1
|
Zeljic K, Pavlovic D, Stojkovic G, Dragicevic S, Ljubicic J, Todorovic N, Nikolic A. Analysis of TNS3-203 and LRRFIP1-211 Transcripts as Oral Cancer Biomarkers. J Oral Pathol Med 2025. [PMID: 39888120 DOI: 10.1111/jop.13606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/28/2024] [Accepted: 01/15/2025] [Indexed: 02/01/2025]
Abstract
INTRODUCTION A recent pan-cancer transcriptome analysis indicated differential activity of alternative promoters of genes TNS3 and LRRFIP1 in head and neck squamous cell carcinoma compared to non-cancerous tissue. The promoters upregulated in head and neck squamous cell carcinoma regulate expression of transcripts TNS3-203 and LRRFIP1-211. OBJECTIVE Our aim was to investigate the biomarker potential of TNS3-203 and LRRFIP1-211 transcripts in oral cancer, the most common type of head and neck cancer. MATERIALS AND METHODS An in silico approach was used to characterize the promoters and transcripts of interest. Relative expression of TNS3-203 and LRRFIP1-211 transcripts was evaluated by qRT-PCR in a group of 46 oral cancer patients in samples of cancer and adjacent non-cancerous tissue. RESULTS TNS3-203 was significantly overexpressed in oral cancer compared with matched non-cancerous tissue, so this transcript can potentially be used as a diagnostic biomarker. There were no differences in LRRFIP1-211 level between analyzed tissues. None of the investigated transcripts has prognostic potential in oral cancer. CONCLUSION The results obtained indicate the diagnostic potential of TNS3-203, but not LRRFIP1-211 transcript and its role in oral carcinogenesis.
Collapse
Affiliation(s)
- Katarina Zeljic
- Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Dunja Pavlovic
- Gene Regulation in Cancer Group, Institute of Molecular Genetics and Genetic Engineering, Belgrade, Serbia
| | - Goran Stojkovic
- Clinic for Otorhinolaryngology and Maxillofacial Surgery, University Clinical Center Serbia, Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Sandra Dragicevic
- Gene Regulation in Cancer Group, Institute of Molecular Genetics and Genetic Engineering, Belgrade, Serbia
| | - Jelena Ljubicic
- Gene Regulation in Cancer Group, Institute of Molecular Genetics and Genetic Engineering, Belgrade, Serbia
| | - Nikola Todorovic
- Clinic for Otorhinolaryngology and Maxillofacial Surgery, University Clinical Center Serbia, Belgrade, Serbia
| | - Aleksandra Nikolic
- Gene Regulation in Cancer Group, Institute of Molecular Genetics and Genetic Engineering, Belgrade, Serbia
| |
Collapse
|
2
|
Li J, Tuo D, Guo G, Gao Y, Gan J. The clinical significance and oncogenic function of LRRFIP1 in pancreatic cancer. Discov Oncol 2024; 15:123. [PMID: 38634978 PMCID: PMC11026317 DOI: 10.1007/s12672-024-00977-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 04/09/2024] [Indexed: 04/19/2024] Open
Abstract
PURPOSE Pancreatic cancer is a lethal malignancy with a grim prognosis. Previous studies have proven that Leucine Rich Repeat of Flightless-1 Interacting Protein 1 (LRRFIP1) plays a pivotal role in cell biological processes, while its clinical significance and function in pancreatic cancer remain to be elucidated. Hence, we aimed to explore the roles and mechanisms of LRRFIP1 in pancreatic cancer. METHODS The expression of LRRFIP1 in pancreatic cancer tissues and its clinical significance for pancreatic cancer were analyzed by immunohistochemistry assay and bioinformatic analysis. The influences of LRRFIP1 on the proliferation and migration of pancreatic cancer cells were assessed in vitro. The underlying mechanisms of LRRFIP1 in pancreatic cancer progression were explored using gene set enrichment analysis (GSEA) and molecular experiments. RESULTS The results showed that LRRFIP1 expression was significantly upregulated in pancreatic cancer tissues compared to the normal tissues, and such upregulation was associated with poor prognosis of patients with pancreatic cancer. GSEA revealed that LRRFIP1 upregulation was significantly associated with various cancer-associated signaling pathways, including PI3K/AKT signaling pathway and Wnt pathway. Furthermore, LRRFIP1 was found to be associated with the infiltration of various immune cells. Functionally, LRRFIP1 silencing suppressed cell proliferation somewhat and inhibited migration substantially. Further molecular experiments indicated that LRRFIP1 silencing inactivated the AKT/GSK-3β/β-catenin signaling axis. CONCLUSION Taken together, LRRFIP1 is associated with tumorigenesis, immune cell infiltration, and prognosis in pancreatic cancer, which suggests that LRRFIP1 may be a potential biomarker and therapeutic target for pancreatic cancer.
