1
|
Hong JY, Oh HH, Park SY, Park YL, Cho SB, Joo YE. Expression of Apurinic/Apyrimidinic Endonuclease 1 in Colorectal Cancer and its Relation to Tumor Progression and Prognosis. In Vivo 2023; 37:2070-2077. [PMID: 37652525 PMCID: PMC10500501 DOI: 10.21873/invivo.13304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 09/02/2023]
Abstract
BACKGROUND/AIM Over-expression of apurinic/apyrimidinic endonuclease 1 (APE1) has been demonstrated to be associated with cancer progression, chemo- and radioresistance in various cancers. This study examined the expression of APE1 and its relation to tumor progression and prognosis in patients with colorectal cancer (CRC). MATERIALS AND METHODS We investigated 193 patients with CRC who received curative surgery for whom formalin-fixed and paraffin-embedded blocks were available, and long-term tumor-specific survival rate analysis was possible. The expression of APE1 was investigated by reverse transcription-polymerase chain reaction, western blotting, and immunohistochemistry in CRC and lymph node tissues. The apoptosis, proliferation, and angiogenesis of CRC cells were determined using terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling assay, and immunohistochemical staining for Ki-67 and CD34 antibodies. RESULTS APE1 was over-expressed in CRC and metastatic lymph node tissues compared with normal colorectal mucosa and non-metastatic lymph node tissues. Over-expression of APE1 was significantly associated with advanced stage, lymphovascular invasion, perineural invasion, deeper tumor invasion, lymph node metastasis, distant metastasis, and poor survival. Multivariate analysis demonstrated that APE1, perineural invasion, and lymph node metastasis were the independent prognostic factors associated with overall survival. The mean Ki-67 labeling index value of APE1-positive tumors was significantly higher than that of APE1-negative tumors. However, there was no significant association between APE1 expression and the apoptotic index or microvessel density. CONCLUSION Over-expression of APE1 is significantly associated with tumor progression and poor survival in patients with CRC. Therefore, APE1 may be a novel biomarker and present a potential prognostic factor for CRC.
Collapse
Affiliation(s)
- Ji-Yun Hong
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Hyung-Hoon Oh
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Sun-Young Park
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Young-Lan Park
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Sung-Bum Cho
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Young-Eun Joo
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
| |
Collapse
|
2
|
Neganova ME, Aleksandrova YR, Sukocheva OA, Klochkov SG. Benefits and limitations of nanomedicine treatment of brain cancers and age-dependent neurodegenerative disorders. Semin Cancer Biol 2022; 86:805-833. [PMID: 35779712 DOI: 10.1016/j.semcancer.2022.06.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/25/2022] [Accepted: 06/25/2022] [Indexed: 02/07/2023]
Abstract
The treatment of central nervous system (CNS) malignancies, including brain cancers, is limited by a number of obstructions, including the blood-brain barrier (BBB), the heterogeneity and high invasiveness of tumors, the inaccessibility of tissues for early diagnosis and effective surgery, and anti-cancer drug resistance. Therapies employing nanomedicine have been shown to facilitate drug penetration across the BBB and maintain biodistribution and accumulation of therapeutic agents at the desired target site. The application of lipid-, polymer-, or metal-based nanocarriers represents an advanced drug delivery system for a growing group of anti-cancer chemicals. The nanocarrier surface is designed to contain an active ligand (cancer cell marker or antibody)-binding structure which can be modified to target specific cancer cells. Glioblastoma, ependymoma, neuroblastoma, medulloblastoma, and primary CNS lymphomas were recently targeted by easily absorbed nanocarriers. The metal- (such as transferrin drug-loaded systems), polymer- (nanocapsules and nanospheres), or lipid- (such as sulfatide-containing nanoliposomes)-based nano-vehicles were loaded with apoptosis- and/or ferroptosis-stimulating agents and demonstrated promising anti-cancer effects. This review aims to discuss effective nanomedicine approaches designed to overcome the current limitations in the therapy of brain cancers and age-dependent neurodegenerative disorders. To accent current obstacles for successful CNS-based cancer therapy, we discuss nanomedicine perspectives and limitations of nanodrug use associated with the specificity of nervous tissue characteristics and the effects nanocarriers have on cognition.
Collapse
Affiliation(s)
- Margarita E Neganova
- Institute of Physiologically Active Compounds of the Russian Academy of Sciences, 1, Severnii pr., Chernogolovka, 142432, Russia
| | - Yulia R Aleksandrova
- Institute of Physiologically Active Compounds of the Russian Academy of Sciences, 1, Severnii pr., Chernogolovka, 142432, Russia
| | - Olga A Sukocheva
- School of Health Sciences, Flinders University of South Australia, Bedford Park, SA 5042, Australia.
| | - Sergey G Klochkov
- Institute of Physiologically Active Compounds of the Russian Academy of Sciences, 1, Severnii pr., Chernogolovka, 142432, Russia
| |
Collapse
|
3
|
Saleh AH, Samuel N, Juraschka K, Saleh MH, Taylor MD, Fehlings MG. The biology of ependymomas and emerging novel therapies. Nat Rev Cancer 2022; 22:208-222. [PMID: 35031778 DOI: 10.1038/s41568-021-00433-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/01/2021] [Indexed: 12/20/2022]
Abstract
Ependymomas are rare central nervous system tumours that can arise in the brain's supratentorial region or posterior fossa, or in the spinal cord. In 1924, Percival Bailey published the first comprehensive study of ependymomas. Since then, and especially over the past 10 years, our understanding of ependymomas has grown exponentially. In this Review, we discuss the evolution in knowledge regarding ependymoma subgroups and the resultant clinical implications. We also discuss key oncogenic and tumour suppressor signalling pathways that regulate tumour growth, the role of epigenetic dysregulation in the biology of ependymomas, and the various biological features of ependymoma tumorigenesis, including cell immortalization, stem cell-like properties, the tumour microenvironment and metastasis. We further review the limitations of current therapies such as relapse, radiation-induced cognitive deficits and chemotherapy resistance. Finally, we highlight next-generation therapies that are actively being explored, including tyrosine kinase inhibitors, telomerase inhibitors, anti-angiogenesis agents and immunotherapy.
Collapse
Affiliation(s)
- Amr H Saleh
- MD Program, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Nardin Samuel
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Kyle Juraschka
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Mohammad H Saleh
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Michael D Taylor
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
- Division of Neurosurgery, Department of Surgery, The Hospital for Sick Children, Toronto, ON, Canada
| | - Michael G Fehlings
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada.
