosis from CIMP-negative CRCs, suggesting CIMP could be used as an independent prognostic marker for CRCs.
Collapse
Affiliation(s)
- Liang Zong
- Division of Epigenomics, National Cancer Center Research Institute, Tokyo, Japan.,Department of Gastrointestinal Surgery, Graduate School of Medicine, University of Tokyo, Tokyo, Japan.,Department of Gastrointestinal Surgery, Su Bei People's Hospital of Jiangsu Province, Yangzhou University, Yangzhou, China
| | - Masanobu Abe
- Division for Health Service Promotion, University of Tokyo Hospital, Tokyo, Japan
| | - Jiafu Ji
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery, Peking University Cancer Hospital and Institute, Beijing, China
| | - Wei-Guo Zhu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing, China.,Peking-Tsinghua University Center for Life Sciences, Peking University, Beijing, China
| | - Duonan Yu
- Non-coding RNA Center, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Disease, Yangzhou, China.,Institute of Comparative Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou, China
| |
Collapse
|
12
|
Ichimura N, Shinjo K, An B, Shimizu Y, Yamao K, Ohka F, Katsushima K, Hatanaka A, Tojo M, Yamamoto E, Suzuki H, Ueda M, Kondo Y. Aberrant TET1 Methylation Closely Associated with CpG Island Methylator Phenotype in Colorectal Cancer. Cancer Prev Res (Phila) 2015; 8:702-11. [PMID: 26063725 DOI: 10.1158/1940-6207.capr-14-0306] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 12/16/2014] [Indexed: 11/16/2022]
Abstract
Inactivation of methylcytosine dioxygenase, ten-eleven translocation (TET) is known to be associated with aberrant DNA methylation in cancers. Tumors with a CpG island methylator phenotype (CIMP), a distinct subgroup with extensive DNA methylation, show characteristic features in the case of colorectal cancer. The relationship between TET inactivation and CIMP in colorectal cancers is not well understood. The expression level of TET family genes was compared between CIMP-positive (CIMP-P) and CIMP-negative (CIMP-N) colorectal cancers. Furthermore, DNA methylation profiling, including assessment of the TET1 gene, was assessed in colorectal cancers, as well as colon polyps. The TET1 was silenced by DNA methylation in a subset of colorectal cancers as well as cell lines, expression of which was reactivated by demethylating agent. TET1 methylation was more frequent in CIMP-P (23/55, 42%) than CIMP-N (2/113, 2%, P < 0.0001) colorectal cancers. This trend was also observed in colon polyps (CIMP-P, 16/40, 40%; CIMP-N, 2/24, 8%; P = 0.002), suggesting that TET1 methylation is an early event in CIMP tumorigenesis. TET1 methylation was significantly associated with BRAF mutation but not with hMLH1 methylation in the CIMP-P colorectal cancers. Colorectal cancers with TET1 methylation have a significantly greater number of DNA methylated genes and less pathological metastasis compared to those without TET1 methylation (P = 0.007 and 0.045, respectively). Our data suggest that TET1 methylation may contribute to the establishment of a unique pathway in respect to CIMP-mediated tumorigenesis, which may be incidental to hMLH1 methylation. In addition, our findings provide evidence that TET1 methylation may be a good biomarker for the prediction of metastasis in colorectal cancer.
Collapse
Affiliation(s)
- Norihisa Ichimura
- Department of Epigenomics, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan. Department of Oral and Maxillofacial Surgery, Nagoya University School of Medicine, Nagoya, Japan
| | - Keiko Shinjo
- Department of Epigenomics, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Byonggu An
- Department of Surgery, Ako City Hospital, Ako, Japan
| | - Yasuhiro Shimizu
- Department of Gastrointestinal Surgery, Aichi Cancer Center, Nagoya, Japan
| | - Kenji Yamao
- Department of Gastroenterology, Aichi Cancer Center, Nagoya, Japan
| | - Fumiharu Ohka
- Department of Epigenomics, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Keisuke Katsushima
- Department of Epigenomics, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Akira Hatanaka
- Department of Epigenomics, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Masayuki Tojo
- Department of Epigenomics, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Eiichiro Yamamoto
- Department of Molecular Biology, Sapporo Medical University, Sapporo, Japan
| | - Hiromu Suzuki
- Department of Molecular Biology, Sapporo Medical University, Sapporo, Japan
| | - Minoru Ueda
- Department of Oral and Maxillofacial Surgery, Nagoya University School of Medicine, Nagoya, Japan
| | - Yutaka Kondo
- Department of Epigenomics, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan.
| |
Collapse
|
13
|
Veganzones S, Maestro ML, Rafael S, de la Orden V, Vidaurreta M, Mediero B, Espantaleón M, Cerdán J, Díaz-Rubio E. Combined methylation of p16 and hMLH1 (CMETH2) discriminates a subpopulation with better prognosis in colorectal cancer patients with microsatellite instability tumors. Tumour Biol 2015; 36:3853-61. [DOI: 10.1007/s13277-014-3027-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 12/26/2014] [Indexed: 12/26/2022] Open
|
14
|
Patai ÁV, Valcz G, Hollósi P, Kalmár A, Péterfia B, Patai Á, Wichmann B, Spisák S, Barták BK, Leiszter K, Tóth K, Sipos F, Kovalszky I, Péter Z, Miheller P, Tulassay Z, Molnár B. Comprehensive DNA Methylation Analysis Reveals a Common Ten-Gene Methylation Signature in Colorectal Adenomas and Carcinomas. PLoS One 2015; 10:e0133836. [PMID: 26291085 PMCID: PMC4546193 DOI: 10.1371/journal.pone.0133836] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 07/02/2015] [Indexed: 02/06/2023] Open
Abstract
Microarray analysis of promoter hypermethylation provides insight into the role and extent of DNA methylation in the development of colorectal cancer (CRC) and may be co-monitored with the appearance of driver mutations. Colonic biopsy samples were obtained endoscopically from 10 normal, 23 adenoma (17 low-grade (LGD) and 6 high-grade dysplasia (HGD)), and 8 ulcerative colitis (UC) patients (4 active and 4 inactive). CRC samples were obtained from 24 patients (17 primary, 7 metastatic (MCRC)), 7 of them with synchronous LGD. Field effects were analyzed in tissues 1 cm (n = 5) and 10 cm (n = 5) from the margin of CRC. Tissue materials were studied for DNA methylation status using a 96 gene panel and for KRAS and BRAF mutations. Expression levels were assayed using whole genomic mRNA arrays. SFRP1 was further examined by immunohistochemistry. HT29 cells were treated with 5-aza-2' deoxycytidine to analyze the reversal possibility of DNA methylation. More than 85% of tumor samples showed hypermethylation in 10 genes (SFRP1, SST, BNC1, MAL, SLIT2, SFRP2, SLIT3, ALDH1A3, TMEFF2, WIF1), whereas the frequency of examined mutations were below 25%. These genes distinguished precancerous and cancerous lesions from inflamed and healthy tissue. The mRNA alterations that might be caused by systematic methylation could be partly reversed by demethylation treatment. Systematic changes in methylation patterns were observed early in CRC carcinogenesis, occuring in precursor lesions and CRC. Thus we conclude that DNA hypermethylation is an early and systematic event in colorectal carcinogenesis, and it could be potentially reversed by systematic demethylation therapy, but it would need more in vitro and in vivo experiments to support this theory.
