1
|
Iijima K. Etiologic factors for Barrett's esophagus: toward countermeasures in Asia. Expert Rev Gastroenterol Hepatol 2024; 18:407-420. [PMID: 39072626 DOI: 10.1080/17474124.2024.2386367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/26/2024] [Indexed: 07/30/2024]
Abstract
INTRODUCTION Over the past several decades, Europe and the United States have experienced a rapid increase in esophageal adenocarcinoma. Research and countermeasures against Barrett's esophagus, its precancerous lesion, are progressing. Because esophageal adenocarcinoma has an extremely poor prognosis when diagnosed in an advanced stage, recommendations for early cancer detection have been made based on the various proven etiological factors of Barrett's esophagus and the actual cancer risk of Barrett's esophagus. In recent years, there have been indications of an increase in esophageal adenocarcinoma in Japan, and a similar trend of cancer will occur shortly in other Asian countries. Consequently, Asian countries must implement similar countermeasures against Barrett's esophagus and esophageal adenocarcinoma, referencing the knowledge gained thus far in Europe and the United States. AREAS COVERED This review summarizes the latest findings on the etiologic factors of Barrett's esophagus and discusses the differences between Westerners and Asians. The current status of Barrett's esophagus in Japan and other Asian countries is also summarized. EXPERT OPINION The etiological factors and cancer incidence of Barrett's esophagus in Asia diverge somewhat from those observed in Europe and America. Therefore, it is imperative to implement measures that are tailored to the actual circumstances of Asian people.
Collapse
Affiliation(s)
- Katsunori Iijima
- Department of Gastroenterology, Akita University Graduate School of Medicine, Akita, Japan
| |
Collapse
|
2
|
Souza RF, Spechler SJ. Mechanisms and pathophysiology of Barrett oesophagus. Nat Rev Gastroenterol Hepatol 2022; 19:605-620. [PMID: 35672395 DOI: 10.1038/s41575-022-00622-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/22/2022] [Indexed: 01/10/2023]
Abstract
Barrett oesophagus, in which a metaplastic columnar mucosa that can predispose individuals to cancer development lines a portion of the distal oesophagus, is the only known precursor of oesophageal adenocarcinoma, the incidence of which has increased profoundly over the past several decades. Most evidence suggests that Barrett oesophagus develops from progenitor cells at the oesophagogastric junction that proliferate and undergo epithelial-mesenchymal transition as part of a wound-healing process that replaces oesophageal squamous epithelium damaged by gastroesophageal reflux disease (GERD). GERD also seems to induce reprogramming of key transcription factors in the progenitor cells, resulting in the development of the specialized intestinal metaplasia that is characteristic of Barrett oesophagus, probably through an intermediate step of metaplasia to cardiac mucosa. Genome-wide association studies suggest that patients with GERD who develop Barrett oesophagus might have an inherited predisposition to oesophageal metaplasia and that there is a shared genetic susceptibility to Barrett oesophagus and to several of its risk factors (such as GERD, obesity and cigarette smoking). In this Review, we discuss the mechanisms, pathophysiology, genetic predisposition and cells of origin of Barrett oesophagus, and opine on the clinical implications and future research directions.
Collapse
Affiliation(s)
- Rhonda F Souza
- Division of Gastroenterology, Center for Oesophageal Diseases, Baylor University Medical Center, Dallas, TX, USA. .,Center for Oesophageal Research, Baylor Scott & White Research Institute, Dallas, TX, USA.
| | - Stuart J Spechler
- Division of Gastroenterology, Center for Oesophageal Diseases, Baylor University Medical Center, Dallas, TX, USA.,Center for Oesophageal Research, Baylor Scott & White Research Institute, Dallas, TX, USA
| |
Collapse
|
3
|
Sugano K, Spechler SJ, El-Omar EM, McColl KEL, Takubo K, Gotoda T, Fujishiro M, Iijima K, Inoue H, Kawai T, Kinoshita Y, Miwa H, Mukaisho KI, Murakami K, Seto Y, Tajiri H, Bhatia S, Choi MG, Fitzgerald RC, Fock KM, Goh KL, Ho KY, Mahachai V, O'Donovan M, Odze R, Peek R, Rugge M, Sharma P, Sollano JD, Vieth M, Wu J, Wu MS, Zou D, Kaminishi M, Malfertheiner P. Kyoto international consensus report on anatomy, pathophysiology and clinical significance of the gastro-oesophageal junction. Gut 2022; 71:1488-1514. [PMID: 35725291 PMCID: PMC9279854 DOI: 10.1136/gutjnl-2022-327281] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/03/2022] [Indexed: 02/07/2023]
Abstract
OBJECTIVE An international meeting was organised to develop consensus on (1) the landmarks to define the gastro-oesophageal junction (GOJ), (2) the occurrence and pathophysiological significance of the cardiac gland, (3) the definition of the gastro-oesophageal junctional zone (GOJZ) and (4) the causes of inflammation, metaplasia and neoplasia occurring in the GOJZ. DESIGN Clinical questions relevant to the afore-mentioned major issues were drafted for which expert panels formulated relevant statements and textural explanations.A Delphi method using an anonymous system was employed to develop the consensus, the level of which was predefined as ≥80% of agreement. Two rounds of voting and amendments were completed before the meeting at which clinical questions and consensus were finalised. RESULTS Twenty eight clinical questions and statements were finalised after extensive amendments. Critical consensus was achieved: (1) definition for the GOJ, (2) definition of the GOJZ spanning 1 cm proximal and distal to the GOJ as defined by the end of palisade vessels was accepted based on the anatomical distribution of cardiac type gland, (3) chemical and bacterial (Helicobacter pylori) factors as the primary causes of inflammation, metaplasia and neoplasia occurring in the GOJZ, (4) a new definition of Barrett's oesophagus (BO). CONCLUSIONS This international consensus on the new definitions of BO, GOJ and the GOJZ will be instrumental in future studies aiming to resolve many issues on this important anatomic area and hopefully will lead to better classification and management of the diseases surrounding the GOJ.