Collapse
Affiliation(s)
- Jinping Li
- Department of Histology and Embryology, School of Preclinical Medicine, Guilin Medical University, Guilin, 541199, Guangxi, People's Republic of China.
| | - Dayun Tuo
- Department of Histology and Embryology, School of Preclinical Medicine, Guilin Medical University, Guilin, 541199, Guangxi, People's Republic of China
- Department of Pathology, Liuzhou People's Hospital, Liuzhou, 545006, Guangxi, People's Republic of China
| | - Gunan Guo
- Department of Histology and Embryology, School of Preclinical Medicine, Guilin Medical University, Guilin, 541199, Guangxi, People's Republic of China
- School of Stomatology, Zhaoqing Medical College, Zhaoqing, 526020, Guangdong, People's Republic of China
| | - Yan Gao
- Department of Histology and Embryology, School of Preclinical Medicine, Guilin Medical University, Guilin, 541199, Guangxi, People's Republic of China
| | - Jinfeng Gan
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, 541199, Guangxi, People's Republic of China.
- Department of Gastroenterology, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, Guangxi, People's Republic of China.
| |
Collapse
|
3
|
Li J, Tuo D, Cheng T, Deng Z, Gan J. GCF2 mediates nicotine-induced cancer stemness and progression in hepatocellular carcinoma. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 271:115952. [PMID: 38218109 DOI: 10.1016/j.ecoenv.2024.115952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/10/2023] [Accepted: 01/05/2024] [Indexed: 01/15/2024]
Abstract
Cigarette smoking is one of the most impactful behavior-related risk factors for multiple cancers including hepatocellular carcinoma (HCC). Nicotine, as the principal component of tobacco, is not only responsible for smoking addiction but also a carcinogen; nevertheless, the underlying mechanisms remain unclear. Here we report that nicotine enhances HCC cancer stemness and malignant progression by upregulating the expression of GC-rich binding factor 2 (GCF2), a gene that was revealed to be upregulated in HCC and whose upregulation predicts poor prognosis, and subsequently activating the Wnt/ꞵ-catenin/SOX2 signaling pathway. We found that nicotine significantly increased GCF2 expression and that silencing of GCF2 reduced nicotine-induced cancer stemness and progression. Mechanistically, nicotine could stabilize the protein level of GCF2, and then GCF2 could robustly activate its downstream Wnt/β-catenin signaling pathway. Taken together, our results thus suggest that GCF2 is a potential target for a therapeutic strategy against nicotine-promoted HCC.
Collapse
Affiliation(s)
- Jinping Li
- Department of Histology and Embryology, School of Preclinical Medicine, Guilin Medical University, Guilin, Guangxi, PR China.
| | - Dayun Tuo
- Department of Histology and Embryology, School of Preclinical Medicine, Guilin Medical University, Guilin, Guangxi, PR China; Department of Pathology, Liuzhou People's Hospital, Liuzhou, Guangxi, PR China
| | - Tan Cheng
- Department of Human Anatomy, School of Preclinical Medicine, Guilin Medical University, Guilin, Guangxi, PR China
| | - Zhenyan Deng
- Department of Clinical Laboratory, Guilin Hospital of the Second Xiangya Hospital CSU, Guilin, Guangxi, PR China
| | - Jinfeng Gan
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, Guangxi, PR China; Guangxi Health Commission Key Laboratory of Tumor Immunology and Receptor-Targeted Drug Basic Research, Guilin Medical University, Guilin, Guangxi, PR China.
| |
Collapse
|
4
|
Wen Y, Wang E, Wang X, Qing S, Chaogetu B, Wang C, Xu Z, Zhang Z, Huang Y. Copy number variations of LRRFIP1 gene and the relationship with growth traits in four Chinese sheep. Anim Biotechnol 2023; 34:3008-3015. [PMID: 36170043 DOI: 10.1080/10495398.2022.2126981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
CNVs (copy number variations) are the novel and common structural variants that could cover entire genes found in plenty of species. CNV may influence economically important traits or disease susceptibility in livestock species. Based on the whole genome resequencing results, we found that there was a CNV region on the LRRFIP1 gene. Then we used qPCR to detect the copy number type distribution in 553 individuals of four sheep breeds and used them for association analysis. The results showed that: (1) In the CKS, the sheep with gain type had a larger heart girth (p = 0.049). (2) For the HS, the CNV could significantly affect rump breadth (p = 0.037) and circumference of the cannon (p = 0.035). And the sheep with median type showed better performance in rump breadth and circumference of cannon. (3) At the STHS, the CNV was significantly correlated with chest width (p = 0.000) with loss type as the most favorable CNV type. Meanwhile, the best was the loss type, and the lowest was the median. (4) This CNV had no significant effect on the LTHS. So, the CNV of LRRFIP1 was related to the growth traits of these three sheep breeds and it may be used as a molecular marker for sheep.