- Division of Neurosurgery, University Health Network, Toronto Western Hospital, Toronto, ON, Canada.
- Krembil Neuroscience Centre, University Health Network, Toronto, ON, Canada.
| |
Collapse
|
4
|
Significance of base excision repair to human health. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 364:163-193. [PMID: 34507783 DOI: 10.1016/bs.ircmb.2021.05.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Oxidative and alkylating DNA damage occurs under normal physiological conditions and exogenous exposure to DNA damaging agents. To counteract DNA base damage, cells have evolved several defense mechanisms that act at different levels to prevent or repair DNA base damage. Cells combat genomic lesions like these including base modifications, abasic sites, as well as single-strand breaks, via the base excision repair (BER) pathway. In general, the core BER process involves well-coordinated five-step reactions to correct DNA base damage. In this review, we will uncover the current understanding of BER mechanisms to maintain genomic stability and the biological consequences of its failure due to repair gene mutations. The malfunction of BER can often lead to BER intermediate accumulation, which is genotoxic and can lead to different types of human disease. Finally, we will address the use of BER intermediates for targeted cancer therapy.
Collapse
|
5
|
Long K, Gu L, Li L, Zhang Z, Li E, Zhang Y, He L, Pan F, Guo Z, Hu Z. Small-molecule inhibition of APE1 induces apoptosis, pyroptosis, and necroptosis in non-small cell lung cancer. Cell Death Dis 2021; 12:503. [PMID: 34006852 PMCID: PMC8131371 DOI: 10.1038/s41419-021-03804-7] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 02/07/2023]
Abstract
Apurinic/apyrimidinic endonuclease 1 (APE1) plays a critical role in the base excision repair (BER) pathway, which is responsible for the excision of apurinic sites (AP sites). In non-small cell lung cancer (NSCLC), APE1 is highly expressed and associated with poor patient prognosis. The suppression of APE1 could lead to the accumulation of unrepaired DNA damage in cells. Therefore, APE1 is viewed as an important marker of malignant tumors and could serve as a potent target for the development of antitumor drugs. In this study, we performed a high-throughput virtual screening of a small-molecule library using the three-dimensional structure of APE1 protein. Using the AP site cleavage assay and a cell survival assay, we identified a small molecular compound, NO.0449-0145, to act as an APE1 inhibitor. Treatment with NO.0449-0145 induced DNA damage, apoptosis, pyroptosis, and necroptosis in the NSCLC cell lines A549 and NCI-H460. This inhibitor was also able to impede cancer progression in an NCI-H460 mouse model. Moreover, NO.0449-0145 overcame both cisplatin- and erlotinib-resistance in NSCLC cell lines. These findings underscore the importance of APE1 as a therapeutic target in NSCLC and offer a paradigm for the development of small-molecule drugs that target key DNA repair proteins for the treatment of NSCLC and other cancers.
Collapse
Affiliation(s)
- Kaili Long
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, 210023, Nanjing, China
| | - Lili Gu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, 210023, Nanjing, China
| | - Lulu Li
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, 210023, Nanjing, China
| | - Ziyu Zhang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, 210023, Nanjing, China
| | - Enjie Li
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, 210023, Nanjing, China
| | - Yilan Zhang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, 210023, Nanjing, China
| | - Lingfeng He
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, 210023, Nanjing, China
| | - Feiyan Pan
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, 210023, Nanjing, China
| | - Zhigang Guo
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, 210023, Nanjing, China.
| | - Zhigang Hu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, 210023, Nanjing, China.
| |
Collapse
|
6
|
Lin G, Revia RA, Zhang M. Inorganic Nanomaterial-Mediated Gene Therapy in Combination with Other Antitumor Treatment Modalities. ADVANCED FUNCTIONAL MATERIALS 2021; 31:2007096. [PMID: 34366761 PMCID: PMC8336227 DOI: 10.1002/adfm.202007096] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Indexed: 05/05/2023]
Abstract
Cancer is a genetic disease originating from the accumulation of gene mutations in a cellular subpopulation. Although many therapeutic approaches have been developed to treat cancer, recent studies have revealed an irrefutable challenge that tumors evolve defenses against some therapies. Gene therapy may prove to be the ultimate panacea for cancer by correcting the fundamental genetic errors in tumors. The engineering of nanoscale inorganic carriers of cancer therapeutics has shown promising results in the efficacious and safe delivery of nucleic acids to treat oncological diseases in small-animal models. When these nanocarriers are used for co-delivery of gene therapeutics along with auxiliary treatments, the synergistic combination of therapies often leads to an amplified health benefit. In this review, an overview of the inorganic nanomaterials developed for combinatorial therapies of gene and other treatment modalities is presented. First, the main principles of using nucleic acids as therapeutics, inorganic nanocarriers for medical applications and delivery of gene/drug payloads are introduced. Next, the utility of recently developed inorganic nanomaterials in different combinations of gene therapy with each of chemo, immune, hyperthermal, and radio therapy is examined. Finally, current challenges in the clinical translation of inorganic nanomaterial-mediated therapies are presented and outlooks for the field are provided.
Collapse
Affiliation(s)
- Guanyou Lin
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA
| | - Richard A Revia
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA
| | - Miqin Zhang
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
7
|
Lin X, Song Y, Tian F, Chen X, Yin K. The role of pyroptosis in lung cancer and compounds regulated pyroptosis of lung cancer cells. J Cancer Res Ther 2021; 17:1596-1602. [DOI: 10.4103/jcrt.jcrt_614_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
8
|
Liu Y, Zhang Z, Li Q, Zhang L, Cheng Y, Zhong Z. Mitochondrial APE1 promotes cisplatin resistance by downregulating ROS in osteosarcoma. Oncol Rep 2020; 44:499-508. [PMID: 32627008 PMCID: PMC7336412 DOI: 10.3892/or.2020.7633] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 04/22/2020] [Indexed: 01/20/2023] Open
Abstract
Apurinic/apyrimidinic endonuclease 1 (APE1) is a primary nuclear-localized multifunctional protein in osteosarcoma. However, the cytoplasmic localization of APE1 was found to be functional and to increase with cisplatin resistance, yet the molecular mechanism is unknown. In the present study, we explored the cisplatin resistance mechanism in osteosarcoma from the new perspective of APE1 extranuclear biological activity. Using cisplatin-resistant and cisplatin-sensitive osteosarcoma cell lines, we found that mitochondrial APE1 (mtAPE1) was overexpressed in cisplatin-resistant cells but not in sensitive cells. Overexpression of mtAPE1 reduced cisplatin-induced apoptosis, while knockdown of APE1 reversed this phenomenon and caused oxidative DNA damage via overproduction of reactive oxygen species (ROS). We further demonstrated that high mtAPE1 expression could downregulate ROS production by decreasing the phosphorylation of Rac1 (p-Rac1), further promoting cisplatin resistance in osteosarcoma. Our findings suggest that mitochondrial APE1 promotes cisplatin resistance by decreasing ROS generation, which may provide new ideas for researching the molecular mechanism of osteosarcoma chemoresistance and strategies to overcome cisplatin resistance in osteosarcoma.