Collapse
Affiliation(s)
- Árpád V. Patai
- 2nd Department of Medicine, Semmelweis University, Budapest, Hungary
- * E-mail:
| | - Gábor Valcz
- Molecular Medicine Research Group, Hungarian Academy of Sciences, Budapest, Hungary
| | - Péter Hollósi
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
- Tumor Progression Research Group, Hungarian Academy of Sciences, Budapest, Hungary
| | - Alexandra Kalmár
- 2nd Department of Medicine, Semmelweis University, Budapest, Hungary
| | - Bálint Péterfia
- Molecular Medicine Research Group, Hungarian Academy of Sciences, Budapest, Hungary
| | - Árpád Patai
- Department of Gastroenterology and Medicine, Markusovszky University Teaching Hospital, Szombathely, Hungary
| | - Barnabás Wichmann
- Molecular Medicine Research Group, Hungarian Academy of Sciences, Budapest, Hungary
| | - Sándor Spisák
- Molecular Medicine Research Group, Hungarian Academy of Sciences, Budapest, Hungary
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | | | - Katalin Leiszter
- 2nd Department of Medicine, Semmelweis University, Budapest, Hungary
| | - Kinga Tóth
- 2nd Department of Medicine, Semmelweis University, Budapest, Hungary
| | - Ferenc Sipos
- 2nd Department of Medicine, Semmelweis University, Budapest, Hungary
| | - Ilona Kovalszky
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Zoltán Péter
- 2nd Department of Medicine, Semmelweis University, Budapest, Hungary
| | - Pál Miheller
- 2nd Department of Medicine, Semmelweis University, Budapest, Hungary
| | - Zsolt Tulassay
- 2nd Department of Medicine, Semmelweis University, Budapest, Hungary
- Molecular Medicine Research Group, Hungarian Academy of Sciences, Budapest, Hungary
| | - Béla Molnár
- 2nd Department of Medicine, Semmelweis University, Budapest, Hungary
- Molecular Medicine Research Group, Hungarian Academy of Sciences, Budapest, Hungary
| |
Collapse
|
15
|
Hisabe T, Yao K, Imamura K, Ishihara H, Hirai F, Matsui T, Iwashita A. White opaque substance visualized using magnifying endoscopy with narrow-band imaging in colorectal epithelial neoplasms. Dig Dis Sci 2014; 59:2544-9. [PMID: 24828918 DOI: 10.1007/s10620-014-3204-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 05/03/2014] [Indexed: 12/13/2022]
Abstract
BACKGROUND The presence of a white opaque substance (WOS) on magnifying endoscopy (ME) with narrow-band imaging (NBI) has been reported for gastric epithelial neoplasms, but the presence of WOS in colorectal epithelial neoplasms has not been investigated. AIMS The purpose of this study was to determine whether WOS is present in colorectal epithelial neoplasms and to clarify its clinical significance. METHODS A total of 590 colorectal epithelial neoplasms from 368 consecutive patients were retrospectively analyzed using prospectively collected data. Presence or absence of WOS in colorectal epithelial neoplasms was recorded based on the findings of ME with NBI. RESULTS White opaque substance was present in 236 of the 590 (40 %) colorectal epithelial neoplasms. Compared with WOS-negative patients, WOS-positive patients showed significantly larger tumors (p < 0.0001) and significantly more tumors in the proximal colon (p = 0.0003). WOS was more frequently present in carcinomas (66.0 %) than in adenomas (31.8%; p < 0.0001). WOS was also more frequent in submucosal carcinomas (75.9%) than in intramucosal carcinomas (59.0%; p = 0.0380). CONCLUSIONS This study confirmed the presence of WOS in colorectal epithelial neoplasms, and prevalence increased with the progression of cancer, from adenoma to carcinoma and from intramucosal carcinoma to submucosal carcinoma.