Collapse
Affiliation(s)
- Kentaro Sugano
- Division of Gastroenterology, Department of Medicine, Jichi Medical University, Shimotsuke, Japan
| | - Stuart Jon Spechler
- Division of Gastroenterology, Center for Esophageal Diseases, Baylor University Medical Center, Dallas, Texas, USA
| | - Emad M El-Omar
- Microbiome Research Centre, St George & Sutherland Clinical Campuses, School of Clinical Medicine, Faculty of Medicine & Health, Sydney, New South Wales, Australia
| | - Kenneth E L McColl
- Division of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Kaiyo Takubo
- Research Team for Geriatric Pathology, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Takuji Gotoda
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Mitsuhiro Fujishiro
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Katsunori Iijima
- Department of Gastroenterology, Akita University Graduate School of Medicine, Akita, Japan
| | - Haruhiro Inoue
- Digestive Disease Center, Showa University Koto Toyosu Hospital, Tokyo, Japan
| | - Takashi Kawai
- Department of Gastroenterological Endoscopy, Tokyo Medical University, Tokyo, Japan
| | | | - Hiroto Miwa
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Hyogo College of Medicine, Kobe, Japan
| | - Ken-Ichi Mukaisho
- Education Center for Medicine and Nursing, Shiga University of Medical Science, Otsu, Japan
| | - Kazunari Murakami
- Department of Gastroenterology, Oita University Faculty of Medicine, Yuhu, Japan
| | - Yasuyuki Seto
- Department of Gastrointestinal Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hisao Tajiri
- Jikei University School of Medicine, Minato-ku, Tokyo, Japan
| | | | - Myung-Gyu Choi
- Gastroenterology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, The Republic of Korea
| | - Rebecca C Fitzgerald
- Medical Research Council Cancer Unit, Hutchison/Medical Research Council Research Centre, University of Cambridge, Cambridge, UK
| | - Kwong Ming Fock
- Department of Gastroenterology and Hepatology, Duke NUS School of Medicine, National University of Singapore, Singapore
| | | | - Khek Yu Ho
- Department of Medicine, National University of Singapore, Singapore
| | - Varocha Mahachai
- Center of Excellence in Digestive Diseases, Thammasat University and Science Resarch and Innovation, Bangkok, Thailand
| | - Maria O'Donovan
- Department of Histopathology, Cambridge University Hospital NHS Trust UK, Cambridge, UK
| | - Robert Odze
- Department of Pathology, Tuft University School of Medicine, Boston, Massachusetts, USA
| | - Richard Peek
- Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Massimo Rugge
- Department of Medicine DIMED, Surgical Pathology and Cytopathology Unit, University of Padova, Padova, Italy
| | - Prateek Sharma
- Department of Gastroenterology and Hepatology, University of Kansas School of Medicine, Kansas City, Kansas, USA
| | - Jose D Sollano
- Department of Medicine, University of Santo Tomas, Manila, Philippines
| | - Michael Vieth
- Institute of Pathology, Klinikum Bayreuth, Friedrich-Alexander University Erlangen, Nurenberg, Germany
| | - Justin Wu
- Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
| | - Ming-Shiang Wu
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Duowu Zou
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | - Peter Malfertheiner
- Medizinixhe Klinik und Poliklinik II, Ludwig Maximillian University Klinikum, Munich, Germany
- Klinik und Poliklinik für Radiologie, Ludwig Maximillian University Klinikum, Munich, Germany
| |
Collapse
|
4
|
Evidence-based clinical practice guidelines for gastroesophageal reflux disease 2021. J Gastroenterol 2022; 57:267-285. [PMID: 35226174 PMCID: PMC8938399 DOI: 10.1007/s00535-022-01861-z] [Citation(s) in RCA: 110] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 02/03/2022] [Indexed: 02/06/2023]
Abstract
In Japan, with the increasing prevalence of gastroesophageal reflux disease (GERD) and growing public interest, the Japanese Society of Gastroenterology issued Evidence-based Clinical Practice Guidelines for GERD (1st edition) in 2009 and a revised 2nd edition in 2015. A number of studies on GERD were subsequently conducted in Japan and abroad, and vonoprazan, a potassium-competitive acid blocker (P-CAB), became available for the first time in Japan in February 2015. The revised 3rd edition (Japanese edition), which incorporates new findings and information, was published in April 2021. These guidelines are summarized herein, particularly sections related to the treatment of GERD. The important clinical issues addressed in the present revision are (i) the introduction of treatment algorithms that classify GERD into reflux esophagitis and non-erosive reflux disease, (ii) the clarification of treatment algorithms based on to the severity of reflux esophagitis, and (iii) the positioning of vonoprazan in the treatment for GERD. The present guidelines propose vonoprazan as the initial/maintenance treatment for severe reflux esophagitis. They also recommend vonoprazan or PPI as an initial treatment for mild reflux esophagitis and recommended PPI and proposed vonoprazan as maintenance treatment. These updated guidelines offer the best clinical strategies for GERD patients in Japan and hope that they will be of global use for the diagnosis and treatment for GERD.