Collapse
Affiliation(s)
- Yufeng Liu
- Cancer Center, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, P.R. China
| | - Zhimin Zhang
- Cancer Center, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, P.R. China
| | - Qing Li
- Cancer Center, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, P.R. China
| | - Liang Zhang
- Cancer Center, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, P.R. China
| | - Yi Cheng
- Cancer Center, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, P.R. China
| | - Zhaoyang Zhong
- Cancer Center, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, P.R. China
| |
Collapse
|
9
|
Liu Y, Zhang Z, Zhang L, Zhong Z. Cytoplasmic APE1 promotes resistance response in osteosarcoma patients with cisplatin treatment. Cell Biochem Funct 2020; 38:195-203. [PMID: 31930546 DOI: 10.1002/cbf.3461] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 09/02/2019] [Accepted: 10/28/2019] [Indexed: 11/09/2022]
Abstract
Chemotherapy resistance has become a hold back and major clinical challenge in osteosarcoma cancer. The alteration and subcellular distribution of apurinic/apyrimidinic endonuclease 1 (APE1) has been reported to be involved in chemotherapy resistance in many cancers. Here, we report that the cytoplasmic distribution of APE1 plays a key role in the sensitivity of combination platinum chemotherapy in osteosarcoma. Interestingly, the prevalence of cisplatin-induced DNA damage and apoptosis in low cytoplasmic APE1 osteosarcoma cell lines was higher than in high expression of cytoplasmic APE1 cell lines. Overexpression of cytoplasmic APE1 protected the osteosarcoma cells from CDDP-induced apoptosis. In addition, clinical data also show that the level of cytoplasmic APE1 was negatively associated with sensitivity to combination chemotherapy of cisplatin in osteosarcoma patients. Our findings suggest that cytoplasmic APE1 plays a significant role in chemotherapy resistance. This role is a supplement to the extranuclear function of APE1, and cytoplasmic APE1 expression level could be a promising predictor of platinum treatment prognosis for osteosarcoma patients.
Collapse
Affiliation(s)
- Yufeng Liu
- Cancer Center, The Third Affiliated Hospital and Research Institute of Surgery of Army Medical University (Third Military Medical University), Chongqing, PR China
| | - Zhimin Zhang
- Cancer Center, The Third Affiliated Hospital and Research Institute of Surgery of Army Medical University (Third Military Medical University), Chongqing, PR China
| | - Liang Zhang
- Cancer Center, The Third Affiliated Hospital and Research Institute of Surgery of Army Medical University (Third Military Medical University), Chongqing, PR China
| | - Zhaoyang Zhong
- Cancer Center, The Third Affiliated Hospital and Research Institute of Surgery of Army Medical University (Third Military Medical University), Chongqing, PR China
| |
Collapse
|
10
|
Li Q, Wei X, Zhou ZW, Wang SN, Jin H, Chen KJ, Luo J, Westover KD, Wang JM, Wang D, Xu CX, Shan JL. GADD45α sensitizes cervical cancer cells to radiotherapy via increasing cytoplasmic APE1 level. Cell Death Dis 2018; 9:524. [PMID: 29743554 PMCID: PMC5943293 DOI: 10.1038/s41419-018-0452-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 02/26/2018] [Accepted: 02/28/2018] [Indexed: 12/21/2022]
Abstract
Radioresistance remains a major clinical challenge in cervical cancer therapy. However, the mechanism for the development of radioresistance in cervical cancer is unclear. Herein, we determined that growth arrest and DNA-damage-inducible protein 45α (GADD45α) is decreased in radioresistant cervical cancer compared to radiosensitive cancer both in vitro and in vivo. In addition, silencing GADD45α prevents cervical cancer cells from undergoing radiation-induced DNA damage, cell cycle arrest, and apoptosis. More importantly, our data show that the overexpression of GADD45α significantly enhances the radiosensitivity of radioresistant cervical cancer cells. These data show that GADD45α decreases the cytoplasmic distribution of APE1, thereby enhancing the radiosensitivity of cervical cancer cells. Furthermore, we show that GADD45α inhibits the production of nitric oxide (NO), a nuclear APE1 export stimulator, by suppressing both endothelial NO synthase (eNOS) and inducible NO synthase (iNOS) in cervical cancer cells. In conclusion, our findings suggest that decreased GADD45α expression significantly contributes to the development of radioresistance and that ectopic expression of GADD45α sensitizes cervical cancer cells to radiotherapy. GADD45α inhibits the NO-regulated cytoplasmic localization of APE1 through inhibiting eNOS and iNOS, thereby enhancing the radiosensitivity of cervical cancer cells.
Collapse
Affiliation(s)
- Qing Li
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, 400042, China
| | - Xi Wei
- Department of Diagnostic and Therapeutic Ultrasonography, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Zhi-Wei Zhou
- Department of Radiation Oncology and Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Shu-Nan Wang
- Department of Radiology, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, 400042, China
| | - Hua Jin
- Department of Thoracic surgery, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, 400042, China
| | - Kui-Jun Chen
- State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, 400042, China
| | - Jia Luo
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, 400042, China
| | - Kenneth D Westover
- Department of Radiation Oncology and Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jian-Min Wang
- State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, 400042, China
| | - Dong Wang
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, 400042, China
| | - Cheng-Xiong Xu
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, 400042, China.
| | - Jin-Lu Shan
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, 400042, China.