Collapse
Affiliation(s)
- Takashi Hisabe
- Department of Gastroenterology, Fukuoka University Chikushi Hospital, 1-1-1 Zokumyoin, Chikushino, Fukuoka, 818-8502, Japan,
| | | | | | | | | | | | | |
Collapse
|
16
|
Konda K, Konishi K, Yamochi T, Ito YM, Nozawa H, Tojo M, Shinmura K, Kogo M, Katagiri A, Kubota Y, Muramoto T, Yano Y, Kobayashi Y, Kihara T, Tagawa T, Makino R, Takimoto M, Imawari M, Yoshida H. Distinct molecular features of different macroscopic subtypes of colorectal neoplasms. PLoS One 2014; 9:e103822. [PMID: 25093594 PMCID: PMC4122357 DOI: 10.1371/journal.pone.0103822] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Accepted: 07/01/2014] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Colorectal adenoma develops into cancer with the accumulation of genetic and epigenetic changes. We studied the underlying molecular and clinicopathological features to better understand the heterogeneity of colorectal neoplasms (CRNs). METHODS We evaluated both genetic (mutations of KRAS, BRAF, TP53, and PIK3CA, and microsatellite instability [MSI]) and epigenetic (methylation status of nine genes or sequences, including the CpG island methylator phenotype [CIMP] markers) alterations in 158 CRNs including 56 polypoid neoplasms (PNs), 25 granular type laterally spreading tumors (LST-Gs), 48 non-granular type LSTs (LST-NGs), 19 depressed neoplasms (DNs) and 10 small flat-elevated neoplasms (S-FNs) on the basis of macroscopic appearance. RESULTS S-FNs showed few molecular changes except SFRP1 methylation. Significant differences in the frequency of KRAS mutations were observed among subtypes (68% for LST-Gs, 36% for PNs, 16% for DNs and 6% for LST-NGs) (P<0.001). By contrast, the frequency of TP53 mutation was higher in DNs than PNs or LST-Gs (32% vs. 5% or 0%, respectively) (P<0.007). We also observed significant differences in the frequency of CIMP between LST-Gs and LST-NGs or PNs (32% vs. 6% or 5%, respectively) (P<0.005). Moreover, the methylation level of LINE-1 was significantly lower in DNs or LST-Gs than in PNs (58.3% or 60.5% vs. 63.2%, P<0.05). PIK3CA mutations were detected only in LSTs. Finally, multivariate analyses showed that macroscopic morphologies were significantly associated with an increased risk of molecular changes (PN or LST-G for KRAS mutation, odds ratio [OR] 9.11; LST-NG or DN for TP53 mutation, OR 5.30; LST-G for PIK3CA mutation, OR 26.53; LST-G or DN for LINE-1 hypomethylation, OR 3.41). CONCLUSION We demonstrated that CRNs could be classified into five macroscopic subtypes according to clinicopathological and molecular differences, suggesting that different mechanisms are involved in the pathogenesis of colorectal tumorigenesis.
Collapse
Affiliation(s)
- Kenichi Konda
- Division of Gastroenterology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Kazuo Konishi
- Division of Gastroenterology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
- * E-mail:
| | - Toshiko Yamochi
- Department of Pathology, Showa University School of Medicine, Tokyo, Japan
| | - Yoichi M. Ito
- Department of Biostatistics, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Hisako Nozawa
- Division of Gastroenterology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Masayuki Tojo
- Division of Gastroenterology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Kensuke Shinmura
- Division of Gastroenterology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Mari Kogo
- Department of Hospital Pharmaceutics, Showa University School of Pharmacy, Tokyo, Japan
| | - Atsushi Katagiri
- Division of Gastroenterology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Yutaro Kubota
- Division of Gastroenterology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Takashi Muramoto
- Division of Gastroenterology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Yuichiro Yano
- Division of Gastroenterology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Yoshiya Kobayashi
- Division of Gastroenterology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Toshihiro Kihara
- Division of Gastroenterology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Teppei Tagawa
- Division of Gastroenterology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Reiko Makino
- Clinical Collaborating laboratory, Showa University School of Medicine, Tokyo, Japan
| | - Masafumi Takimoto
- Department of Pathology, Showa University School of Medicine, Tokyo, Japan
| | - Michio Imawari
- Division of Gastroenterology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Hitoshi Yoshida
- Division of Gastroenterology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| |
Collapse
|
17
|
Maeda O, Ando T, Ohmiya N, Ishiguro K, Watanabe O, Miyahara R, Hibi Y, Nagai T, Yamada K, Goto H. Alteration of gene expression and DNA methylation in drug-resistant gastric cancer. Oncol Rep 2014; 31:1883-90. [PMID: 24504010 DOI: 10.3892/or.2014.3014] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 01/15/2014] [Indexed: 01/27/2023] Open
Abstract
The mechanisms of drug resistance in cancer are not fully elucidated. To study the drug resistance of gastric cancer, we analyzed gene expression and DNA methylation profiles of 5-fluorouracil (5-FU)- and cisplatin (CDDP)-resistant gastric cancer cells and biopsy specimens. Drug-resistant gastric cancer cells were established with culture for >10 months in a medium containing 5-FU or CDDP. Endoscopic biopsy specimens were obtained from gastric cancer patients who underwent chemotherapy with oral fluoropyrimidine S-1 and CDDP. Gene expression and DNA methylation analyses were performed using microarray, and validated using real-time PCR and pyrosequencing, respectively. Out of 17,933 genes, 541 genes commonly increased and 569 genes decreased in both 5-FU- and CDDP-resistant AGS cells. Genes with expression changed by drugs were related to GO term 'extracellular region' and 'p53 signaling pathway' in both 5-FU- and CDDP-treated cells. Expression of 15 genes including KLK13 increased and 12 genes including ETV7 decreased, in both drug-resistant cells and biopsy specimens of two patients after chemotherapy. Out of 10,365 genes evaluated with both expression microarray and methylation microarray, 74 genes were hypermethylated and downregulated, or hypomethylated and upregulated in either 5-FU-resistant or CDDP-resistant cells. Of these genes, expression of 21 genes including FSCN1, CPT1C and NOTCH3, increased from treatment with a demethylating agent. There are alterations of gene expression and DNA methylation in drug-resistant gastric cancer; they may be related to mechanisms of drug resistance and may be useful as biomarkers of gastric cancer drug sensitivity.