Collapse
|
5
|
Fujiya T, Asanuma K, Koike T, Okata T, Saito M, Asano N, Imatani A, Masamune A. Nitric oxide could promote development of Barrett's esophagus by S-nitrosylation-induced inhibition of Rho-ROCK signaling in esophageal fibroblasts. Am J Physiol Gastrointest Liver Physiol 2022; 322:G107-G116. [PMID: 34786954 DOI: 10.1152/ajpgi.00124.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Barrett's esophagus arises in the process of wound healing in distal esophageal epithelium damaged by gastroesophageal reflux disease. Differentiation of fibroblast into myofibroblasts, a smooth muscle cell-like phenotype and tissue contraction are crucial processes in wound healing. No study has evaluated mechanism by which luminal esophageal nitric oxide (NO) affect Rho-associated coiled coil-forming protein kinase (Rho-ROCK) signaling pathway, a key factor of tissue contraction, in stromal fibroblasts to develop Barrett's esophagus. Using esophageal fibroblasts, we performed collagen-based cell contraction assays and evaluated influence of Rho-ROCK signaling in the exposure to acidic bile salts and NOC-9, which is an NO donor. We found that enhanced cell contraction induced by acidic bile salts was inhibited by NO, accompanied by decrease in phosphorylated myosin light chain expression and stress fiber formation. NO directly S-nitrosylated GTP-RhoA and consequently blocked Rho-ROCK signaling. Moreover, exposure to NO and Y27632, a Rho-ROCK signaling inhibitor, decreased α-SMA expression and increased bone morphogenetic protein-4 (BMP4) expression and secretion. These findings could account for the increased expression of BMP4 in the columnar epithelial cells and stromal fibroblasts in human Barrett's esophagus. NO could impair wound contraction by blocking the Rho-ROCK signaling pathway and promote the development of Barrett's esophagus.NEW & NOTEWORTHY Barrett's esophagus is the condition where esophageal epithelium damaged by gastroesophageal reflux disease (GERD) is abnormally healed via replacing of metaplastic columnar epithelium, but very few studies have conducted focusing wound healing in the development of Barrett's esophagus. Esophageal luminal nitric oxide inhibits Rho-ROCK signaling pathway in esophageal fibroblasts, which leads to delay tissue contraction, a pivotal step in proper wound healing. Moreover, this inhibition increases tissue BMP4 expression. Impaired wound healing could be related to Barrett's esophagus.
Collapse
Affiliation(s)
- Taku Fujiya
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kiyotaka Asanuma
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tomoyuki Koike
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tomoki Okata
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masahiro Saito
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Naoki Asano
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Akira Imatani
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Atsushi Masamune
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
6
|
Chen S, Jiang J, Chao G, Hong X, Cao H, Zhang S. Pure Total Flavonoids From Citrus Protect Against Nonsteroidal Anti-inflammatory Drug-Induced Small Intestine Injury by Promoting Autophagy in vivo and in vitro. Front Pharmacol 2021; 12:622744. [PMID: 33953669 PMCID: PMC8090934 DOI: 10.3389/fphar.2021.622744] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 03/24/2021] [Indexed: 12/14/2022] Open
Abstract
Small intestine injury is an adverse effect of non-steroidal anti-inflammatory drugs (NSAIDs) that urgently needs to be addressed for their safe application. Although pure total flavonoids from citrus (PTFC) have been marketed for the treatment of digestive diseases, their effects on small intestine injury and the underlying mechanism of action remain unknown. This study aimed to investigate the potential role of autophagy in the mechanism of NSAID (diclofenac)-induced intestinal injury in vivo and in vitro and to demonstrate the protective effects of PTFC against NSAID-induced small intestine disease. The results of qRT-PCR, western blotting, and immunohistochemistry showed that the expression levels of autophagy-related 5 (Atg5), light chain 3 (LC3)-II, and tight junction (TJ) proteins ZO-1, claudin-1, and occludin were decreased in rats with NSAID-induced small intestine injury and diclofenac-treated IEC-6 cells compared with the control groups. In the PTFC group, Atg5 and LC3-II expression, TJ protein expression, and the LC3-II/LC3-I ratio increased. Furthermore, the mechanism by which PTFC promotes autophagy in vivo and in vitro was evaluated by western blotting. Expression levels of p-PI3K and p-Akt increased in the intestine disease-induced rat model group compared with the control, but decreased in the PTFC group. Autophagy of IEC-6 cells was upregulated after treatment with a PI3K inhibitor, and the upregulation was significantly more after PTFC treatment, suggesting PTFC promoted autophagy through the PI3K/Akt signaling pathway. In conclusion, PTFC protected intestinal barrier integrity by promoting autophagy, which demonstrates its potential as a therapeutic candidate for NSAID-induced small intestine injury.
Collapse
Affiliation(s)
- Shanshan Chen
- First Affiliated Hospital, Zhejiang Chinese Medical University, Zhejiang, China
| | - Jianping Jiang
- Department of Pharmacy, School of Medicine, Zhejiang University City College, Zhejiang, China.,Zhejiang You-du Biotech Limited Company, Quzhou, China
| | | | - Xiaojie Hong
- First Affiliated Hospital, Zhejiang Chinese Medical University, Zhejiang, China
| | - Haijun Cao
- First Affiliated Hospital, Zhejiang Chinese Medical University, Zhejiang, China
| | - Shuo Zhang
- First Affiliated Hospital, Zhejiang Chinese Medical University, Zhejiang, China
| |
Collapse
|
7
|
Chao G, Dai J, Zhang S. Protective effect of naringin on small intestine injury in NSAIDs related enteropathy by regulating ghrelin/GHS-R signaling pathway. Life Sci 2020; 266:118909. [PMID: 33333047 DOI: 10.1016/j.lfs.2020.118909] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 11/16/2020] [Accepted: 12/08/2020] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To investigate the mechanism of Ghrelin/GHS-R signaling pathway in small intestine injury induced by NSAIDs related enteropathy. To clarify the mechanism network of intestinal mucosal repair with naringin as a new therapeutic method. METHODS Naringin was used as the intervention method, observed the damage of small intestinal mucosa and detected the expression of ghrelin, GHS-R, leptin and TNF-α by electron microscopy, HE staining and immunohistochemistry. RESULTS Compared with the control group, the weight of rats in the model group decreased, the thickness of intestinal mucosa became thinner, the structure of intestinal mucosa changed, the expression of ghrelin, GHS-R and leptin decreased, the expression of TNF-α increased. Compared with the model group, the intestinal mucosa of the treatment group was repaired, the expression of ghrelin, GHS-R and leptin was increased, and the expression TNF-α was decreased. CONCLUSION The mechanism of intestinal mucosal damage in patients with NSAIDs related enteropathy may be related to the decreased expression of ghrelin, GHS-R and leptin, and promotion of TNF-α secretion. Naringin can effectively promote the secretion of ghrelin and leptin, the expression of GSH-R, and inhibit the release of TNF-α, so as to repair intestinal mucosa naringin will become a new method to treat and prevent NSAIDs related intestinal diseases.
