1
|
Rekad Z, Izzi V, Lamba R, Ciais D, Van Obberghen-Schilling E. The Alternative Matrisome: alternative splicing of ECM proteins in development, homeostasis and tumor progression. Matrix Biol 2022; 111:26-52. [DOI: 10.1016/j.matbio.2022.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 04/19/2022] [Accepted: 05/04/2022] [Indexed: 12/14/2022]
|
2
|
Islam S, Jahan N, Shahida A, Karnan S, Watanabe H. Accumulation of versican and lack of versikine ameliorate acute colitis. Matrix Biol 2022; 107:59-76. [DOI: 10.1016/j.matbio.2022.02.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 02/05/2022] [Accepted: 02/09/2022] [Indexed: 12/11/2022]
|
3
|
Papadas A, Cicala A, Kraus SG, Arauz G, Tong A, Deming D, Asimakopoulos F. Versican in Tumor Progression, Tumor–Host Interactions, and Cancer Immunotherapy. BIOLOGY OF EXTRACELLULAR MATRIX 2022:93-118. [DOI: 10.1007/978-3-030-99708-3_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
4
|
Papadas A, Arauz G, Cicala A, Wiesner J, Asimakopoulos F. Versican and Versican-matrikines in Cancer Progression, Inflammation, and Immunity. J Histochem Cytochem 2020; 68:871-885. [PMID: 32623942 PMCID: PMC7711242 DOI: 10.1369/0022155420937098] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/04/2020] [Indexed: 12/16/2022] Open
Abstract
Versican is an extracellular matrix proteoglycan with key roles in multiple facets of cancer development, ranging from proliferative signaling, evasion of growth-suppressor pathways, regulation of cell death, promotion of neoangiogenesis, and tissue invasion and metastasis. Multiple lines of evidence implicate versican and its bioactive proteolytic fragments (matrikines) in the regulation of cancer inflammation and antitumor immune responses. The understanding of the dynamics of versican deposition/accumulation and its proteolytic turnover holds potential for the development of novel immune biomarkers as well as approaches to reset the immune thermostat of tumors, thus promoting efficacy of modern immunotherapies. This article summarizes work from several laboratories, including ours, on the role of this central matrix proteoglycan in tumor progression as well as tumor-immune cell cross-talk.
Collapse
Affiliation(s)
- Athanasios Papadas
- Division of Blood and Marrow Transplantation, Department of Medicine, Moores Cancer Center, University of California, San Diego, La Jolla, CA
- Cellular & Molecular Pathology Graduate Program, University of Wisconsin-Madison, Madison, WI
| | - Garrett Arauz
- Division of Blood and Marrow Transplantation, Department of Medicine, Moores Cancer Center, University of California, San Diego, La Jolla, CA
| | - Alexander Cicala
- Division of Blood and Marrow Transplantation, Department of Medicine, Moores Cancer Center, University of California, San Diego, La Jolla, CA
| | - Joshua Wiesner
- Division of Blood and Marrow Transplantation, Department of Medicine, Moores Cancer Center, University of California, San Diego, La Jolla, CA
| | - Fotis Asimakopoulos
- Division of Blood and Marrow Transplantation, Department of Medicine, Moores Cancer Center, University of California, San Diego, La Jolla, CA
| |
Collapse
|
5
|
Hamada S, Nishida Y, Zhuo L, Shinomura T, Ikuta K, Arai E, Koike H, Kimata K, Ushida T, Ishiguro N. Suppression of hyaluronan synthesis attenuates the tumorigenicity of low-grade chondrosarcoma. J Orthop Res 2018; 36:1573-1580. [PMID: 29091320 DOI: 10.1002/jor.23794] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 10/26/2017] [Indexed: 02/04/2023]
Abstract
Hyaluronan (HA) has been shown to play crucial roles in the tumorigenicity of malignant tumors. Chondrosarcoma, particularly when low-grade, is characterized by the formation of an extracellular matrix (ECM) containing abundant HA, and its drug/radiation resistance has become a clinically relevant problem. This study aimed to evaluate the effects of an HA synthesis inhibitor, 4-methylumbelliferone (MU), on ECM formation as well as antitumor effects in chondrosarcoma. We investigated the effects of MU on rat chondrosarcoma (RCS) cells with a grade I histological malignancy in vitro and in vivo grafted model. HA binding protein (HABP) stainability on and around the RCS cells was effectively reduced with treatment of MU. ECM formation was markedly suppressed by MU at a dose of 1.0 mM. Cell proliferation was significantly reduced by MU at 24 h. Cell motility and invasion were suppressed in a dose-dependent manner by MU. No significant changes in mRNA expression of Has1-3 were observed. Furthermore, MU inhibited the growth of grafted tumors in vivo. Histologically, chondrosarcoma cells of control tumors showed a cell-clustering structure. HABP stainability was markedly decreased in the MU-treated group. These results suggest that MU exhibits antitumor effects on low-grade chondrosarcoma, via inhibition of HA accumulation and ECM formation. MU, which is an approved drug in bile therapy, could be a new off-label medication for chondrosarcomas. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:1573-1580, 2018.