Collapse
Affiliation(s)
- Yifan Wen
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Eryao Wang
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Xianwei Wang
- Henan Provincial Animal Husbandry General Station, Zhengzhou, Henan, China
| | - Si Qing
- Quality and Safety Inspection and Testing Center for Agricultural and Livestock Products of Haixi Mongolian and Tibetan Autonomous Prefecture, Delingha, Qinghai, China
| | - Buren Chaogetu
- Agricultural and Animal Husbandry Technology Promotion Service Center of Haixi Mongolian and Tibetan Autonomous Prefecture, Delingha, Qinghai, China
| | - Chenglin Wang
- Agricultural and Animal Husbandry Technology Promotion Service Center of Haixi Mongolian and Tibetan Autonomous Prefecture, Delingha, Qinghai, China
| | - Zejun Xu
- Henan Provincial Animal Husbandry General Station, Zhengzhou, Henan, China
| | - Zijing Zhang
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Yongzhen Huang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
5
|
Drastichova Z, Trubacova R, Novotny J. Regulation of phosphosignaling pathways involved in transcription of cell cycle target genes by TRH receptor activation in GH1 cells. Biomed Pharmacother 2023; 168:115830. [PMID: 37931515 DOI: 10.1016/j.biopha.2023.115830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/08/2023] Open
Abstract
Thyrotropin-releasing hormone (TRH) is known to activate several cellular signaling pathway, but the activation of the TRH receptor (TRH-R) has not been reported to regulate gene transcription. The aim of this study was to identify phosphosignaling pathways and phosphoprotein complexes associated with gene transcription in GH1 pituitary cells treated with TRH or its analog, taltirelin (TAL), using label-free bottom-up mass spectrometry-based proteomics. Our detailed analysis provided insight into the mechanism through which TRH-R activation may regulate the transcription of genes related to the cell cycle and proliferation. It involves control of the signaling pathways for β-catenin/Tcf, Notch/RBPJ, p53/p21/Rbl2/E2F, Myc, and YY1/Rb1/E2F through phosphorylation and dephosphorylation of their key components. In many instances, the phosphorylation patterns of differentially phosphorylated phosphoproteins in TRH- or TAL-treated cells were identical or displayed a similar trend in phosphorylation. However, some phosphoproteins, especially components of the Wnt/β-catenin/Tcf and YY1/Rb1/E2F pathways, exhibited different phosphorylation patterns in TRH- and TAL-treated cells. This supports the notion that TRH and TAL may act, at least in part, as biased agonists. Additionally, the deficiency of β-arrestin2 resulted in a reduced number of alterations in phosphorylation, highlighting the critical role of β-arrestin2 in the signal transduction from TRH-R in the plasma membrane to transcription factors in the nucleus.
Collapse
Affiliation(s)
- Zdenka Drastichova
- Department of Physiology, Faculty of Science, Charles University, 128 00 Prague, Czechia
| | - Radka Trubacova
- Department of Physiology, Faculty of Science, Charles University, 128 00 Prague, Czechia; Institute of Physiology, Czech Academy of Sciences, 142 20 Prague, Czechia
| | - Jiri Novotny
- Department of Physiology, Faculty of Science, Charles University, 128 00 Prague, Czechia.
| |
Collapse
|
6
|
Kawasaki S, Ohtsuka H, Sato Y, Douchi D, Sato M, Ariake K, Masuda K, Fukase K, Mizuma M, Nakagawa K, Hayashi H, Morikawa T, Motoi F, Unno M. Silencing of LRRFIP1 enhances the sensitivity of gemcitabine in pancreatic cancer cells by activating JNK/c-Jun signaling. Pancreatology 2021; 21:771-778. [PMID: 33707114 DOI: 10.1016/j.pan.2021.02.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND The epithelial-mesenchymal transition (EMT) in cancer cells has been shown to closely associate with the survival and drug resistance of cancer cells. We recently provided evidence that Wnt signal activator leucine-rich repeat in flightless-1-interacting protein 1 (LRRFIP1) regulates EMT in pancreatic cancer. LRRFIP1 silencing inhibits the translocation of β-catenin to the nucleus, which led to reverse EMT in cancer cells. It was suggested that LRRFIP1 was implicated in gemcitabine sensitivity by regulating EMT signaling. METHODS Gemcitabine chemosensitivity was investigated in LRRFIP1-knockdown pancreatic cancer cells (PANC-1 and MIA Paca-2). In addition, the effects of LRRFIP1 knockdown on JNK/SAPK (stress activated-protein kinase) signaling and apoptosis were evaluated. RESULTS LRRFIP1 silencing accelerates gemcitabine-induced caspase activity and cell death in pancreatic cancer cells. It was also revealed that gemcitabine-induced phosphorylation of c-Jun N-terminal kinase (JNK) and c-Jun were increased in LRRFIP1 knockdown cells. The activation of JNK/c-Jun in LRRFIP1-knockdown cells was significantly diminished by the inhibition of Rac activity. It was confirmed that the acquisition of gemcitabine sensitivity by LRRFIP1 silencing largely depends on the stimulation of JNK/SAPK (stress activated-protein kinase) signaling. CONCLUSIONS Our findings suggest that reversing EMT and transient activation of JNK might be essential for the gemcitabine sensitivity in LRRFIP1 knockdown pancreatic cancer cells. Our discoveries highlight the potential role of LRRFIP1 in the chemosensitivity related to the regulation of EMT signaling.