Collapse
Affiliation(s)
- Guanqun Chao
- Department of General Practice, Sir Run Run Shaw Hospital, Zhejiang University, China.
| | - Jian Dai
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang Chinese Medical University, China
| | - Shuo Zhang
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang Chinese Medical University, China.
| |
Collapse
|
8
|
Chao G, Wang Z, Yang C, Qian Y, Zhang S. Teprenone ameliorates diclofenac-induced small intestinal injury via inhibiting protease activated receptors 1 and 2 activity. Biomarkers 2020; 26:38-44. [PMID: 33176506 DOI: 10.1080/1354750x.2020.1849405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
OBJECTIVE This study aimed to investigate specific protein expression of injured intestinal mucosa induced by diclofenac, and explore the protective effects of teprenone on it. METHODS Intestinal damage of Sprague Dawley male rats was gradually induced by the intragastric administration of diclofenac. After the last drug administration, the intestinal mucosa was taken off with an interval of 24 h, subsequently, its general histological injury and ultrastructure were observed and analysed by a transmission electron microscope. The expression levels of PAR1 and PAR2 protein were detected by immunohistochemistry and real-time polymerase chain reaction (PCR). RESULTS The Reuter and Chiu scores of small intestinal damage were 5.63 ± 1.30 and 4.25 ± 0.70 respectively in the model group, which could be protected by teprenone (100 mg/kg⋅day) with the degree of 55.7% and 44%. Optical microscopy and transmission electron microscope showed that intestinal mucosa and ultrastructure were severely damaged. Distributed in the cytoplasm or aligned with the nucleus, the expression of PAR1 and PAR2 was significantly upregulated after the administration of diclofenac, while it was relieved after the treatment of teprenone. CONCLUSION Our study presents a new view that teprenone might protect NSAIDs-induced (diclofenac) intestinal injury via suppressing the expression of PAR1 and PAR2.
Collapse
Affiliation(s)
- Guanqun Chao
- Department of Family Medicine, Sir Run Run Shaw Hospital, Zhejiang University, China
| | - Zhaojun Wang
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang Chinese Medical University, China
| | - Chaoyu Yang
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang Chinese Medical University, China
| | - Yanna Qian
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang Chinese Medical University, China
| | - Shuo Zhang
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang Chinese Medical University, China
| |
Collapse
|
9
|
Chao G, Ye F, Yuan Y, Zhang S. Berberine ameliorates non-steroidal anti-inflammatory drugs-induced intestinal injury by the repair of enteric nervous system. Fundam Clin Pharmacol 2019; 34:238-248. [PMID: 31520444 DOI: 10.1111/fcp.12509] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 08/07/2019] [Accepted: 09/09/2019] [Indexed: 12/28/2022]
Abstract
The study was to detect the role of GDNF, PGP9.5 (a neuronal marker), and GFAP (EGCs' marker) in the mechanism of non-steroidal anti-inflammatory drugs (NSAIDs) related to intestinal injury and to clarify the protective effect of berberine in the treatment of NSAID-induced small intestinal disease. Forty male SD rats were divided randomly into five groups (A-E): Group A: control group; Group B: model group received diclofenac sodium 7.5 mg/(kg*day) for 5 days; Group C-E: berberine low, medium and high dose groups were treated by 7.5 mg/(kg*day) diclofenac sodium for 5 days then received berberine 25 mg/(kg*day), 50 mg/(kg*day), and 75 mg/(kg*day), respectively, between the sixth and eighth day. Intestinal mucosa was taken on the ninth day to observe the general, histological injuries, and to measure the intestinal epithelial thickness. Then, immunohistochemistry was performed to detect the expression of PGP9.5 and GFAP, and Western blot was performed to detect GDNF expression. The histological score and the general score in the model group were, respectively, 5.75 ± 1.04 and 4.83 ± 0.92. Scores in berberine medium and high berberine group were lower compared with the model group (P < 0.05). The intestinal epithelial thickness in the model group was lower than in the control group and the berberine groups (P < 0.05). PGP9.5, GFAP, and GDNF content in the model group and the three berberine groups were significantly lower than in the control groups (P < 0.05). PGP9.5, GFAP, and GDNF content in the control group and the three berberine groups were higher compared with the model groups (P < 0.05). Berberine can protect the intestinal mucosa of NSAID users, and the mechanism is associated with the reparation of the enteric nervous system via upregulating the expression of PGP9.5, GFAP, and GDNF.
Collapse
Affiliation(s)
- Guanqun Chao
- Department of General Practice, Sir Run Run Shaw Hospital, Zhejiang University, China
| | - Fangxu Ye
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang Chinese Medical University, China
| | - Yuan Yuan
- Department of Gastroenterology, The First Affiliated Hospital, Henan Chinese Medical University, China
| | - Shuo Zhang
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang Chinese Medical University, China
| |
Collapse
|
10
|
Murata T, Asanuma K, Ara N, Iijima K, Hatta W, Hamada S, Asano N, Koike T, Imatani A, Masamune A, Shimosegawa T. Leptin Aggravates Reflux Esophagitis by Increasing Tissue Levels of Macrophage Migration Inhibitory Factor in Rats. TOHOKU J EXP MED 2018; 245:45-53. [PMID: 29760351 DOI: 10.1620/tjem.245.45] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Leptin, produced primarily by the adipose tissue, acts as a pro-inflammatory modulator, thereby contributing to the development of obesity-related disease. Although high levels of leptin in the obese are closely related to gastroesophageal reflux disease, the mechanism by which leptin influences esophageal inflammation remains unknown. Macrophage migration inhibitory factor (MIF) is produced by immune cells, such as T lymphocytes and macrophages, and MIF is known to induce the production of tumor necrosis factor α (TNF-α), interleukin 1β (IL-1β) and interleukin 6 (IL-6). We therefore investigated the mechanism whereby leptin aggravates reflux esophagitis, by focusing on esophageal tissue levels of MIF and CD3+ T lymphocytes, both of which are crucial for the reflux-induced epithelial damage. Esophageal inflammation was surgically induced in male Wistar rats by ligating the forestomach and narrowing the duodenum to facilitate gastroesophageal reflux, followed by administration of leptin or vehicle with an osmotic pump system for 1 week. We demonstrated that the administration of leptin exacerbated the reflux esophagitis with the apparent infiltration of CD3+ T lymphocytes and caused the significant increase in the esophageal tissue levels of MIF. Moreover, the leptin caused increases in the esophageal tissue levels of TNF-α, IL-1β and IL-6, downstream targets of MIF. Importantly, the increases in these pro-inflammatory cytokines were accompanied by increased protein levels of phospho-STAT3 and phospho-AKT, pivotal molecules of leptin signaling pathways. In conclusion, through enhancing the MIF-induced inflammatory signaling, leptin could contribute to the development of gastroesophageal reflux disease.