| |
Collapse
|
11
|
Liang ML, Hsieh TH, Liu YR, Chen YW, Lee YY, Chang FC, Lin SC, Huang MC, Donald Ming-Tak H, Wong TT, Yen Y, Yang MH. Significance of cyclin D1 overexpression in progression and radio-resistance of pediatric ependymomas. Oncotarget 2017; 9:2527-2542. [PMID: 29416789 PMCID: PMC5788657 DOI: 10.18632/oncotarget.23509] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 12/13/2017] [Indexed: 11/25/2022] Open
Abstract
Due to the limited efficacy of chemotherapy, the applications of adjuvant irradiation play an important role for ependymoma treatment. However, in the young ages, the resistance of residual and recurrent tumor, and long-term intellectual sequelae remain the major obstacles of radiotherapy. Understanding the mechanism of therapeutic failure caused by radio-resistance is, therefore, crucial in ependymoma treatment. Here we retrospectively analyze clinic-pathological factors in 82 cases of ependymoma less than 20 years old and identify radio-resistant genes through gene expression microarray followed by qRT-PCR validation and immunohistochemistry staining. Thirty-one out of 82 (37.8%) patients are under 3-year-old. The 10 years PFS and OS are 38% and 60%. Gross-total resection is the single significant prognostic factor for longer 10 years PFS and OS in the multivariant analysis (p<0.05). According to the microarray analysis, CCND1 is up-regulated in supratentorial and infratentorial ependymomas and is associated with DNA repair. We demonstrated that 24 primary and 16 recurrent ependymomas were up-regulated, and 5 out of 7 paired samples exhibited higher CCND1 expression in recurrent tumors. We also found RAD51, another DNA repair gene, was up-regulated in supratentorial and infratentorial ependymomas. Knocking down CCND1 reduced cell proliferation and repressed several genes associated with S-phase and DNA repair. Homologous recombination activities of DNA repair were significantly decreased in CCND1-deficient cells while the level of γH2AX was increased after irradiation. In summary, these observations suggest a robust role of CCND1 in regulating cell proliferation and radio-resistance in ependymomas, providing a potential therapeutic target for pediatric ependymomas.
Collapse
Affiliation(s)
- Muh-Lii Liang
- Division of Pediatric Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan.,Institutes of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Tsung-Han Hsieh
- Comprehensive Cancer Center of Taipei Medical University, Taipei Medical University, Taipei, Taiwan.,Joint Biobank, Office of Human Research, Taipei Medical University, Taipei, Taiwan
| | - Yun-Ru Liu
- Comprehensive Cancer Center of Taipei Medical University, Taipei Medical University, Taipei, Taiwan.,Joint Biobank, Office of Human Research, Taipei Medical University, Taipei, Taiwan
| | - Yi-Wei Chen
- Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yi-Yen Lee
- Division of Pediatric Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Feng-Chi Chang
- Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shih-Chieh Lin
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ming-Chao Huang
- Division of Pediatric Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ho Donald Ming-Tak
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Tai-Tong Wong
- Comprehensive Cancer Center of Taipei Medical University, Taipei Medical University, Taipei, Taiwan.,Department of Neurosurgery, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan.,Neuroscience Research Center, Taipei Medical University Hospital, Taipei, Taiwan.,Institutes of Clinical Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yun Yen
- Comprehensive Cancer Center of Taipei Medical University, Taipei Medical University, Taipei, Taiwan.,PhD Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
| | - Muh-Hwa Yang
- Institutes of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan.,Cancer Research Center & Genome Research Center, National Yang-Ming University, Taipei, Taiwan.,Immunity and Inflammation Research Center, National Yang-Ming University, Taipei, Taiwan.,Division of Hematology-Oncology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Genomic Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
12
|
Kievit FM, Wang K, Ozawa T, Tarudji AW, Silber JR, Holland EC, Ellenbogen RG, Zhang M. Nanoparticle-mediated knockdown of DNA repair sensitizes cells to radiotherapy and extends survival in a genetic mouse model of glioblastoma. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2017; 13:2131-2139. [PMID: 28614736 PMCID: PMC6002851 DOI: 10.1016/j.nano.2017.06.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 05/19/2017] [Accepted: 06/04/2017] [Indexed: 12/12/2022]
Abstract
Glioblastoma (GBM) remains incurable, and recurrent tumors rarely respond to standard-of-care radiation and chemo-therapies. Therefore, strategies that enhance the effects of these therapies should provide significant benefits to GBM patients. We have developed a nanoparticle delivery vehicle that can stably bind and protect nucleic acids for specific delivery into brain tumor cells. These nanoparticles can deliver therapeutic siRNAs to sensitize GBM cells to radiotherapy and improve GBM treatment via systemic administration. We show that nanoparticle-mediated knockdown of the DNA repair protein apurinic endonuclease 1 (Ape1) sensitizes GBM cells to radiotherapy and extend survival in a genetic mouse model of GBM. Specific knockdown of Ape1 activity by 30% in brain tumor tissue doubled the extended survival achieved with radiotherapy alone. Ape1 is a promising target for increasing the effectiveness of radiotherapy, and nanoparticle-mediated delivery of siRNA is a promising strategy for tumor specific knockdown of Ape1.
Collapse
Affiliation(s)
- Forrest M Kievit
- Department of Neurological Surgery, University of Washington, Seattle, WA, United States; Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States
| | - Kui Wang
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, United States
| | - Tatsuya Ozawa
- Division of Human Biology and Solid Tumor Translational Research, Fred Hutchinson Cancer Research Center, Department of Neurosurgery and Alvord Brain Tumor Center, University of Washington, Seattle, WA, United States
| | - Aria W Tarudji
- Department of Biochemistry, University of Washington, Seattle, WA, United States
| | - John R Silber
- Department of Neurological Surgery, University of Washington, Seattle, WA, United States
| | - Eric C Holland
- Department of Neurological Surgery, University of Washington, Seattle, WA, United States; Division of Human Biology and Solid Tumor Translational Research, Fred Hutchinson Cancer Research Center, Department of Neurosurgery and Alvord Brain Tumor Center, University of Washington, Seattle, WA, United States
| | - Richard G Ellenbogen
- Department of Neurological Surgery, University of Washington, Seattle, WA, United States; Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States; Department of Radiology, University of Washington, Seattle, WA, United States.
| | - Miqin Zhang
- Department of Neurological Surgery, University of Washington, Seattle, WA, United States; Department of Materials Science and Engineering, University of Washington, Seattle, WA, United States; Department of Radiology, University of Washington, Seattle, WA, United States.
| |
Collapse
|
13
|
Amani V, Donson AM, Lummus SC, Prince EW, Griesinger AM, Witt DA, Hankinson TC, Handler MH, Dorris K, Vibhakar R, Foreman NK, Hoffman LM. Characterization of 2 Novel Ependymoma Cell Lines With Chromosome 1q Gain Derived From Posterior Fossa Tumors of Childhood. J Neuropathol Exp Neurol 2017; 76:595-604. [PMID: 28863455 DOI: 10.1093/jnen/nlx040] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Ependymoma (EPN) is a common brain tumor of childhood that, despite standard surgery and radiation therapy, has a relapse rate of 50%. Clinical trials have been unsuccessful in improving outcome by addition of chemotherapy, and identification of novel therapeutics has been hampered by a lack of in vitro and in vivo models. We describe 2 unique EPN cell lines (811 and 928) derived from recurrent intracranial metastases. Both cell lines harbor the high-risk chromosome 1q gain (1q+) and a derivative chromosome 6, and both are classified as molecular group A according to transcriptomic analysis. Transcriptional enrichment of extracellular matrix-related genes was a common signature of corresponding primary tumors and cell lines in both monolayer and 3D formats. EPN cell lines, when cultured in 3D format, clustered closer to the primary tumors with better fidelity of EPN-specific transcripts than when grown as a monolayer. Additionally, 3D culture revealed ependymal rosette formation and cilia-related ontologies, similar to in situ tumors. Our data confirm the validity of the 811 and 928 cell lines as representative models of intracranial, posterior fossa 1q+ EPN, which holds potential to advance translational science for patients affected by this tumor.