Collapse
Affiliation(s)
- Osamu Maeda
- Department of Advanced Research of Gastroenterology, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan
| | - Takafumi Ando
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan
| | - Naoki Ohmiya
- Department of Gastroenterology, School of Medicine, Fujita Health University, Toyoake, Aichi, Japan
| | - Kazuhiro Ishiguro
- Department of Advanced Research of Gastroenterology, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan
| | - Osamu Watanabe
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan
| | - Ryoji Miyahara
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan
| | - Yoko Hibi
- Department of Hospital Pharmacy, Nagoya University Hospital, Nagoya, Japan
| | - Taku Nagai
- Department of Hospital Pharmacy, Nagoya University Hospital, Nagoya, Japan
| | - Kiyofumi Yamada
- Department of Hospital Pharmacy, Nagoya University Hospital, Nagoya, Japan
| | - Hidemi Goto
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan
| |
Collapse
|
18
|
Nejman D, Straussman R, Steinfeld I, Ruvolo M, Roberts D, Yakhini Z, Cedar H. Molecular rules governing de novo methylation in cancer. Cancer Res 2014; 74:1475-83. [PMID: 24453003 DOI: 10.1158/0008-5472.can-13-3042] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
De novo methylation of CpG islands is seen in many cancers, but the general rules governing this process are not known. By analyzing DNA from tumors, as well as normal tissues, and by utilizing a range of published data, we have identified a universal set of tumor targets, each with its own "coefficient" of methylation that is largely correlated with its inherent relative ability to recruit polycomb. This pattern is initially formed by a slow process of de novo methylation that occurs during aging and then undergoes expansion early in tumorigenesis, where we hypothesize that it may act as an inhibitor of development-associated gene activation.
Collapse
Affiliation(s)
- Deborah Nejman
- Authors' Affiliations: Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University Medical School, Ein Kerem, Jerusalem; Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot; Department of Computer Sciences, Technion Israel Institute of Technology, Haifa; Agilent Laboratories, Tel Aviv, Israel; and Agilent Technologies, Inc., Santa Clara, California
| | | | | | | | | | | | | |
Collapse
|
19
|
Tahara T, Yamamoto E, Suzuki H, Maruyama R, Chung W, Garriga J, Jelinek J, Yamano HO, Sugai T, An B, Shureiqi I, Toyota M, Kondo Y, Estécio MRH, Issa JPJ. Fusobacterium in colonic flora and molecular features of colorectal carcinoma. Cancer Res 2014; 74:1311-8. [PMID: 24385213 DOI: 10.1158/0008-5472.can-13-1865] [Citation(s) in RCA: 331] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Fusobacterium species are part of the gut microbiome in humans. Recent studies have identified overrepresentation of Fusobacterium in colorectal cancer tissues, but it is not yet clear whether this is pathogenic or simply an epiphenomenon. In this study, we evaluated the relationship between Fusobacterium status and molecular features in colorectal cancers through quantitative real-time PCR in 149 colorectal cancer tissues, 89 adjacent normal appearing mucosae and 72 colonic mucosae from cancer-free individuals. Results were correlated with CpG island methylator phenotype (CIMP) status, microsatellite instability (MSI), and mutations in BRAF, KRAS, TP53, CHD7, and CHD8. Whole-exome capture sequencing data were also available in 11 cases. Fusobacterium was detectable in 111 of 149 (74%) colorectal cancer tissues and heavily enriched in 9% (14/149) of the cases. As expected, Fusobacterium was also detected in normal appearing mucosae from both cancer and cancer-free individuals, but the amount of bacteria was much lower compared with colorectal cancer tissues (a mean of 250-fold lower for Pan-fusobacterium). We found the Fusobacterium-high colorectal cancer group (FB-high) to be associated with CIMP positivity (P = 0.001), TP53 wild-type (P = 0.015), hMLH1 methylation positivity (P = 0.0028), MSI (P = 0.018), and CHD7/8 mutation positivity (P = 0.002). Among the 11 cases where whole-exome sequencing data were available, two that were FB-high cases also had the highest number of somatic mutations (a mean of 736 per case in FB-high vs. 225 per case in all others). Taken together, our findings show that Fusobacterium enrichment is associated with specific molecular subsets of colorectal cancers, offering support for a pathogenic role in colorectal cancer for this gut microbiome component.
Collapse
Affiliation(s)
- Tomomitsu Tahara
- Authors' Affiliations: Fels Institute for Cancer Research & Molecular Biology, Temple University School of Medicine, Philadelphia, Pennsylvania; Department of Gastroenterology, Fujita Health University School of Medicine, Toyoake; First Departments of Internal Medicine and Molecular Biology, Sapporo Medical University, Sapporo; Department of Gastroenterology, Akita Red Cross Hospital, Akita; Department of Pathology, Iwate Medical University, Morioka; Division of Molecular Oncology, Aichi Cancer Center Research Institute, Nagoya, Japan; Division of OVP, Department of Clinical Cancer Prevention, Cancer Prevention and Population Sciences; Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston; and Department of Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, Texas
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Tahara T, Yamamoto E, Suzuki H, Maruyama R, Chung W, Garriga J, Jelinek J, Yamano HO, Sugai T, An B, Shureiqi I, Toyota M, Kondo Y, Estécio MRH, Issa JPJ. Fusobacterium in colonic flora and molecular features of colorectal carcinoma. Cancer Res 2014. [PMID: 24385213 DOI: 10.1158/0008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Fusobacterium species are part of the gut microbiome in humans. Recent studies have identified overrepresentation of Fusobacterium in colorectal cancer tissues, but it is not yet clear whether this is pathogenic or simply an epiphenomenon. In this study, we evaluated the relationship between Fusobacterium status and molecular features in colorectal cancers through quantitative real-time PCR in 149 colorectal cancer tissues, 89 adjacent normal appearing mucosae and 72 colonic mucosae from cancer-free individuals. Results were correlated with CpG island methylator phenotype (CIMP) status, microsatellite instability (MSI), and mutations in BRAF, KRAS, TP53, CHD7, and CHD8. Whole-exome capture sequencing data were also available in 11 cases. Fusobacterium was detectable in 111 of 149 (74%) colorectal cancer tissues and heavily enriched in 9% (14/149) of the cases. As expected, Fusobacterium was also detected in normal appearing mucosae from both cancer and cancer-free individuals, but the amount of bacteria was much lower compared with colorectal cancer tissues (a mean of 250-fold lower for Pan-fusobacterium). We found the Fusobacterium-high colorectal cancer group (FB-high) to be associated with CIMP positivity (P = 0.001), TP53 wild-type (P = 0.015), hMLH1 methylation positivity (P = 0.0028), MSI (P = 0.018), and CHD7/8 mutation positivity (P = 0.002). Among the 11 cases where whole-exome sequencing data were available, two that were FB-high cases also had the highest number of somatic mutations (a mean of 736 per case in FB-high vs. 225 per case in all others). Taken together, our findings show that Fusobacterium enrichment is associated with specific molecular subsets of colorectal cancers, offering support for a pathogenic role in colorectal cancer for this gut microbiome component.