Collapse
Affiliation(s)
- Shuhei Kawasaki
- Department of Surgery, Tohoku University Graduate School of Medicine, Japan
| | - Hideo Ohtsuka
- Department of Surgery, Tohoku University Graduate School of Medicine, Japan.
| | - Yoshihiro Sato
- Department of Surgery, Tohoku University Graduate School of Medicine, Japan
| | - Daisuke Douchi
- Department of Surgery, Tohoku University Graduate School of Medicine, Japan
| | - Masaki Sato
- Department of Surgery, Tohoku University Graduate School of Medicine, Japan
| | - Kyohei Ariake
- Department of Surgery, Tohoku University Graduate School of Medicine, Japan
| | - Kunihiro Masuda
- Department of Surgery, Tohoku University Graduate School of Medicine, Japan
| | - Koji Fukase
- Department of Surgery, Tohoku University Graduate School of Medicine, Japan
| | - Masamichi Mizuma
- Department of Surgery, Tohoku University Graduate School of Medicine, Japan
| | - Kei Nakagawa
- Department of Surgery, Tohoku University Graduate School of Medicine, Japan
| | - Hiroki Hayashi
- Department of Surgery, Tohoku University Graduate School of Medicine, Japan
| | - Takanori Morikawa
- Department of Surgery, Tohoku University Graduate School of Medicine, Japan
| | - Fuyuhiko Motoi
- Department of Surgery, Tohoku University Graduate School of Medicine, Japan
| | - Michiaki Unno
- Department of Surgery, Tohoku University Graduate School of Medicine, Japan
| |
Collapse
|
7
|
Strudwick XL, Cowin AJ. Multifunctional Roles of the Actin-Binding Protein Flightless I in Inflammation, Cancer and Wound Healing. Front Cell Dev Biol 2020; 8:603508. [PMID: 33330501 PMCID: PMC7732498 DOI: 10.3389/fcell.2020.603508] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 10/30/2020] [Indexed: 11/20/2022] Open
Abstract
Flightless I is an actin-binding member of the gelsolin family of actin-remodeling proteins that inhibits actin polymerization but does not possess actin severing ability. Flightless I functions as a regulator of many cellular processes including proliferation, differentiation, apoptosis, and migration all of which are important for many physiological processes including wound repair, cancer progression and inflammation. More than simply facilitating cytoskeletal rearrangements, Flightless I has other important roles in the regulation of gene transcription within the nucleus where it interacts with nuclear hormone receptors to modulate cellular activities. In conjunction with key binding partners Leucine rich repeat in the Flightless I interaction proteins (LRRFIP)1/2, Flightless I acts both synergistically and competitively to regulate a wide range of cellular signaling including interacting with two of the most important inflammatory pathways, the NLRP3 inflammasome and the MyD88-TLR4 pathways. In this review we outline the current knowledge about this important cytoskeletal protein and describe its many functions across a range of health conditions and pathologies. We provide perspectives for future development of Flightless I as a potential target for clinical translation and insights into potential therapeutic approaches to manipulate Flightless I functions.
Collapse
Affiliation(s)
- Xanthe L Strudwick
- Regenerative Medicine, Future Industries Institute, University of South Australia, Mawson Lakes, SA, Australia
| | - Allison J Cowin
- Regenerative Medicine, Future Industries Institute, University of South Australia, Mawson Lakes, SA, Australia
| |
Collapse
|
8
|
Ma Y, Ren Y, Guan J. Knockdown of GC binding factor 2 by RNA interference inhibits invasion and migration of vascular smooth muscle cells. Mol Med Rep 2019; 20:1781-1789. [PMID: 31257544 PMCID: PMC6625445 DOI: 10.3892/mmr.2019.10410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 05/17/2019] [Indexed: 11/05/2022] Open
Abstract
GC binding factor 2 (GCF2) is a transcriptional repressor that inhibits the transcription of GC‑rich promoters, thereby regulating biological processes, including proliferation. However, the role of GCF2 in vascular smooth muscle cells (VSMCs) remains unclear. The level of α‑smooth muscle (α‑SM) actin was determined by immunofluorescence. Cell viability, migration and invasion were analyzed using Cell Counting Kit‑8, wound healing and Transwell assays, respectively. Apoptosis and cell cycle progression were determined using flow cytometry. The expressions of Bcl‑2, Bax, cleaved caspase‑3, cyclin E, CDK2 and the CDK inhibitor p21 were determined by reverse transcription‑quantitative (RT‑q)PCR and western blot analysis. RT‑qPCR was performed to analyze the levels of GCF2 and western blot analysis was conducted to determine the phosphorylation levels of PI3K and AKT. α‑SM actin was found to be expressed in VSMCs. Cell viability, migration and invasion were inhibited by small interfering (si)RNA targeting GCF2. Changes in the expression levels of Bcl‑2, Bax and cleaved caspase‑3 showed that the pro‑apoptotic capacity of the cells was increased by siGCF2. Cell cycle arrest in the G0/G1 phase was induced by siGCF2, which was accompanied by changes in the levels of cyclin E, CDK2 and p21. Furthermore, phosphorylation of PI3K and AKT was suppressed by siGCF2. However, the inhibitory effects of siGCF2 on cell viability, migration and invasion were increased by insulin‑like growth factor 1, which is a specific agonist of AKT. The anti‑proliferative activity of siGCF2 may be associated with the PI3K/AKT pathway in VSMCs.