Collapse
Affiliation(s)
- Vladimir Amani
- Morgan Adams Foundation Pediatric Brain Tumor Research Program; Department of Pathology; and Department of Neurosurgery, University of Colorado Anschutz Medical Campus; and Children's Hospital Colorado, Aurora, Colorado
| | - Andrew M Donson
- Morgan Adams Foundation Pediatric Brain Tumor Research Program; Department of Pathology; and Department of Neurosurgery, University of Colorado Anschutz Medical Campus; and Children's Hospital Colorado, Aurora, Colorado
| | - Seth C Lummus
- Morgan Adams Foundation Pediatric Brain Tumor Research Program; Department of Pathology; and Department of Neurosurgery, University of Colorado Anschutz Medical Campus; and Children's Hospital Colorado, Aurora, Colorado
| | - Eric W Prince
- Morgan Adams Foundation Pediatric Brain Tumor Research Program; Department of Pathology; and Department of Neurosurgery, University of Colorado Anschutz Medical Campus; and Children's Hospital Colorado, Aurora, Colorado
| | - Andrea M Griesinger
- Morgan Adams Foundation Pediatric Brain Tumor Research Program; Department of Pathology; and Department of Neurosurgery, University of Colorado Anschutz Medical Campus; and Children's Hospital Colorado, Aurora, Colorado
| | - Davis A Witt
- Morgan Adams Foundation Pediatric Brain Tumor Research Program; Department of Pathology; and Department of Neurosurgery, University of Colorado Anschutz Medical Campus; and Children's Hospital Colorado, Aurora, Colorado
| | - Todd C Hankinson
- Morgan Adams Foundation Pediatric Brain Tumor Research Program; Department of Pathology; and Department of Neurosurgery, University of Colorado Anschutz Medical Campus; and Children's Hospital Colorado, Aurora, Colorado
| | - Michael H Handler
- Morgan Adams Foundation Pediatric Brain Tumor Research Program; Department of Pathology; and Department of Neurosurgery, University of Colorado Anschutz Medical Campus; and Children's Hospital Colorado, Aurora, Colorado
| | - Kathleen Dorris
- Morgan Adams Foundation Pediatric Brain Tumor Research Program; Department of Pathology; and Department of Neurosurgery, University of Colorado Anschutz Medical Campus; and Children's Hospital Colorado, Aurora, Colorado
| | - Rajeev Vibhakar
- Morgan Adams Foundation Pediatric Brain Tumor Research Program; Department of Pathology; and Department of Neurosurgery, University of Colorado Anschutz Medical Campus; and Children's Hospital Colorado, Aurora, Colorado
| | - Nicholas K Foreman
- Morgan Adams Foundation Pediatric Brain Tumor Research Program; Department of Pathology; and Department of Neurosurgery, University of Colorado Anschutz Medical Campus; and Children's Hospital Colorado, Aurora, Colorado
| | - Lindsey M Hoffman
- Morgan Adams Foundation Pediatric Brain Tumor Research Program; Department of Pathology; and Department of Neurosurgery, University of Colorado Anschutz Medical Campus; and Children's Hospital Colorado, Aurora, Colorado
| |
Collapse
|
14
|
Liu Z, Yan H, Li H. Silencing of DNA repair sensitizes pediatric brain tumor cells to γ-irradiation using gold nanoparticles. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 53:40-45. [PMID: 28501783 DOI: 10.1016/j.etap.2017.04.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 04/16/2017] [Accepted: 04/18/2017] [Indexed: 06/07/2023]
Abstract
We present a nanoparticle (NP)-mediated delivery vehicle that effectively carries and protects siRNA in pediatric ependymoma (EP) and medulloblastoma (MB) cells. The delivery vehicle consists of gold NPs coated with a polymeric shell comprising polyethylene glycol (PG), chitosan and polyethyleneimine (Au-CP-PEI). NPs loaded with siRNA knocked down Ape1 expression by over 75% in both MB and EP cells. Further, this reduction in Ape1 expression is associated with an increase in DNA damage after irradiation. The results indicate that NP-associated delivery of siApe1 is a feasible approach to circumventing pediatric brain tumor resistance to radiation therapy.
Collapse
Affiliation(s)
- Zuliang Liu
- Department of Pediatrics, Jiyang County People's Hospital, Ji'nan, Shandong 251400, China.
| | - Huiru Yan
- Department of Pediatrics, Jiyang County People's Hospital, Ji'nan, Shandong 251400, China
| | - Hongsha Li
- Department of Pediatrics, Jiyang County People's Hospital, Ji'nan, Shandong 251400, China
| |
Collapse
|
15
|
Abstract
Reduction-oxidation factor 1-apurinic/apyrimidinic endonuclease (Ref-1/APE1) is a critical node in tumor cells, both as a redox regulator of transcription factor activation and as part of the DNA damage response. As a redox signaling protein, Ref-1/APE1 enhances the transcriptional activity of STAT3, HIF-1α, nuclear factor kappa B, and other transcription factors to promote growth, migration, and survival in tumor cells as well as inflammation and angiogenesis in the tumor microenvironment. Ref-1/APE1 is activated in a variety of cancers, including prostate, colon, pancreatic, ovarian, lung and leukemias, leading to increased aggressiveness. Transcription factors downstream of Ref-1/APE1 are key contributors to many cancers, and Ref-1/APE1 redox signaling inhibition slows growth and progression in a number of tumor types. Ref-1/APE1 inhibition is also highly effective when paired with other drugs, including standard-of-care therapies and therapies targeting pathways affected by Ref-1/APE1 redox signaling. Additionally, Ref-1/APE1 plays a role in a variety of other indications, such as retinopathy, inflammation, and neuropathy. In this review, we discuss the functional consequences of activation of the Ref-1/APE1 node in cancer and other diseases, as well as potential therapies targeting Ref-1/APE1 and related pathways in relevant diseases. APX3330, a novel oral anticancer agent and the first drug to target Ref-1/APE1 for cancer is entering clinical trials and will be explored in various cancers and other diseases bringing bench discoveries to the clinic.