Collapse
Affiliation(s)
- Tsugihiro Murata
- Division of Gastroenterology, Tohoku University Graduate School of Medicine
| | - Kiyotaka Asanuma
- Division of Gastroenterology, Tohoku University Graduate School of Medicine
| | - Nobuyuki Ara
- Division of Gastroenterology, Tohoku University Graduate School of Medicine
| | - Katsunori Iijima
- Department of Gastroenterology and Neurology, Akita University Graduate School of Medicine
| | - Waku Hatta
- Division of Gastroenterology, Tohoku University Graduate School of Medicine
| | - Shin Hamada
- Division of Gastroenterology, Tohoku University Graduate School of Medicine
| | - Naoki Asano
- Division of Gastroenterology, Tohoku University Graduate School of Medicine
| | - Tomoyuki Koike
- Division of Gastroenterology, Tohoku University Graduate School of Medicine
| | - Akira Imatani
- Division of Gastroenterology, Tohoku University Graduate School of Medicine
| | - Atsushi Masamune
- Division of Gastroenterology, Tohoku University Graduate School of Medicine
| | - Tooru Shimosegawa
- Division of Gastroenterology, Tohoku University Graduate School of Medicine
| |
Collapse
|
11
|
Torihata Y, Asanuma K, Iijima K, Mikami T, Hamada S, Asano N, Koike T, Imatani A, Masamune A, Shimosegawa T. Estrogen-Dependent Nrf2 Expression Protects Against Reflux-Induced Esophagitis. Dig Dis Sci 2018; 63:345-355. [PMID: 29282639 DOI: 10.1007/s10620-017-4885-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 12/12/2017] [Indexed: 12/15/2022]
Abstract
BACKGROUND Gastroesophageal reflux disease is more common in males than in females. The enhanced antioxidative capacity of estrogen in females might account for the gender difference. Nuclear factor erythroid 2-related factor 2 (Nrf2) plays a pivotal role in the host defense mechanism against oxidative stress. AIMS This study aimed to clarify the role of Nrf2 in reflux-induced esophageal inflammation, focusing on the gender difference and nitric oxide. METHODS Gastroesophageal reflux was surgically induced in male and female rats. Nitrite and ascorbic acid were administered for 1 week to provoke nitric oxide in the esophageal lumen. Male rats with gastroesophageal reflux were supplemented with 17β-estradiol or tert-butylhydroquinone, an Nrf2-inducing reagent. Esophageal squamous cell carcinoma KYSE30 cells were treated with 17β-estradiol. Nrf2 expression was examined by Western blotting and quantitative real-time PCR. Antioxidant gene expression profiles were examined by a PCR array. RESULTS In the presence of nitric oxide, reflux-induced esophageal damage was less evident, whereas esophageal expression of Nrf2 and its target genes such as Nqo1 was more evident in female or male rats supplemented with 17β-estradiol than in male rats. 17β-Estradiol increased nuclear Nrf2 expression in KYSE30 cells. tert-Butylhydroquinone increased tissue Nqo1 mRNA expression, leading to a reduction in reflux-induced esophageal damage. CONCLUSIONS Estrogen-dependent Nrf2 expression might contribute to protection against the development of gastroesophageal reflux disease in females.
Collapse
Affiliation(s)
- Yudai Torihata
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Kiyotaka Asanuma
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan.
| | - Katsunori Iijima
- Department of Gastroenterology and Neurology, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
| | - Tetsuhiko Mikami
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Shin Hamada
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Naoki Asano
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Tomoyuki Koike
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Akira Imatani
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Atsushi Masamune
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Tooru Shimosegawa
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| |
Collapse
|
12
|
Souza RF. Reflux esophagitis and its role in the pathogenesis of Barrett's metaplasia. J Gastroenterol 2017; 52:767-776. [PMID: 28451845 PMCID: PMC5488728 DOI: 10.1007/s00535-017-1342-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 04/11/2017] [Indexed: 02/04/2023]
Abstract
Reflux esophagitis damages the squamous epithelium that normally lines the esophagus, and promotes replacement of the damaged squamous lining by the intestinal metaplasia of Barrett's esophagus, the precursor of esophageal adenocarcinoma. Therefore, to prevent the development of Barrett's metaplasia and esophageal adenocarcinoma, the pathogenesis of reflux esophagitis must be understood. We have reported that reflux esophagitis, both in a rat model and in humans, develops as a cytokine-mediated inflammatory injury (i.e., cytokine sizzle), not as a caustic chemical injury (i.e., acid burn), as traditionally has been assumed. Moreover, reflux induces activation of hypoxia inducible factor (HIF)-2α, which enhances the transcriptional activity of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) causing increases in pro-inflammatory cytokines and in migration of T lymphocytes, an underlying molecular mechanism for this cytokine-mediated injury. In some individuals, reflux esophagitis heals with Barrett's metaplasia. A number of possibilities exist for the origin of the progenitor cells that give rise to this intestinal metaplasia including those of the esophagus, the proximal stomach, or the bone marrow. However, intestinal cells are not normally found in the esophagus, the stomach, or the bone marrow. Thus, the development of Barrett's intestinal metaplasia must involve some molecular reprogramming of key developmental transcription factors within the progenitor cell, a process termed transcommitment, which may be initiated by the noxious components of the gastric refluxate. This review will highlight recent studies on the pathogenesis of reflux esophagitis and on reflux-related molecular reprogramming of esophageal squamous epithelial cells in the pathogenesis of Barrett's metaplasia.