Collapse
Affiliation(s)
- Ying Ma
- Qingdao University, Qingdao, Shandong 266073, P.R. China
| | - Yongqiang Ren
- Department of Cardiology, Qingdao Municipal Hospital (Group), Qingdao, Shandong 266034, P.R. China
| | - Jun Guan
- Department of Cardiology, Qingdao Municipal Hospital (Group), Qingdao, Shandong 266034, P.R. China
| |
Collapse
|
9
|
Takimoto M. Multidisciplinary Roles of LRRFIP1/GCF2 in Human Biological Systems and Diseases. Cells 2019; 8:cells8020108. [PMID: 30709060 PMCID: PMC6406849 DOI: 10.3390/cells8020108] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/21/2019] [Accepted: 01/27/2019] [Indexed: 01/28/2023] Open
Abstract
Leucine Rich Repeat of Flightless-1 Interacting Protein 1/GC-binding factor 2 (LRRFIP1/GCF2) cDNA was cloned for a transcriptional repressor GCF2, which bound sequence-specifically to a GC-rich element of epidermal growth factor receptor (EGFR) gene and repressed its promotor. LRRFIP1/GCF2 was also cloned as a double stranded RNA (dsRNA)-binding protein to trans-activation responsive region (TAR) RNA of Human Immunodeficiency Virus-1 (HIV-1), termed as TAR RNA interacting protein (TRIP), and as a binding protein to the Leucine Rich Repeat (LRR) of Flightless-1(Fli-1), termed as Flightless-1 LRR associated protein 1 (FLAP1) and LRR domain of Flightless-1 interacting Protein 1 (LRRFIP1). Subsequent functional studies have revealed that LRRFIP1/GCF2 played multiple roles in the regulation of diverse biological systems and processes, such as in immune response to microorganisms and auto-immunity, remodeling of cytoskeletal system, signal transduction pathways, and transcriptional regulations of genes. Dysregulations of LRRFIP1/GCF2 have been implicated in the causes of several experimental and clinico-pathological states and the responses to them, such as autoimmune diseases, excitotoxicity after stroke, thrombosis formation, inflammation and obesity, the wound healing process, and in cancers. LRRFIP1/GCF2 is a bioregulator in multidisciplinary systems of the human body and its dysregulation can cause diverse human diseases.
Collapse
Affiliation(s)
- Masato Takimoto
- Institute for Genetic Medicine, Hokkaido University, Hokkaido 060-0815, Japan.
| |
Collapse
|
10
|
Labbé P, Faure E, Lecointe S, Le Scouarnec S, Kyndt F, Marrec M, Le Tourneau T, Offmann B, Duplaà C, Zaffran S, Schott JJ, Merot J. The alternatively spliced LRRFIP1 Isoform-1 is a key regulator of the Wnt/β-catenin transcription pathway. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:1142-1152. [PMID: 28322931 DOI: 10.1016/j.bbamcr.2017.03.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 03/15/2017] [Accepted: 03/17/2017] [Indexed: 01/22/2023]
Abstract
The GC-rich Binding Factor 2/Leucine Rich Repeat in the Flightless 1 Interaction Protein 1 gene (GCF2/LRRFIP1) is predicted to be alternatively spliced in five different isoforms. Although important peptide sequence differences are expected to result from this alternative splicing, to date, only the gene transcription regulator properties of LRRFIP1-Iso5 were unveiled. Based on molecular, cellular and biochemical data, we show here that the five isoforms define two molecular entities with different expression profiles in human tissues, subcellular localizations, oligomerization properties and transcription enhancer properties of the canonical Wnt pathway. We demonstrated that LRRFIP1-Iso3, -4 and -5, which share over 80% sequence identity, are primarily located in the cell cytoplasm and form homo and hetero-multimers between each other. In contrast, LRRFIP1-Iso1 and -2 are primarily located in the cell nucleus in part thanks to their shared C-terminal domain. Furthermore, we showed that LRRFIP1-Iso1 is preferentially expressed in the myocardium and skeletal muscle. Using the in vitro Topflash reporter assay we revealed that among LRRFIP1 isoforms, LRRFIP1-Iso1 is the strongest enhancer of the β-catenin Wnt canonical transcription pathway thanks to a specific N-terminal domain harboring two critical tryptophan residues (W76, 82). In addition, we showed that the Wnt enhancer properties of LRRFIP1-Iso1 depend on its homo-dimerisation which is governed by its specific coiled coil domain. Together our study identified LRRFIP1-Iso1 as a critical regulator of the Wnt canonical pathway with a potential role in myocyte differentiation and myogenesis.