Collapse
|
16
|
Laev SS, Salakhutdinov NF, Lavrik OI. Inhibitors of nuclease and redox activity of apurinic/apyrimidinic endonuclease 1/redox effector factor 1 (APE1/Ref-1). Bioorg Med Chem 2017; 25:2531-2544. [PMID: 28161249 DOI: 10.1016/j.bmc.2017.01.028] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 01/16/2017] [Accepted: 01/18/2017] [Indexed: 01/15/2023]
Abstract
Human apurinic/apyrimidinic endonuclease 1/redox effector factor 1 (APE1/Ref-1) is a multifunctional protein which is essential in the base excision repair (BER) pathway of DNA lesions caused by oxidation and alkylation. This protein hydrolyzes DNA adjacent to the 5'-end of an apurinic/apyrimidinic (AP) site to produce a nick with a 3'-hydroxyl group and a 5'-deoxyribose phosphate moiety or activates the DNA-binding activity of certain transcription factors through its redox function. Studies have indicated a role for APE1/Ref-1 in the pathogenesis of cancer and in resistance to DNA-interactive drugs. Thus, this protein has potential as a target in cancer treatment. As a result, major efforts have been directed to identify small molecule inhibitors against APE1/Ref-1 activities. These agents have the potential to become anticancer drugs. The aim of this review is to present recent progress in studies of all published small molecule APE1/Ref-1 inhibitors. The structures and activities of APE1/Ref-1 inhibitors, that target both DNA repair and redox activities, are presented and discussed. To date, there is an urgent need for further development of the design and synthesis of APE1/Ref-1 inhibitors due to high importance of this protein target.
Collapse
Affiliation(s)
- Sergey S Laev
- Vorozhtsov Institute of Organic Chemistry, Siberian Division, Russian Academy of Sciences, pr. akademika Lavrent'eva 9, Novosibirsk 630090, Russian Federation.
| | - Nariman F Salakhutdinov
- Vorozhtsov Institute of Organic Chemistry, Siberian Division, Russian Academy of Sciences, pr. akademika Lavrent'eva 9, Novosibirsk 630090, Russian Federation; Novosibirsk State University, Pirogova Str. 2, Novosibirsk 630090, Russian Federation
| | - Olga I Lavrik
- Novosibirsk State University, Pirogova Str. 2, Novosibirsk 630090, Russian Federation; Novosibirsk Institute of Chemical Biology and Fundamental Medicine, Siberian Division, Russian Academy of Sciences, pr. akademika Lavrent'eva 8, Novosibirsk 630090, Russian Federation
| |
Collapse
|
17
|
Dai N, Qing Y, Cun Y, Zhong Z, Li C, Zhang S, Shan J, Yang X, Dai X, Cheng Y, Xiao H, Xu C, Li M, Wang D. miR-513a-5p regulates radiosensitivity of osteosarcoma by targeting human apurinic/apyrimidinic endonuclease. Oncotarget 2016; 9:25414-25426. [PMID: 29875998 PMCID: PMC5986632 DOI: 10.18632/oncotarget.11003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 06/01/2016] [Indexed: 11/30/2022] Open
Abstract
Radiotherapy in osteosarcoma patients is problematic due to radioresistance; therefore, understanding the mechanism of radioresistance is integral to providing effective radiotherapeutic regimens for osteosarcoma. We now report the activity of an miRNA, miR-513a-5p, in stimulating radiosensitivity of osteosarcoma cells in vitro and in vivo. MiR-513a-5p expression is decreased in osteosarcoma tissue from patients and cultured osteosarcoma cell lines. However, exogenous re-expression of this miRNA in osteosarcoma cell lines, including HOS, U2OS and 9901, can induce sensitization to ionizing radiation. We also confirm that miR-513a-5p suppresses APE1 expression, and that both the redox and DNA repair activity of APE1 were decreased in miR-513a-5p expressing cell lines. By suppressing APE1, miR-513a-5p induces the DNA damage response which stimulates apoptosis after irradiation. Our report establishes miR-513a-5p as a radiosensitizing miRNA and identifies its activity in the suppression of APE1, which could directly lead to radiosensitization.
Collapse
Affiliation(s)
- Nan Dai
- Cancer Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, 400042, P.R. China
| | - Yi Qing
- Cancer Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, 400042, P.R. China
| | - Yanping Cun
- Cancer Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, 400042, P.R. China.,Department of Neurosurgery, Wuhan General Hospital of Guangzhou Military Command, Wuhan, 430070, P.R. China
| | - Zhaoyang Zhong
- Cancer Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, 400042, P.R. China
| | - Chongyi Li
- Cancer Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, 400042, P.R. China
| | - Shiheng Zhang
- Cancer Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, 400042, P.R. China
| | - Jinlu Shan
- Cancer Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, 400042, P.R. China
| | - Xiao Yang
- Cancer Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, 400042, P.R. China
| | - Xiaoyan Dai
- Cancer Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, 400042, P.R. China
| | - Yi Cheng
- Cancer Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, 400042, P.R. China
| | - He Xiao
- Cancer Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, 400042, P.R. China
| | - Chengxiong Xu
- Cancer Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, 400042, P.R. China
| | - Mengxia Li
- Cancer Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, 400042, P.R. China
| | - Dong Wang
- Cancer Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, 400042, P.R. China
| |
Collapse
|
18
|
Liu Y, Li Q, Zhou L, Xie N, Nice EC, Zhang H, Huang C, Lei Y. Cancer drug resistance: redox resetting renders a way. Oncotarget 2016; 7:42740-42761. [PMID: 27057637 PMCID: PMC5173169 DOI: 10.18632/oncotarget.8600] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 03/28/2016] [Indexed: 02/05/2023] Open
Abstract
Disruption of redox homeostasis is a crucial factor in the development of drug resistance, which is a major problem facing current cancer treatment. Compared with normal cells, tumor cells generally exhibit higher levels of reactive oxygen species (ROS), which can promote tumor progression and development. Upon drug treatment, some tumor cells can undergo a process of 'Redox Resetting' to acquire a new redox balance with higher levels of ROS accumulation and stronger antioxidant systems. Evidence has accumulated showing that the 'Redox Resetting' enables cancer cells to become resistant to anticancer drugs by multiple mechanisms, including increased rates of drug efflux, altered drug metabolism and drug targets, activated prosurvival pathways and inefficient induction of cell death. In this article, we provide insight into the role of 'Redox Resetting' on the emergence of drug resistance that may contribute to pharmacological modulation of resistance.