Collapse
Affiliation(s)
- Rhonda F. Souza
- Center for Esophageal Research, Baylor Scott and White Research Institute, Dallas, TX, USA
| |
Collapse
|
13
|
Adam, Eve and the reflux enigma: age and sex differences across the gastro-oesophageal reflux spectrum. Eur J Gastroenterol Hepatol 2017; 29:634-639. [PMID: 28151751 DOI: 10.1097/meg.0000000000000845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
INTRODUCTION We present demographic differences across the gastro-oesophageal reflux disease (GORD) spectrum in a UK District General Hospital. PATIENTS AND METHODS Data were prospectively collected over 37 years. At endoscopy patients were categorized as: erosive oesophagitis (EO), Barrett's oesophagus (BO) or nonerosive reflux disease (NER). Analysis 1: comparison of EO, BO and NER 1977-2001 when the database for GORD without BO closed. Analysis 2: demographic differences in oesophageal adenocarcinoma (OAC) in total BO population diagnosed 1977-2011. RESULTS GORD 1977-2001 (n=11 944): sex, male predominance in EO and BO but not NER; male : female ratios, 1.81, 1.65, 0.87, respectively (P<0.0001); mean age at presentation, EO 54 years, BO 62 years, NER 50 years; women were older than men by 10, 7 and 6 years, respectively.BO 1977-2011: prevalent OAC, 87/1468 (6%); male : female ratio, 4.1 (P<0.0001); incident OAC, 54/1381 (3.9%); male : female ratio, 3.5 (P<0.0001). Among all BO, more men developed OAC (3 vs. 0.9%). Within each sex, proportion of OAC higher among men (4.9 vs. 2.3%); at OAC diagnosis women were slightly but not significantly older (69.9 vs. 72.3 years, P=0.322). CONCLUSION Two views may explain our findings. First, women have either milder reflux, or reduced mucosal sensitivity hence reflux remains silent for longer. Alternatively, women genuinely develop reflux later, that is, are more protected and for longer from developing GORD and its complications. Early evidence is emerging that female sex hormones may indeed have a protective role in GORD during the reproductive period. We suggest reflux and its consequences may be an example of 'protection' conferred on Eve.
Collapse
|
14
|
Asanuma K, Huo X, Agoston A, Zhang X, Yu C, Cheng E, Zhang Q, Dunbar KB, Pham TH, Wang DH, Iijima K, Shimosegawa T, Odze RD, Spechler SJ, Souza RF. In oesophageal squamous cells, nitric oxide causes S-nitrosylation of Akt and blocks SOX2 (sex determining region Y-box 2) expression. Gut 2016; 65:1416-26. [PMID: 25986942 PMCID: PMC4651671 DOI: 10.1136/gutjnl-2015-309272] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 04/22/2015] [Indexed: 01/11/2023]
Abstract
OBJECTIVE Barrett's metaplasia might develop if GORD causes oesophageal squamous cells to convert into columnar cells. Acid and bile exposures upregulate columnar differentiation genes like CDX2 in oesophageal squamous cells, but it is not known if such exposures downregulate squamous differentiation genes like SOX2. In addition to acid and bile, patients with GORD also have high oesophageal concentrations of nitric oxide (NO). This study aims to determine how acid, bile salts and NO affect genes that influence oesophageal cell phenotype. DESIGN Oesophageal squamous cells from patients with Barrett's oesophagus were exposed to acidic bile salts or NOC-9 (an NO donor). SOX2, p63 (squamous transcription factor) and CDX2 mRNAs were measured by quantitative RT-PCR. SOX2 and its regulatory Akt pathway proteins were evaluated by western blotting. S-nitrosylation by NO was blocked by dithiothreitol. Immunohistochemistry for SOX2 was performed on the oesophagus of rats with surgically induced GORD which were fed diets with and without nitrite supplementation. RESULTS In oesophageal squamous cells, NO profoundly decreased SOX2 protein and caused a significantly greater decrease in SOX2 mRNA than did acidic bile salts. NO also decreased p63 and increased CDX2 expression. NO caused S-nitrosylation of Akt, blocking its phosphorylation. Akt pathway inhibition by LY294002 or Akt siRNA reduced SOX2 mRNA. Rats fed with nitrite-supplemented diets exhibited weaker SOX2 oesophageal staining than rats fed with normal diets. CONCLUSIONS In oesophageal squamous cells, NO blocks SOX2 expression through Akt S-nitrosylation. NO also increases CDX2 and decreases p63 expression. By triggering molecular events preventing squamous differentiation while promoting intestinal differentiation, NO might contribute to Barrett's pathogenesis.