Collapse
Affiliation(s)
- Tomomitsu Tahara
- Authors' Affiliations: Fels Institute for Cancer Research & Molecular Biology, Temple University School of Medicine, Philadelphia, Pennsylvania; Department of Gastroenterology, Fujita Health University School of Medicine, Toyoake; First Departments of Internal Medicine and Molecular Biology, Sapporo Medical University, Sapporo; Department of Gastroenterology, Akita Red Cross Hospital, Akita; Department of Pathology, Iwate Medical University, Morioka; Division of Molecular Oncology, Aichi Cancer Center Research Institute, Nagoya, Japan; Division of OVP, Department of Clinical Cancer Prevention, Cancer Prevention and Population Sciences; Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston; and Department of Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, Texas
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Rumbajan JM, Maeda T, Souzaki R, Mitsui K, Higashimoto K, Nakabayashi K, Yatsuki H, Nishioka K, Harada R, Aoki S, Kohashi K, Oda Y, Hata K, Saji T, Taguchi T, Tajiri T, Soejima H, Joh K. Comprehensive analyses of imprinted differentially methylated regions reveal epigenetic and genetic characteristics in hepatoblastoma. BMC Cancer 2013; 13:608. [PMID: 24373183 PMCID: PMC3880457 DOI: 10.1186/1471-2407-13-608] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 12/20/2013] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Aberrant methylation at imprinted differentially methylated regions (DMRs) in human 11p15.5 has been reported in many tumors including hepatoblastoma. However, the methylation status of imprinted DMRs in imprinted loci scattered through the human genome has not been analyzed yet in any tumors. METHODS The methylation statuses of 33 imprinted DMRs were analyzed in 12 hepatoblastomas and adjacent normal liver tissue by MALDI-TOF MS and pyrosequencing. Uniparental disomy (UPD) and copy number abnormalities were investigated with DNA polymorphisms. RESULTS Among 33 DMRs analyzed, 18 showed aberrant methylation in at least 1 tumor. There was large deviation in the incidence of aberrant methylation among the DMRs. KvDMR1 and IGF2-DMR0 were the most frequently hypomethylated DMRs. INPP5Fv2-DMR and RB1-DMR were hypermethylated with high frequencies. Hypomethylation was observed at certain DMRs not only in tumors but also in a small number of adjacent histologically normal liver tissue, whereas hypermethylation was observed only in tumor samples. The methylation levels of long interspersed nuclear element-1 (LINE-1) did not show large differences between tumor tissue and normal liver controls. Chromosomal abnormalities were also found in some tumors. 11p15.5 and 20q13.3 loci showed the frequent occurrence of both genetic and epigenetic alterations. CONCLUSIONS Our analyses revealed tumor-specific aberrant hypermethylation at some imprinted DMRs in 12 hepatoblastomas with additional suggestion for the possibility of hypomethylation prior to tumor development. Some loci showed both genetic and epigenetic alterations with high frequencies. These findings will aid in understanding the development of hepatoblastoma.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Hidenobu Soejima
- Department of Biomolecular Sciences, Division of Molecular Genetics & Epigenetics, Faculty of Medicine, Saga University, Nabeshima 5-1-1, Saga 849-8501, Japan.
| | | |
Collapse
|
22
|
Ashktorab H, Rahi H, Wansley D, Varma S, Shokrani B, Lee E, Daremipouran M, Laiyemo A, Goel A, Carethers JM, Brim H. Toward a comprehensive and systematic methylome signature in colorectal cancers. Epigenetics 2013; 8:807-15. [PMID: 23975090 DOI: 10.4161/epi.25497] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
CpG Island Methylator Phenotype (CIMP) is one of the underlying mechanisms in colorectal cancer (CRC). This study aimed to define a methylome signature in CRC through a methylation microarray analysis and a compilation of promising CIMP markers from the literature. Illumina HumanMethylation27 (IHM27) array data was generated and analyzed based on statistical differences in methylation data (1st approach) or based on overall differences in methylation percentages using lower 95% CI (2nd approach). Pyrosequencing was performed for the validation of nine genes. A meta-analysis was used to identify CIMP and non-CIMP markers that were hypermethylated in CRC but did not yet make it to the CIMP genes' list. Our 1st approach for array data analysis demonstrated the limitations in selecting genes for further validation, highlighting the need for the 2nd bioinformatics approach to adequately select genes with differential aberrant methylation. A more comprehensive list, which included non-CIMP genes, such as APC, EVL, CD109, PTEN, TWIST1, DCC, PTPRD, SFRP1, ICAM5, RASSF1A, EYA4, 30ST2, LAMA1, KCNQ5, ADHEF1, and TFPI2, was established. Array data are useful to categorize and cluster colonic lesions based on their global methylation profiles; however, its usefulness in identifying robust methylation markers is limited and rely on the data analysis method. We have identified 16 non-CIMP-panel genes for which we provide rationale for inclusion in a more comprehensive characterization of CIMP+ CRCs. The identification of a definitive list for methylome specific genes in CRC will contribute to better clinical management of CRC patients.
Collapse
Affiliation(s)
- Hassan Ashktorab
- Department of Medicine and Cancer Center; Department of Pathology; Howard University College of Medicine; Washington, D.C. USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Bergman Y, Cedar H. DNA methylation dynamics in health and disease. Nat Struct Mol Biol 2013; 20:274-81. [PMID: 23463312 DOI: 10.1038/nsmb.2518] [Citation(s) in RCA: 412] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 01/04/2013] [Indexed: 12/13/2022]
Abstract
DNA methylation is an epigenetic mark that is erased in the early embryo and then re-established at the time of implantation. In this Review, dynamics of DNA methylation during normal development in vivo are discussed, starting from fertilization through embryogenesis and postnatal growth, as well as abnormal methylation changes that occur in cancer.