Collapse
Affiliation(s)
- Yuan Liu
- State Key Laboratory for Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, P. R. China
- Department of Neurology, The Affiliated Hospital of Hainan Medical College, Haikou, Hainan, P. R. China
| | - Qifu Li
- Department of Neurology, The Affiliated Hospital of Hainan Medical College, Haikou, Hainan, P. R. China
| | - Li Zhou
- State Key Laboratory for Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, P. R. China
| | - Na Xie
- State Key Laboratory for Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, P. R. China
| | - Edouard C. Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Haiyuan Zhang
- Department of Neurology, The Affiliated Hospital of Hainan Medical College, Haikou, Hainan, P. R. China
| | - Canhua Huang
- State Key Laboratory for Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, P. R. China
| | - Yunlong Lei
- Department of Biochemistry and Molecular Biology, and Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, P. R. China
| |
Collapse
|
19
|
The Tumorigenic Roles of the Cellular REDOX Regulatory Systems. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2016:8413032. [PMID: 26682014 PMCID: PMC4670861 DOI: 10.1155/2016/8413032] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Accepted: 08/10/2015] [Indexed: 02/07/2023]
Abstract
The cellular REDOX regulatory systems play a central role in maintaining REDOX homeostasis that is crucial for cell integrity, survival, and proliferation. To date, a substantial amount of data has demonstrated that cancer cells typically undergo increasing oxidative stress as the tumor develops, upregulating these important antioxidant systems in order to survive, proliferate, and metastasize under these extreme oxidative stress conditions. Since a large number of chemotherapeutic agents currently used in the clinic rely on the induction of ROS overload or change of ROS quality to kill the tumor, the cancer cell REDOX adaptation represents a significant obstacle to conventional chemotherapy. In this review we will first examine the different factors that contribute to the enhanced oxidative stress generally observed within the tumor microenvironment. We will then make a comprehensive assessment of the current literature regarding the main antioxidant proteins and systems that have been shown to be positively associated with tumor progression and chemoresistance. Finally we will make an analysis of commonly used chemotherapeutic drugs that induce ROS. The current knowledge of cancer cell REDOX adaptation raises the issue of developing novel and more effective therapies for these tumors that are usually resistant to conventional ROS inducing chemotherapy.
Collapse
|
20
|
Hsia KT, Liu CJ, Mar K, Lin LH, Lin CS, Cheng MF, Lee HS, Chiu SY. Impact of apurinic/apyrimidinic endonuclease 1/redox factor-1 on treatment response and survival in oral squamous cell carcinoma. Head Neck 2015; 38:550-9. [PMID: 25482590 DOI: 10.1002/hed.23927] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2014] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Apurinic/apyrimidinic endonuclease 1/redox factor-1 (APE1/Ref-1) is a multifunctional protein involved in DNA repair and redox signaling. The purpose of this study was to investigate the relationship between APE1/Ref-1 expression and clinicopathological features, survival, and treatment response in patients with oral squamous cell carcinoma (OSCC) and cell lines. METHODS APE1/Ref-1 expression in OSCC was evaluated by immunohistochemistry, and its relationship to patient outcomes and treatment response was assessed statistically. The effects of stable short hairpin (sh)RNA-mediated knockdown of APE1/Ref-1 on cell survival, migration, and chemoradiation sensitivity were determined in OSCC cell lines. RESULTS APE1/Ref-1 immunostaining was correlated with positive lymph node status, and higher APE1/Ref-1 expression was significantly associated with poor prognosis and reduced treatment response. Consistent with the clinical studies, APE1/Ref-1 expression in OSCC cell lines was implicated in the regulation of migration and cisplatin-induced apoptosis. CONCLUSION Elevated APE1/Ref-1 expression may be used to predict poor survival and may confer chemoresistance in OSCC.
Collapse
Affiliation(s)
- Kan-Tai Hsia
- Institute of Oral Biology, School of Dentistry, National Yang-Ming University, Taipei, Taiwan
| | - Chung-Ji Liu
- Institute of Oral Biology, School of Dentistry, National Yang-Ming University, Taipei, Taiwan.,Department of Oral and Maxillofacial Surgery, Taipei Mackay Memorial Hospital, Taipei, Taiwan
| | - Kwei Mar
- Department of Dentistry, Zhongxiao Branch, Taipei City Hospital, Taipei, Taiwan
| | - Li-Han Lin
- Institute of Oral Biology, School of Dentistry, National Yang-Ming University, Taipei, Taiwan
| | - Chun-Shu Lin
- Department of Radiation Oncology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Ming-Fang Cheng
- Institute of Oral Biology, School of Dentistry, National Yang-Ming University, Taipei, Taiwan.,Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,Division of Histological and Clinical Pathology, Hualien Armed Forced General Hospital, Hualien, Taiwan
| | - Herng-Sheng Lee
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Shang-Yi Chiu
- Institute of Oral Biology, School of Dentistry, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
21
|
Kievit FM, Stephen ZR, Wang K, Dayringer CJ, Sham JG, Ellenbogen RG, Silber JR, Zhang M. Nanoparticle mediated silencing of DNA repair sensitizes pediatric brain tumor cells to γ-irradiation. Mol Oncol 2015; 9:1071-80. [PMID: 25681012 DOI: 10.1016/j.molonc.2015.01.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 01/08/2015] [Accepted: 01/20/2015] [Indexed: 12/18/2022] Open
Abstract
Medulloblastoma (MB) and ependymoma (EP) are the most common pediatric brain tumors, afflicting 3000 children annually. Radiotherapy (RT) is an integral component in the treatment of these tumors; however, the improvement in survival is often accompanied by radiation-induced adverse developmental and psychosocial sequelae. Therefore, there is an urgent need to develop strategies that can increase the sensitivity of brain tumors cells to RT while sparing adjacent healthy brain tissue. Apurinic endonuclease 1 (Ape1), an enzyme in the base excision repair pathway, has been implicated in radiation resistance in cancer. Pharmacological and specificity limitations inherent to small molecule inhibitors of Ape1 have hindered their clinical development. Here we report on a nanoparticle (NP) based siRNA delivery vehicle for knocking down Ape1 expression and sensitizing pediatric brain tumor cells to RT. The NP comprises a superparamagnetic iron oxide core coated with a biocompatible, biodegradable coating of chitosan, polyethylene glycol (PEG), and polyethyleneimine (PEI) that is able to bind and protect siRNA from degradation and to deliver siRNA to the perinuclear region of target cells. NPs loaded with siRNA against Ape1 (NP:siApe1) knocked down Ape1 expression over 75% in MB and EP cells, and reduced Ape1 activity by 80%. This reduction in Ape1 activity correlated with increased DNA damage post-irradiation, which resulted in decreased cell survival in clonogenic assays. The sensitization was specific to therapies generating abasic lesions as evidenced by NP:siRNA not increasing sensitivity to paclitaxel, a microtubule disrupting agent. Our results indicate NP-mediated delivery of siApe1 is a promising strategy for circumventing pediatric brain tumor resistance to RT.