Collapse
Affiliation(s)
- Kiyotaka Asanuma
- Esophageal Diseases Center, VA North Texas Health Care System and the University of Texas Southwestern Medical Center, Dallas, TX,Department of Medicine, VA North Texas Health Care System and the University of Texas Southwestern Medical Center, Dallas, TX,Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Xiaofang Huo
- Esophageal Diseases Center, VA North Texas Health Care System and the University of Texas Southwestern Medical Center, Dallas, TX,Department of Medicine, VA North Texas Health Care System and the University of Texas Southwestern Medical Center, Dallas, TX
| | - Agoston Agoston
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| | - Xi Zhang
- Esophageal Diseases Center, VA North Texas Health Care System and the University of Texas Southwestern Medical Center, Dallas, TX,Department of Medicine, VA North Texas Health Care System and the University of Texas Southwestern Medical Center, Dallas, TX
| | - Chunhua Yu
- Esophageal Diseases Center, VA North Texas Health Care System and the University of Texas Southwestern Medical Center, Dallas, TX,Department of Medicine, VA North Texas Health Care System and the University of Texas Southwestern Medical Center, Dallas, TX
| | - Edaire Cheng
- Esophageal Diseases Center, VA North Texas Health Care System and the University of Texas Southwestern Medical Center, Dallas, TX,Department of Pediatrics, Children’s Medical Center and the University of Texas Southwestern Medical Center, Dallas, TX
| | - Qiuyang Zhang
- Esophageal Diseases Center, VA North Texas Health Care System and the University of Texas Southwestern Medical Center, Dallas, TX,Department of Medicine, VA North Texas Health Care System and the University of Texas Southwestern Medical Center, Dallas, TX
| | - Kerry B. Dunbar
- Esophageal Diseases Center, VA North Texas Health Care System and the University of Texas Southwestern Medical Center, Dallas, TX,Department of Medicine, VA North Texas Health Care System and the University of Texas Southwestern Medical Center, Dallas, TX
| | - Thai H. Pham
- Esophageal Diseases Center, VA North Texas Health Care System and the University of Texas Southwestern Medical Center, Dallas, TX,Department of Surgery, VA North Texas Health Care System and the University of Texas Southwestern Medical Center, Dallas, TX
| | - David H. Wang
- Esophageal Diseases Center, VA North Texas Health Care System and the University of Texas Southwestern Medical Center, Dallas, TX,Department of Medicine, VA North Texas Health Care System and the University of Texas Southwestern Medical Center, Dallas, TX,Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX
| | - Katsunori Iijima
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Tooru Shimosegawa
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Robert D. Odze
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| | - Stuart J. Spechler
- Esophageal Diseases Center, VA North Texas Health Care System and the University of Texas Southwestern Medical Center, Dallas, TX,Department of Medicine, VA North Texas Health Care System and the University of Texas Southwestern Medical Center, Dallas, TX,Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX
| | - Rhonda F. Souza
- Esophageal Diseases Center, VA North Texas Health Care System and the University of Texas Southwestern Medical Center, Dallas, TX,Department of Medicine, VA North Texas Health Care System and the University of Texas Southwestern Medical Center, Dallas, TX,Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
15
|
Kusaka G, Uno K, Iijima K, Shimosegawa T. Role of nitric oxide in the pathogenesis of Barrett’s-associated carcinogenesis. World J Gastrointest Pathophysiol 2016; 7:131-137. [PMID: 26909236 PMCID: PMC4753179 DOI: 10.4291/wjgp.v7.i1.131] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 09/01/2015] [Accepted: 11/11/2015] [Indexed: 02/06/2023] Open
Abstract
Barrett’s esophagus (BE), a premalignant condition to Barrett’s adenocarcinoma (BAC), is closely associated with chronic inflammation due to gastro-esophageal reflux. Caudal type homeobox 2 (CDX2), a representative marker of BE, is increased during the metaplastic and neoplastic transformation of BE. Nitric oxide (NO) has been proposed to be a crucial mediator of Barrett’s carcinogenesis. We previously demonstrated that CDX2 might be induced directly under stimulation of large amounts of NO generated around the gastro-esophageal junction (GEJ) by activating epithelial growth factor receptor in a ligand-independent manner. Thus, we reviewed recent developments on the role of NO in Barrett’s carcinogenesis. Notably, recent studies have reported that microbial communities in the distal esophagus are significantly different among groups with a normal esophagus, reflux esophagitis, BE or BAC, despite there being no difference in the bacterial quantity. Considering that microorganism components can be one of the major sources of large amounts of NO, these studies suggest that the bacterial composition in the distal esophagus might play an important role in regulating NO production during the carcinogenic process. Controlling an inflammatory reaction due to gastro-esophageal reflux or bacterial composition around the GEJ might help prevent the progression of Barrett’s carcinogenesis by inhibiting NO production.
Collapse
|
16
|
Abstract
Reflux esophagitis causes Barrett's metaplasia, an abnormal esophageal mucosa predisposed to adenocarcinoma. Medical therapy for reflux esophagitis focuses on decreasing gastric acid production with proton pump inhibitors. We have reported that reflux esophagitis in a rat model develops from a cytokine-mediated inflammatory injury, not from a caustic chemical (acid) injury. In this model, refluxed acid and bile stimulate the release of inflammatory cytokines from esophageal squamous cells, recruiting lymphocytes first to the submucosa and later to the luminal surface. Emerging studies on acute reflux esophagitis in humans support this new concept, suggesting that reflux-induced cytokine release may be a future target for medical therapies. Sometimes, reflux esophagitis heals with Barrett's metaplasia, a process facilitated by reflux-related nitric oxide (NO) production and Sonic Hedgehog (Hh) secretion by squamous cells. We have shown that NO reduces expression of genes that promote a squamous cell phenotype, while Hh signaling induces genes that mediate the development of the columnar cell phenotypes of Barrett's metaplasia. Agents targeting esophageal NO production or Hh signaling conceivably could prevent the development of Barrett's esophagus. Persistent reflux promotes cancer in Barrett's metaplasia. We have reported that acid and bile salts induce DNA damage in Barrett's cells. Bile salts also cause NF-x03BA;B activation in Barrett's cells, enabling them to resist apoptosis in the setting of DNA damage and likely contributing to carcinogenesis. Oral treatment with ursodeoxycholic acid prevents the esophageal DNA damage and NF-x03BA;B activation induced by toxic bile acids. Altering bile acid composition might be another approach to cancer prevention.