Collapse
Affiliation(s)
- Yehudit Bergman
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University Medical School, Jerusalem, Israel.
| | | |
Collapse
|
24
|
Shida Y, Ichikawa K, Fujimori T, Fujimori Y, Tomita S, Fujii T, Sano Y, Oda Y, Goto H, Ohta A, Tanaka S, Sugai T, Yao T, Ohkura Y, Imura J, Kato H. Differentiation between sessile serrated adenoma/polyp and non-sessile serrated adenoma/polyp in large hyper plastic polyp: A Japanese collaborative study. Mol Clin Oncol 2012; 1:53-58. [PMID: 24649122 DOI: 10.3892/mco.2012.20] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 08/13/2012] [Indexed: 11/06/2022] Open
Abstract
A hyperplastic polyp (HP) >10 mm is described as a large hyperplastic polyp (LHP). Previous studies have considered LHP and sessile serrated adenoma/polyp (SSA/P) as synonymous. Although HP and SSA/P have previously been morphologically distinguished, differences between LHP and SSA/P have not yet been reported. The present study aimed to define the differences between SSA/P and non-SSA/P in LHP using immunohistochemistry for Ki67. Colorectal serrated lesions (>10 mm) that were completely resected by endoscope and derived from 11 institutions in Japan [Dokkyo Medical University School of Medicine (Mibu), Takahiro Fujii Clinic (Tokyo), Sano Hospital (Kobe), Oda GI Clinic, Hattori GI Endoscopy and Oncology Clinic (Kumamoto), Ohta Clinic (Nagoya), Hiroshima University (Hiroshima), Iwate Medical University (Morioka), Juntendo and Kyorin Universities (Tokyo) as well as Toyama University (Toyama)] affiliated with the Japanese Society for Cancer of the Colon and Rectum (JSCCR) between January 2003 and December 2010 were selected. The histological criteria of the Japanese Society for Cancer of the Colon and Rectum (JSCCR, project meeting; editor-in chief, Takashi Yao) were used to distinguish SSA/P and non-SSA/P from LHP. Non-SSA/P comprises both incomplete SSA/P and HP. A total of 154 samples diagnosed as SSA/P or non-SSA/P from 148 patients were used. This study comprised 107 SSA/P and 47 non-SSA/P cases, whereby lesions were located on the right side of the colon (73.2 and 26.8%, respectively). Ki67-positivity in SSA/Ps was significantly higher compared to non-SSA/Ps. A greater number of SSA/Ps in LHP were located on the right side of the colon compared to the left side. SSA/Ps occurring on the right side of the colon may be precursor lesions of colorectal carcinoma in serrated neoplasia pathways. In conclusion, LHPs and SSA/Ps limited to the right side of the colon are suggested to be clinically treated as the same type of lesions.
Collapse
Affiliation(s)
- Yosuke Shida
- Departments of Surgery 1 and ; Surgical and Molecular Pathology, Dokkyo Medical University School of Medicine, Mibu
| | - Kazuhito Ichikawa
- Surgical and Molecular Pathology, Dokkyo Medical University School of Medicine, Mibu
| | - Takahiro Fujimori
- Surgical and Molecular Pathology, Dokkyo Medical University School of Medicine, Mibu
| | - Yukari Fujimori
- Surgical and Molecular Pathology, Dokkyo Medical University School of Medicine, Mibu
| | - Shigeki Tomita
- Surgical and Molecular Pathology, Dokkyo Medical University School of Medicine, Mibu
| | | | - Yasushi Sano
- Endoscopy Division, Gastrointestinal Center, Sano Hospital, Kobe
| | | | - Hideyo Goto
- Hattori GI Endoscopy and Oncology Clinic, Kumamoto
| | | | - Shinji Tanaka
- Department of Endoscopy, Hiroshima University Hospital, Hiroshima
| | - Tamotsu Sugai
- Division of Molecular Diagnostic Pathology, Department of Pathology, School of Medicine, Iwate Medical University, Morioka
| | - Takashi Yao
- Department of Human Pathology, Juntendo University School of Medicine
| | - Yasuo Ohkura
- Department of Pathology, Kyorin University School of Medicine, Tokyo
| | - Johji Imura
- Department of Diagnostic Pathology, Graduate School of Medicine and Pharmaceutical Science, University of Toyama, Toyama, Japan
| | | |
Collapse
|
25
|
Fernandes MS, Carneiro F, Oliveira C, Seruca R. Colorectal cancer and RASSF family--a special emphasis on RASSF1A. Int J Cancer 2012; 132:251-8. [PMID: 22733432 DOI: 10.1002/ijc.27696] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Revised: 05/23/2012] [Accepted: 06/11/2012] [Indexed: 12/14/2022]
Abstract
The RAS-association domain family, commonly referred to as RASSF, is a family of 10 members (RASSF1-10) implicated in a variety of key biological processes, including cell cycle regulation, apoptosis and microtubule stability. Furthermore, RASSFs have been implicated in tumorigenesis and several family members are now thought to be tumor suppressors. As opposed to the KRAS oncogene, for which mutational activation is frequent in colorectal cancer (CRC), RASSFs are found to be silenced mainly by aberrant promoter methylation. In particular, RASSF1A, RASSF2 and RASSF5 methylation has been associated with CRC development, though the mechanisms of action remain poorly understood. This review focus on the current knowledge of RASSF inactivation in CRC, particularly RASSF1A, and on the implications RASSFs may have as potential biomarkers and for the development of new targeted therapies for CRC.