Collapse
Affiliation(s)
- Forrest M Kievit
- Department of Neurological Surgery, University of Washington, Seattle, WA 98195, USA
| | - Zachary R Stephen
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA
| | - Kui Wang
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA
| | - Christopher J Dayringer
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA
| | - Jonathan G Sham
- Department of Surgery, University of Washington, Seattle, WA 98195, USA
| | - Richard G Ellenbogen
- Department of Neurological Surgery, University of Washington, Seattle, WA 98195, USA; Department of Radiology, University of Washington, Seattle, WA 98195, USA.
| | - John R Silber
- Department of Neurological Surgery, University of Washington, Seattle, WA 98195, USA
| | - Miqin Zhang
- Department of Neurological Surgery, University of Washington, Seattle, WA 98195, USA; Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA; Department of Radiology, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
22
|
Polimeni M, Gazzano E. Is redox signaling a feasible target for overcoming multidrug resistance in cancer chemotherapy? Front Pharmacol 2014; 5:286. [PMID: 25566078 PMCID: PMC4274902 DOI: 10.3389/fphar.2014.00286] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 12/07/2014] [Indexed: 12/15/2022] Open
Affiliation(s)
| | - Elena Gazzano
- Department of Oncology, University of Turin Turin, Italy
| |
Collapse
|
23
|
Abstract
SIGNIFICANCE Human apurinic/apyrimidinic endonuclease 1 (APE1, also known as REF-1) was isolated based on its ability to cleave at AP sites in DNA or activate the DNA binding activity of certain transcription factors. We review herein topics related to this multi-functional DNA repair and stress-response protein. RECENT ADVANCES APE1 displays homology to Escherichia coli exonuclease III and is a member of the divalent metal-dependent α/β fold-containing phosphoesterase superfamily of enzymes. APE1 has acquired distinct active site and loop elements that dictate substrate selectivity, and a unique N-terminus which at minimum imparts nuclear targeting and interaction specificity. Additional activities ascribed to APE1 include 3'-5' exonuclease, 3'-repair diesterase, nucleotide incision repair, damaged or site-specific RNA cleavage, and multiple transcription regulatory roles. CRITICAL ISSUES APE1 is essential for mouse embryogenesis and contributes to cell viability in a genetic background-dependent manner. Haploinsufficient APE1(+/-) mice exhibit reduced survival, increased cancer formation, and cellular/tissue hyper-sensitivity to oxidative stress, supporting the notion that impaired APE1 function associates with disease susceptibility. Although abnormal APE1 expression/localization has been seen in cancer and neuropathologies, and impaired-function variants have been described, a causal link between an APE1 defect and human disease remains elusive. FUTURE DIRECTIONS Ongoing efforts aim at delineating the biological role(s) of the different APE1 activities, as well as the regulatory mechanisms for its intra-cellular distribution and participation in diverse molecular pathways. The determination of whether APE1 defects contribute to human disease, particularly pathologies that involve oxidative stress, and whether APE1 small-molecule regulators have clinical utility, is central to future investigations.
Collapse
Affiliation(s)
- Mengxia Li
- Intramural Research Program, Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health , Baltimore, Maryland
| | | |
Collapse
|
24
|
Bobola MS, Kolstoe DD, Blank A, Chamberlain MC, Silber JR. Repair of 3-methyladenine and abasic sites by base excision repair mediates glioblastoma resistance to temozolomide. Front Oncol 2012; 2:176. [PMID: 23230562 PMCID: PMC3515961 DOI: 10.3389/fonc.2012.00176] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 11/05/2012] [Indexed: 12/11/2022] Open
Abstract
Alkylating agents have long played a central role in the adjuvant therapy of glioblastoma (GBM). More recently, inclusion of temozolomide (TMZ), an orally administered methylating agent with low systemic toxicity, during and after radiotherapy has markedly improved survival. Extensive in vitro and in vivo evidence has shown that TMZ-induced O(6)-methylguanine (O(6)-meG) mediates GBM cell killing. Moreover, low or absent expression of O(6)-methylguanine-DNA methyltransferase (MGMT), the sole human repair protein that removes O(6)-meG from DNA, is frequently associated with longer survival in GBMs treated with TMZ, promoting interest in developing inhibitors of MGMT to counter resistance. However, the clinical efficacy of TMZ is unlikely to be due solely to O(6)-meG, as the agent produces approximately a dozen additional DNA adducts, including cytotoxic N3-methyladenine (3-meA) and abasic sites. Repair of 3-meA and abasic sites, both of which are produced in greater abundance than O(6)-meG, is mediated by the base excision repair (BER) pathway, and occurs independently of removal of O(6)-meG. These observations indicate that BER activities are also potential targets for strategies to potentiate TMZ cytotoxicity. Here we review the evidence that 3-meA and abasic sites mediate killing of GBM cells. We also present in vitro and in vivo evidence that alkyladenine-DNA glycosylase, the sole repair activity that excises 3-meA from DNA, and Ape1, the major human abasic site endonuclease, mediate TMZ resistance in GBMs and represent potential anti-resistance targets.
Collapse
Affiliation(s)
- Michael S. Bobola
- Department of Neurological Surgery, University of Washington Medical CenterSeattle, WA, USA
| | - Douglas D. Kolstoe
- Department of Neurological Surgery, University of Washington Medical CenterSeattle, WA, USA
| | - A. Blank
- Department of Neurological Surgery, University of Washington Medical CenterSeattle, WA, USA
| | - Marc C. Chamberlain
- Department of Neurological Surgery, University of Washington Medical CenterSeattle, WA, USA
- Department of Neurology, University of Washington Medical CenterSeattle, WA, USA
| | - John R. Silber
- Department of Neurological Surgery, University of Washington Medical CenterSeattle, WA, USA
| |
Collapse
|