Collapse
Affiliation(s)
- Rhonda F. Souza
- Esophageal Diseases Center, Department of Medicine, VA North Texas Health Care System and the University of Texas Southwestern Medical Center, Dallas, TX, the Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
17
|
Iijima K, Shimosegawa T. Involvement of luminal nitric oxide in the pathogenesis of the gastroesophageal reflux disease spectrum. J Gastroenterol Hepatol 2014; 29:898-905. [PMID: 24863184 DOI: 10.1111/jgh.12548] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/29/2014] [Indexed: 12/16/2022]
Abstract
Over the last 3 decades, the incidence of esophageal adenocarcinoma has dramatically increased in Western countries; a similar increase may be observed in Asian countries in the near future. Esophageal adenocarcinoma arises from a sequential gastroesophageal reflux disease (GERD) spectrum from reflux erosive esophagitis, to Barrett's esophagus, and finally to esophageal adenocarcinoma. At present, gastric acid and bile are assumed to be primarily involved in the etiology of the GERD spectrum. We reported in 2002 that, at the gastroesophageal junction in humans, abundant amounts of nitric oxide (NO) are generated luminally through the entero-salivary re-circulation of dietary nitrate. Since then, we have carried out a series of experiments to demonstrate that NO diffuses into the adjacent epithelium at cytotoxic levels. This diffusion results in disruption of the epithelial barrier function, exacerbation of inflammation, acceleration of columnar transformation in the esophagus (Barrett's esophagus) via the induction of caudal-type homeobox 2, and the shifting of carcinogenic N-nitroso compound formation from the luminal to epithelial compartment. These results suggest that, in addition to conventionally recognized causative factors, luminal NO could also be involved in the pathogenesis of the GERD spectrum. In addition, we recently showed that there is a prominent gender-related difference in NO-related cytotoxicity in the esophagus and that estrogen attenuated the esophageal tissue damage via the estrogen receptor in female rats. The role of estrogen in attenuating the esophageal tissue damage in NO-related esophageal damage could explain the well-recognized male predominance in the GERD spectrum in humans.
Collapse
Affiliation(s)
- Katsunori Iijima
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | | |
Collapse
|
18
|
McCarty MF. Dietary nitrate and reductive polyphenols may potentiate the vascular benefit and alleviate the ulcerative risk of low-dose aspirin. Med Hypotheses 2012; 80:186-90. [PMID: 23265354 DOI: 10.1016/j.mehy.2012.11.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 11/17/2012] [Indexed: 12/23/2022]
Abstract
The recent revelation that daily low-dose aspirin not only lowers risk for vascular events, but also can notably decrease risk for a range of adenocarcinomas, decreasing total cancer mortality by about 20%, makes it highly desirable to implement this protective strategy on a population-wide basis. Nonetheless, the fact that low-dose aspirin approximately doubles risk for serious gastrointestinal bleeding may impede health authorities from recommending its use by people judged to be at low cardiovascular risk. Nitric oxide (NO) exerts gastroprotective effects by boosting blood flow and mucus production in the gastric mucosa - effects which demonstrably oppose the pro-ulcerative impact of aspirin and other NSAIDs. A nitrate-rich diet, as well as ingestion of reductive catechol-bearing polyphenols, can collaborate in promoting NO generation in gastric juice, and they are protective in rodent models of gastric ulceration. Moreover, a high-nitrate diet, as well as certain reductive polyphenols such as epicatechin and quercetin, can exert platelet-stabilizing effects complementary to those of aspirin, and act in other ways to preserve vascular health. Hence, diets rich in nitrate and reductive polyphenols have the potential to amplify the vascular-protective benefits of low-dose aspirin, while diminishing its pro-ulcerative risk. Low-dose aspirin may be more unequivocally recommendable within the context of such a dietary strategy.
Collapse
Affiliation(s)
- Mark F McCarty
- NutriGuard Research, 1051 Hermes Ave., Encinitas, CA 92024, United States.
| |
Collapse
|
19
|
Kusaka G, Uno K, Iijima K, Endo H, Asano N, Koike T, Imatani A, Shimosegawa T. The role of nitric oxide in the induction of caudal-type homeobox 2 through epidermal growth factor receptor in the development of Barrett's esophagus. Scand J Gastroenterol 2012; 47:1148-58. [PMID: 22834965 DOI: 10.3109/00365521.2012.703232] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE The high concentration of nitric oxide (NO) around the gastro-esophageal junction (GEJ) might play an important role in the development of Barrett's esophagus (BE), a precursor of Barrett's adenocarcimona. Although previous studies revealed that the expression of caudal-type homeobox 2 (CDX2), an important marker of BE, might be induced through Epidermal Growth Factor Receptor (EGFR), the roles of NO in this signal transduction remain unclear. MATERIAL AND METHODS First, we investigated the expressions of EGFR, CDX2 and nitrotyrosine by immunohistochemical study for BE and squamous epithelium of human specimens. Second, we studied the effect of peroxynitrite, peroxynitrite stimulator, SIN-1, or NO donor, NOC7, on the expression of phosphorylated EGFR and CDX2 in KYSE30, an EGFR-rich human esophageal squamous cell carcinoma cell-line. Specific inhibitors for EGFR, AG1478 and small interfering RNA for EGFR (EGFR-siRNA) were employed to elucidate the role of EGFR in the induction of CDX2. RESULTS The immunohistochemical study revealed that the expressions of EGFR, CDX2 and nitrotyrosine in BE were stronger than those in squamous epithelium with positive correlations. Exposure to peroxynitrite, SIN-1 or NOC7 induced EGFR phosphorylation and CDX2 expression in dose- and time-dependent manners. Both EGFR phosphorylation and CDX2 induction were significantly diminished by AG 1478 and EGFR-siRNA. CONCLUSIONS We revealed for the first time that extrinsic NO might directly induce CDX2 expression through EGFR phosphorylation. We suggested that NO had an important role in the development of BE from squamous epithelium around GEJ.
Collapse
Affiliation(s)
- Gen Kusaka
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, 1-1Seiryo-machi, Aoba-ku, Sendai, Miyagi, Japan
| | | | | | | | | | | | | | | |
Collapse
|
20
|
|