Collapse
Affiliation(s)
- Pauline Labbé
- l'institut du thorax, INSERM, CNRS, UNIV Nantes, Nantes, France
| | - Emilie Faure
- Aix Marseille Univ, INSERM, GMGF, Marseille, France
| | | | | | | | | | | | | | - Cécile Duplaà
- INSERM, Biology of Cardiovascular Diseases, U1034, F-33600 Pessac, France
| | | | - Jean Jacques Schott
- l'institut du thorax, INSERM, CNRS, UNIV Nantes, Nantes, France; CHU Nantes, Nantes, France
| | - Jean Merot
- l'institut du thorax, INSERM, CNRS, UNIV Nantes, Nantes, France.
| |
Collapse
|
11
|
Gasser S, Zhang WYL, Tan NYJ, Tripathi S, Suter MA, Chew ZH, Khatoo M, Ngeow J, Cheung FSG. Sensing of dangerous DNA. Mech Ageing Dev 2016; 165:33-46. [PMID: 27614000 DOI: 10.1016/j.mad.2016.09.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 09/02/2016] [Accepted: 09/02/2016] [Indexed: 12/19/2022]
Abstract
The presence of damaged and microbial DNA can pose a threat to the survival of organisms. Cells express various sensors that recognize specific aspects of such potentially dangerous DNA. Recognition of damaged or microbial DNA by sensors induces cellular processes that are important for DNA repair and inflammation. Here, we review recent evidence that the cellular response to DNA damage and microbial DNA are tightly intertwined. We also discuss insights into the parameters that enable DNA sensors to distinguish damaged and microbial DNA from DNA present in healthy cells.
Collapse
Affiliation(s)
- Stephan Gasser
- Immunology Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore 117456, Singapore; NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, 117597 Singapore.
| | - Wendy Y L Zhang
- Immunology Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore 117456, Singapore
| | - Nikki Yi Jie Tan
- Immunology Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore 117456, Singapore
| | - Shubhita Tripathi
- Immunology Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore 117456, Singapore
| | - Manuel A Suter
- Immunology Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore 117456, Singapore
| | - Zhi Huan Chew
- Immunology Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore 117456, Singapore; NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, 117597 Singapore
| | - Muznah Khatoo
- Immunology Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore 117456, Singapore
| | - Joanne Ngeow
- Yong Loo Lin School of Medicine, National University of Singapore, 117597 Singapore; Divsion of Medical Oncology, National Cancer Centre Singapore, 11 Hospital Drive, 169610, Singapore; Oncology Academic Clinical Program, Duke-NUS Graduate Medical School, 8 College Road, 169857, Singapore
| | - Florence S G Cheung
- Immunology Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore 117456, Singapore.
| |
Collapse
|
12
|
Douchi D, Ohtsuka H, Ariake K, Masuda K, Kawasaki S, Kawaguchi K, Fukase K, Oikawa M, Motoi F, Naitoh T, Katayose Y, Egawa S, Unno M. Silencing of LRRFIP1 reverses the epithelial-mesenchymal transition via inhibition of the Wnt/β-catenin signaling pathway. Cancer Lett 2015; 365:132-40. [PMID: 26047573 DOI: 10.1016/j.canlet.2015.05.023] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 05/28/2015] [Accepted: 05/29/2015] [Indexed: 11/24/2022]
Abstract
The canonical Wnt/β-catenin signaling pathway has been shown to promote the epithelial-mesenchymal transition (EMT), which is a crucial process in multiple embryonic developmental processes and the progression of carcinomas. We recently provided evidence that leucine-rich repeat flightless-1-interacting protein 1 (LRRFIP1) promotes cancer metastasis and invasion. In the present study, we identified the signaling elements targeted by LRRFIP1 for promotion of the EMT in pancreatic and lung cancer. LRRFIP1 silencing reversed the EMT, as shown by increased expression of E-cadherin (an epithelial marker) and decreased expression of vimentin (a mesenchymal marker). Silencing of LRRFIP1 up-regulated phosphorylation of β-catenin and decreased its nuclear localization by targeting the β-catenin destruction complex. The expression of β-catenin and E-cadherin in the plasma membrane fraction was increased in LRRFIP1 silenced cancer cells, and the migration and invasion capabilities were strongly inhibited. In addition, this protein was highly expressed at the invasion front of malignant tissue collected from pancreatic cancer patients. Consequently, our data strongly suggested that LRRFIP1 played an important role in the invasion of carcinoma cells. Our data provide experimental evidence that LRRFIP1 is an attractive candidate for targeted therapy in human cancers.
Collapse
Affiliation(s)
- Daisuke Douchi
- Division of Gastroenterological Surgery, Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Hideo Ohtsuka
- Division of Gastroenterological Surgery, Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan.