Collapse
Affiliation(s)
- Maria Sofia Fernandes
- Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
| | | | | | | |
Collapse
|
26
|
Shinjo K, Okamoto Y, An B, Yokoyama T, Takeuchi I, Fujii M, Osada H, Usami N, Hasegawa Y, Ito H, Hida T, Fujimoto N, Kishimoto T, Sekido Y, Kondo Y. Integrated analysis of genetic and epigenetic alterations reveals CpG island methylator phenotype associated with distinct clinical characters of lung adenocarcinoma. Carcinogenesis 2012; 33:1277-85. [PMID: 22532250 DOI: 10.1093/carcin/bgs154] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
DNA methylation affects the aggressiveness of human malignancies. Cancers with CpG island methylator phenotype (CIMP), a distinct group with extensive DNA methylation, show characteristic features in several types of tumors. In this study, we initially defined the existence of CIMP in 41 lung adenocarcinomas (AdCas) through genome-wide DNA methylation microarray analysis. DNA methylation status of six CIMP markers newly identified by microarray analysis was further estimated in a total of 128 AdCas by bisulfite pyrosequencing analysis, which revealed that 10 (7.8%), 40 (31.3%) and 78 (60.9%) cases were classified as CIMP-high (CIMP-H), CIMP-low and CIMP-negative (CIMP-N), respectively. Notably, CIMP-H AdCas were strongly associated with wild-type epidermal growth factor receptor (EGFR), males and heavy smokers (P = 0.0089, P = 0.0047 and P = 0.0036, respectively). In addition, CIMP-H was significantly associated with worse prognosis; especially among male smokers, CIMP-H was an independent prognostic factor (hazard ratio 1.7617, 95% confidence interval 1.0030-2.9550, P = 0.0489). Compellingly, the existence of CIMP in AdCas was supported by the available public datasets, such as data from the Cancer Genome Atlas. Intriguingly, analysis of AdCa cell lines revealed that CIMP-positive AdCa cell lines were more sensitive to a DNA methylation inhibitor than CIMP-N ones regardless of EGFR mutation status. Our data demonstrate that CIMP in AdCas appears to be a unique subgroup that has distinct clinical traits from other AdCas. CIMP classification using our six-marker panel has implications for personalized medical strategies for lung cancer patients; in particular, DNA methylation inhibitor might be of therapeutic benefit to patients with CIMP-positive tumors.
Collapse
Affiliation(s)
- Keiko Shinjo
- Division of Molecular Oncology, Aichi Cancer Center Research Institute, 1-1 Kanokoden, Chikusa-ku, Nagoya 464-8681, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Hughes LAE, Khalid-de Bakker CAJ, Smits KM, van den Brandt PA, Jonkers D, Ahuja N, Herman JG, Weijenberg MP, van Engeland M. The CpG island methylator phenotype in colorectal cancer: progress and problems. Biochim Biophys Acta Rev Cancer 2011; 1825:77-85. [PMID: 22056543 DOI: 10.1016/j.bbcan.2011.10.005] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 10/21/2011] [Accepted: 10/23/2011] [Indexed: 12/15/2022]
Abstract
In recent years, attention has focused on the biology and potential clinical importance of the CpG island methylator phenotype (CIMP) in colorectal cancer (CRC). While it is generally well accepted that etiologically and clinically distinct subgroups exist in this disease, a precise definition of CIMP remains to be established. Here, we summarize existing literature that documents the prevalence of CIMP in CRC, with particular attention to the various methods and definitions used to classify a tumor as CIMP positive. Through a systematic review on both case-series and population based studies, we examined only original research articles reporting on sporadic CRC and/or adenomas in unselected cases. Forty-eight papers published between January 1999 and August 2011 met the inclusion criteria. We describe the use of multiple gene panels, marker threshold values, and laboratory techniques which results in a wide range in the prevalence of CIMP. Because there is no universal standard or consensus on quantifying the phenotype, establishing its true prevalence is a challenge. This bottleneck is becoming increasingly evident as molecular pathological epidemiology continues to offer possibilities for clear answers regarding environmental risk factors and disease trends. For the first time, large, unselected series of cases are available for analysis, but comparing populations and pooling data will remain a challenge unless a universal definition of CIMP and a consensus on analysis can be reached, and the primary cause of CIMP identified.
Collapse
Affiliation(s)
- Laura A E Hughes
- Dept. of Epidemiology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, 6200MD Maastricht, the Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Kitkumthorn N, Mutirangura A. Long interspersed nuclear element-1 hypomethylation in cancer: biology and clinical applications. Clin Epigenetics 2011; 2:315-30. [PMID: 22704344 PMCID: PMC3365388 DOI: 10.1007/s13148-011-0032-8] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Accepted: 03/20/2011] [Indexed: 12/31/2022] Open
Abstract
Epigenetic changes in long interspersed nuclear element-1s (LINE-1s or L1s) occur early during the process of carcinogenesis. A lower methylation level (hypomethylation) of LINE-1 is common in most cancers, and the methylation level is further decreased in more advanced cancers. Consequently, several previous studies have suggested the use of LINE-1 hypomethylation levels in cancer screening, risk assessment, tumor staging, and prognostic prediction. Epigenomic changes are complex, and global hypomethylation influences LINE-1s in a generalized fashion. However, the methylation levels of some loci are dependent on their locations. The consequences of LINE-1 hypomethylation are genomic instability and alteration of gene expression. There are several mechanisms that promote both of these consequences in cis. Therefore, the methylation levels of different sets of LINE-1s may represent certain phenotypes. Furthermore, the methylation levels of specific sets of LINE-1s may indicate carcinogenesis-dependent hypomethylation. LINE-1 methylation pattern analysis can classify LINE-1s into one of three classes based on the number of methylated CpG dinucleotides. These classes include hypermethylation, partial methylation, and hypomethylation. The number of partial and hypermethylated loci, but not hypomethylated LINE-1s, is different among normal cell types. Consequently, the number of hypomethylated loci is a more promising marker than methylation level in the detection of cancer DNA. Further genome-wide studies to measure the methylation level of each LINE-1 locus may improve PCR-based methylation analysis to allow for a more specific and sensitive detection of cancer DNA or for an analysis of certain cancer phenotypes.