| | - Kyohei Ariake
- Division of Gastroenterological Surgery, Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Kunihiro Masuda
- Division of Gastroenterological Surgery, Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Shuhei Kawasaki
- Division of Gastroenterological Surgery, Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Kei Kawaguchi
- Division of Gastroenterological Surgery, Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Koji Fukase
- Division of Gastroenterological Surgery, Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Masaya Oikawa
- Division of Gastroenterological Surgery, Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Fuyuhiko Motoi
- Division of Gastroenterological Surgery, Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Takeshi Naitoh
- Division of Gastroenterological Surgery, Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Yu Katayose
- Division of Gastroenterological Surgery, Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan; Division of Integrated Surgery and Oncology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Shinichi Egawa
- Division of Gastroenterological Surgery, Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Michiaki Unno
- Division of Gastroenterological Surgery, Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan; Division of Integrated Surgery and Oncology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| |
Collapse
|
13
|
Circulating tumor cells exhibit a biologically aggressive cancer phenotype accompanied by selective resistance to chemotherapy. Cancer Lett 2014; 325:99-107. [PMID: 25016063 DOI: 10.1016/j.canlet.2012.06.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 05/31/2012] [Accepted: 06/24/2012] [Indexed: 12/14/2022]
Abstract
With prostate cancer (PCa), circulating tumor cells (CTCs) and disseminated tumor cells (DTCs) portend a poor clinical prognosis. Their unknown biology precludes rational therapeutic design. We demonstrate that CTC and DTC cell lines, established from mice bearing human PCa orthotopic implants, exhibit increased cellular invasion in vitro, increased metastasis in mice, and express increased epithelial to mesenchymal transition biomarkers. Further, they are selectively resistant to growth inhibition by mitoxantrone-like agents. These findings demonstrate that CTC formation is accompanied by phenotypic progression without obligate reversion. Their increased metastatic potential, selective therapeutic resistance, and differential expression of potential therapeutic targets provide a rational basis to test further interventions.
Collapse
|
14
|
Li JP, Cao NX, Jiang RT, He SJ, Huang TM, Wu B, Chen DF, Ma P, Chen L, Zhou SF, Xie XX, Luo GR. Knockdown of GCF2/LRRFIP1 by RNAi Causes Cell Growth Inhibition and Increased Apoptosis in Human Hepatoma HepG2 Cells. Asian Pac J Cancer Prev 2014; 15:2753-8. [DOI: 10.7314/apjcp.2014.15.6.2753] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
15
|
Gubern C, Camós S, Hurtado O, Rodríguez R, Romera VG, Sobrado M, Cañadas R, Moro MA, Lizasoain I, Serena J, Mallolas J, Castellanos M. Characterization of Gcf2/Lrrfip1 in experimental cerebral ischemia and its role as a modulator of Akt, mTOR and β-catenin signaling pathways. Neuroscience 2014; 268:48-65. [PMID: 24637094 DOI: 10.1016/j.neuroscience.2014.02.051] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Revised: 02/03/2014] [Accepted: 02/27/2014] [Indexed: 01/27/2023]
Abstract
Leucine-rich repeat in Flightless-1 interaction protein 1 (Lrrfip1) is an up-regulated protein after cerebral ischemia whose precise role in the brain both in healthy and ischemic conditions is unclear. Different Lrrfip1 isoforms with distinct roles have been reported in human and mouse species. The present study aimed to analyze the Lrrfip1 transcriptional variants expressed in rat cortex, to characterize their expression patterns and subcellular location after ischemia, and to define their putative role in the brain. Five transcripts were identified and three of them (Lrrfip1, CRA_g and CRA_a' (Fli-I leucine-rich repeat associated protein 1 - Flap-1)) were analyzed by quantitative real-time polymerase chain reaction (qPCR). All the transcripts were up-regulated and showed differential expression patterns after in vivo and in vitro ischemia models. The main isoform, Lrrfip1, was found to be up-regulated from the acute to the late phases of ischemia in the cytoplasm of neurons and astrocytes of the peri-infarct area. This study demonstrates that Lrrfip1 activates β-catenin, Akt, and mammalian target of rapamycin (mTOR) proteins in astrocytes and positively regulates the expression of the excitatory amino acid transporter subtype 2 (GLT-1). Our findings point to Lrrfip1 as a key brain protein that regulates pro-survival pathways and proteins and encourages further studies to elucidate its role in cerebral ischemia as a potential target to prevent brain damage and promote functional recovery after stroke.
Collapse
Affiliation(s)
- C Gubern
- Grup de Recerca Cerebrovascular, Servei de Neurologia, Institut d'Investigació Biomèdica de Girona (IdIBGi) Dr. Josep Trueta, Hospital Universitari de Girona Dr. Josep Trueta, Avenida de França s/n, 17007 Girona, Spain.
| | - S Camós
- Grup de Recerca Cerebrovascular, Servei de Neurologia, Institut d'Investigació Biomèdica de Girona (IdIBGi) Dr. Josep Trueta, Hospital Universitari de Girona Dr. Josep Trueta, Avenida de França s/n, 17007 Girona, Spain
| | - O Hurtado
- Unidad de Investigación Neurovascular, Departamento de Farmacología, Facultad de Medicina, Universidad Complutense, Avenida Complutense s/n, 28040 Madrid, Spain
| | - R Rodríguez
- Grup de Recerca Cerebrovascular, Servei de Neurologia, Institut d'Investigació Biomèdica de Girona (IdIBGi) Dr. Josep Trueta, Hospital Universitari de Girona Dr. Josep Trueta, Avenida de França s/n, 17007 Girona, Spain
| | - V G Romera
- Unidad de Investigación Neurovascular, Departamento de Farmacología, Facultad de Medicina, Universidad Complutense, Avenida Complutense s/n, 28040 Madrid, Spain
| | - M Sobrado
- Unidad de Investigación Neurovascular, Departamento de Farmacología, Facultad de Medicina, Universidad Complutense, Avenida Complutense s/n, 28040 Madrid, Spain
| | - R Cañadas
- Unidad de Investigación Neurovascular, Departamento de Farmacología, Facultad de Medicina, Universidad Complutense, Avenida Complutense s/n, 28040 Madrid, Spain
| | - M A Moro
- Unidad de Investigación Neurovascular, Departamento de Farmacología, Facultad de Medicina, Universidad Complutense, Avenida Complutense s/n, 28040 Madrid, Spain
| | - I Lizasoain
- Unidad de Investigación Neurovascular, Departamento de Farmacología, Facultad de Medicina, Universidad Complutense, Avenida Complutense s/n, 28040 Madrid, Spain
| | - J Serena
- Grup de Recerca Cerebrovascular, Servei de Neurologia, Institut d'Investigació Biomèdica de Girona (IdIBGi) Dr. Josep Trueta, Hospital Universitari de Girona Dr. Josep Trueta, Avenida de França s/n, 17007 Girona, Spain
| | - J Mallolas
- Grup de Recerca Cerebrovascular, Servei de Neurologia, Institut d'Investigació Biomèdica de Girona (IdIBGi) Dr. Josep Trueta, Hospital Universitari de Girona Dr. Josep Trueta, Avenida de França s/n, 17007 Girona, Spain.
| | - M Castellanos
- Grup de Recerca Cerebrovascular, Servei de Neurologia, Institut d'Investigació Biomèdica de Girona (IdIBGi) Dr. Josep Trueta, Hospital Universitari de Girona Dr. Josep Trueta, Avenida de França s/n, 17007 Girona, Spain
| |
Collapse
|
16
|
Shi L, Song L, Fitzgerald M, Maurer K, Bagashev A, Sullivan KE. Noncoding RNAs and LRRFIP1 regulate TNF expression. THE JOURNAL OF IMMUNOLOGY 2014; 192:3057-67. [PMID: 24567534 DOI: 10.4049/jimmunol.1302063] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Noncoding RNAs have been implicated in the regulation of expression of numerous genes; however, the mechanism is not fully understood. We identified bidirectional, long noncoding RNAs upstream of the TNF gene using five different methods. They arose in a region where the repressors LRRFIP1, EZH2, and SUZ12 were demonstrated to bind, suggesting a role in repression. The noncoding RNAs were polyadenylated, capped, and chromatin associated. Knockdown of the noncoding RNAs was associated with derepression of TNF mRNA and diminished binding of LRRFIP1 to both RNA targets and chromatin. Overexpression of the noncoding RNAs led to diminished expression of TNF and recruitment of repressor proteins to the locus. One repressor protein, LRRFIP1, bound directly to the noncoding RNAs. These data place the noncoding RNAs upstream of TNF gene as central to the transcriptional regulation. They appear to serve as a platform for the assembly of a repressive complex.
Collapse
Affiliation(s)
- Lihua Shi
- Division of Allergy Immunology, Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | | | | | | | | | | |
Collapse
|
17
|
Shen DW, Pouliot LM, Gillet JP, Ma W, Johnson AC, Hall MD, Gottesman MM. The transcription factor GCF2 is an upstream repressor of the small GTPAse RhoA, regulating membrane protein trafficking, sensitivity to doxorubicin, and resistance to cisplatin. Mol Pharm 2012; 9:1822-33. [PMID: 22571463 PMCID: PMC3367311 DOI: 10.1021/mp300153z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Our aim was to explore the involvement of the transcriptional suppressor GCF2 in silencing RhoA, disorganization of the cytoskeleton, mislocalization of MRP1, and sensitivity to anticancer agents as an upstream gene target in cancer therapy. Increased expression of GCF2 was found in human cisplatin-resistant cells, and overexpression in GCF2-transfected cells results in loss of RhoA expression and disruption of the actin/filamin network. In consequence, the membrane transporter MRP1 was internalized from the cell surface into the cytoplasm, rendering cells sensitive to doxorubicin by more than 10-fold due to increased accumulation of doxorubicin in the cells. The GCF2 transfectants also showed reduced accumulation of cisplatin and increased resistance. siRNA targeted to GCF2 suppressed the expression of GCF2 in cisplatin-resistant cells, reactivated RhoA expression, and restored the fine structure of actin microfilaments. MRP1 was also relocated to the cell surface. siRNA targeted to RhoA increased resistance 3-fold in KB-3-1 and KB-CP.5 cells. These data for the first time demonstrate a novel complex regulatory pathway downstream from GCF2 involving the small GTPase RhoA, actin/filamin dynamics, and membrane protein trafficking. This pathway mediates diverse responses to cytotoxic compounds, and also provides a molecular basis for further investigation into the pleiotropic resistance mechanism at play in cisplatin-resistant cells.
Collapse
Affiliation(s)
- Ding-Wu Shen
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Lynn M. Pouliot
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Jean-Pierre Gillet
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Wenting Ma
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Alfred C. Johnson
- Office of the Director, National Institutes of Health, Bethesda, MD 20892
| | - Matthew D. Hall
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Michael M. Gottesman
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|