Collapse
|
29
|
Ju HX, An B, Okamoto Y, Shinjo K, Kanemitsu Y, Komori K, Hirai T, Shimizu Y, Sano T, Sawaki A, Tajika M, Yamao K, Fujii M, Murakami H, Osada H, Ito H, Takeuchi I, Sekido Y, Kondo Y. Distinct profiles of epigenetic evolution between colorectal cancers with and without metastasis. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 178:1835-46. [PMID: 21406167 DOI: 10.1016/j.ajpath.2010.12.045] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Revised: 12/07/2010] [Accepted: 12/14/2010] [Indexed: 12/27/2022]
Abstract
Liver metastasis is a fatal step in the progression of colorectal cancer (CRC); however, the epigenetic evolution of this process is largely unknown. To decipher the epigenetic alterations during the development of liver metastasis, the DNA methylation status of 12 genes, including 5 classical CpG island methylator phenotype (CIMP) markers, was analyzed in 62 liver metastases and in 78 primary CRCs (53 stage I-III; 25 stage IV). Genome-wide methylation analysis was also performed in stage I-III CRCs and in paired primary and liver metastatic cancers. Methylation frequencies of MGMT and TIMP3 increased progressively from stage I-III CRCs to liver metastasis (P = 0.043 and P = 0.028, respectively). The CIMP-positive cases showed significantly earlier recurrence of disease than did CIMP-negative cases with liver metastasis (P = 0.030), whereas no such difference was found in stage I-III CRCs. Genome-wide analysis revealed that more genes were methylated in stage I-III CRCs than in paired stage IV samples (P = 0.008). Hierarchical cluster analysis showed that stage I-III CRCs and stage IV CRCs were clustered into two distinct subgroups, whereas most paired primary and metastatic cancers showed similar methylation profiles. This analysis revealed distinct methylation profiles between stage I-III CRCs and stage IV CRCs, which may reflect differences in epigenetic evolution during progression of the disease. In addition, most methylation status in stage IV CRCs seems to be established before metastasis.
Collapse
Affiliation(s)
- Hai-Xing Ju
- Division of Molecular Oncology, Aichi Cancer Center Research Institute, Nagoya, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Migliore L, Migheli F, Spisni R, Coppedè F. Genetics, cytogenetics, and epigenetics of colorectal cancer. J Biomed Biotechnol 2011; 2011:792362. [PMID: 21490705 PMCID: PMC3070260 DOI: 10.1155/2011/792362] [Citation(s) in RCA: 172] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Accepted: 12/14/2010] [Indexed: 12/17/2022] Open
Abstract
Most of the colorectal cancer (CRC) cases are sporadic, only 25% of the patients have a family history of the disease, and major genes causing syndromes predisposing to CRC only account for 5-6% of the total cases. The following subtypes can be recognized: MIN (microsatellite instability), CIN (chromosomal instability), and CIMP (CpG island methylator phenotype). CIN occurs in 80-85% of CRC. Chromosomal instability proceeds through two major mechanisms, missegregation that results in aneuploidy through the gain or loss of whole chromosomes, and unbalanced structural rearrangements that lead to the loss and/or gain of chromosomal regions. The loss of heterozygosity that occur in the first phases of the CRC cancerogenesis (in particular for the genes on 18q) as well as the alteration of methylation pattern of multiple key genes can drive the development of colorectal cancer by facilitating the acquisition of multiple tumor-associated mutations and the instability phenotype.
Collapse
Affiliation(s)
- Lucia Migliore
- Department of Human and Environmental Sciences, University of Pisa, Street S. Giuseppe 22, 56126 Pisa, Italy.
| | | | | | | |
Collapse
|
31
|
Rawson JB, Manno M, Mrkonjic M, Daftary D, Dicks E, Buchanan DD, Younghusband HB, Parfrey PS, Young JP, Pollett A, Green RC, Gallinger S, McLaughlin JR, Knight JA, Bapat B. Promoter methylation of Wnt antagonists DKK1 and SFRP1 is associated with opposing tumor subtypes in two large populations of colorectal cancer patients. Carcinogenesis 2011; 32:741-7. [PMID: 21304055 DOI: 10.1093/carcin/bgr020] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Aberrant activation of canonical Wnt signaling is a hallmark event in colorectal carcinogenesis. The Dickkopf-1 (DKK1) and Secreted Frizzled Related Protein 1 (SFRP1) genes encode extracellular inhibitors of Wnt signaling that are frequently silenced by promoter hypermethylation in colorectal cancer (CRC). These methylation events have been identified as prognostic markers of patient outcome and tumor subtype in several cancers but similar roles in CRC have not been comprehensively examined. In CRC, the microsatellite instability (MSI) subtype associates with favorable disease outcome but the molecular events that are responsible remain poorly understood. Consequently, we quantified promoter methylation status of the Wnt antagonist genes DKK1 and SFRP1 in a large population-based cohort of CRCs from Ontario (n = 549) and Newfoundland (n = 696) stratified by MSI status. We examined the association between methylation status and clinicopathological features including tumor MSI status and patient survival. DKK1 and SFRP1 were methylated in 13 and 95% of CRCs, respectively. In Ontario, DKK1 methylation was strongly associated with MSI tumors after adjustment for age, sex and tumor location [odds ratio (OR) = 13.7, 95% confidence interval (CI) = 7.8-24.2, P < 0.001]. Conversely, SFRP1 methylation was inversely associated with MSI tumors after these adjustments (OR = 0.3, 95% CI = 0.1-0.9, P = 0.009). Similar results were obtained in Newfoundland. There were no independent associations with recurrence-free survival. This is the first large study to identify associations between Wnt antagonist promoter hypermethylation and CRC MSI subtype. These events provide insight into subtype-specific epigenetic mediation of Wnt signaling in CRC.
Collapse
Affiliation(s)
- James B Rawson
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
Aberrant DNA methylation in the genome is found in almost all types of cancer and contributes to malignant transformation by silencing multiple tumour-suppressor genes, sometimes simultaneously. Therefore, deciphering the signature of DNA methylation in each tumour is required to better understand tumour behaviour and might be of benefit for clinical diagnostics and therapy. Recent technologies for high-throughput genome-wide DNA methylation analyses are promising and potent tools for epigenetic profiling. Since epigenetic therapy is now in clinical use or trials for several types of cancers, efficient epigenetic profiling is required. In this review, the current key technologies available to assess genome-wide DNA methylation are introduced and the implications of DNA methylation profiling in human cancers are discussed.
Collapse
|