Collapse
Affiliation(s)
- Shunsuke Hamada
- Department of Orthopedic Surgery, Nagoya University Graduate School and School of Medicine, 65 Tsurumai Showa, Nagoya, Aichi 466-8550, Japan
| | - Yoshihiro Nishida
- Department of Orthopedic Surgery, Nagoya University Graduate School and School of Medicine, 65 Tsurumai Showa, Nagoya, Aichi 466-8550, Japan
| | - Lisheng Zhuo
- Multidisciplinary Pain Center, Aichi Medical University, Nagakute, Japan
| | - Tamayuki Shinomura
- Department of Hard Tissue Engineering, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kunihiro Ikuta
- Department of Orthopedic Surgery, Nagoya University Graduate School and School of Medicine, 65 Tsurumai Showa, Nagoya, Aichi 466-8550, Japan
| | - Eisuke Arai
- Department of Orthopedic Surgery, Nagoya University Graduate School and School of Medicine, 65 Tsurumai Showa, Nagoya, Aichi 466-8550, Japan
| | - Hiroshi Koike
- Department of Orthopedic Surgery, Nagoya University Graduate School and School of Medicine, 65 Tsurumai Showa, Nagoya, Aichi 466-8550, Japan
| | - Koji Kimata
- Multidisciplinary Pain Center, Aichi Medical University, Nagakute, Japan
| | - Takahiro Ushida
- Multidisciplinary Pain Center, Aichi Medical University, Nagakute, Japan
| | - Naoki Ishiguro
- Department of Orthopedic Surgery, Nagoya University Graduate School and School of Medicine, 65 Tsurumai Showa, Nagoya, Aichi 466-8550, Japan
| |
Collapse
|
6
|
Theocharis AD, Karamanos NK. Proteoglycans remodeling in cancer: Underlying molecular mechanisms. Matrix Biol 2017; 75-76:220-259. [PMID: 29128506 DOI: 10.1016/j.matbio.2017.10.008] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 10/23/2017] [Accepted: 10/24/2017] [Indexed: 02/07/2023]
Abstract
Extracellular matrix is a highly dynamic macromolecular network. Proteoglycans are major components of extracellular matrix playing key roles in its structural organization and cell signaling contributing to the control of numerous normal and pathological processes. As multifunctional molecules, proteoglycans participate in various cell functions during morphogenesis, wound healing, inflammation and tumorigenesis. Their interactions with matrix effectors, cell surface receptors and enzymes enable them with unique properties. In malignancy, extensive remodeling of tumor stroma is associated with marked alterations in proteoglycans' expression and structural variability. Proteoglycans exert diverse functions in tumor stroma in a cell-specific and context-specific manner and they mainly contribute to the formation of a permissive provisional matrix for tumor growth affecting tissue organization, cell-cell and cell-matrix interactions and tumor cell signaling. Proteoglycans also modulate cancer cell phenotype and properties, the development of drug resistance and tumor stroma angiogenesis. This review summarizes the proteoglycans remodeling and their novel biological roles in malignancies with particular emphasis to the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Achilleas D Theocharis
- Biochemistry, Biochemical Analysis & Matrix Pathobiochemistry Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26500 Patras, Greece.
| | - Nikos K Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiochemistry Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26500 Patras, Greece.
| |
Collapse
|
7
|
Fujii K, Karpova MB, Asagoe K, Georgiev O, Dummer R, Urosevic-Maiwald M. Versican upregulation in Sézary cells alters growth, motility and resistance to chemotherapy. Leukemia 2015; 29:2024-32. [DOI: 10.1038/leu.2015.103] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 03/13/2015] [Accepted: 04/07/2015] [Indexed: 01/08/2023]
|
8
|
Theocharis AD, Skandalis SS, Neill T, Multhaupt HAB, Hubo M, Frey H, Gopal S, Gomes A, Afratis N, Lim HC, Couchman JR, Filmus J, Sanderson RD, Schaefer L, Iozzo RV, Karamanos NK. Insights into the key roles of proteoglycans in breast cancer biology and translational medicine. Biochim Biophys Acta Rev Cancer 2015; 1855:276-300. [PMID: 25829250 DOI: 10.1016/j.bbcan.2015.03.006] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 02/27/2015] [Accepted: 03/24/2015] [Indexed: 12/18/2022]
Abstract
Proteoglycans control numerous normal and pathological processes, among which are morphogenesis, tissue repair, inflammation, vascularization and cancer metastasis. During tumor development and growth, proteoglycan expression is markedly modified in the tumor microenvironment. Altered expression of proteoglycans on tumor and stromal cell membranes affects cancer cell signaling, growth and survival, cell adhesion, migration and angiogenesis. Despite the high complexity and heterogeneity of breast cancer, the rapid evolution in our knowledge that proteoglycans are among the key players in the breast tumor microenvironment suggests their potential as pharmacological targets in this type of cancer. It has been recently suggested that pharmacological treatment may target proteoglycan metabolism, their utilization as targets for immunotherapy or their direct use as therapeutic agents. The diversity inherent in the proteoglycans that will be presented herein provides the potential for multiple layers of regulation of breast tumor behavior. This review summarizes recent developments concerning the biology of selected proteoglycans in breast cancer, and presents potential targeted therapeutic approaches based on their novel key roles in breast cancer.
Collapse
Affiliation(s)
- Achilleas D Theocharis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26500 Patras, Greece
| | - Spyros S Skandalis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26500 Patras, Greece
| | - Thomas Neill
- Department of Pathology, Anatomy and Cell Biology and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Hinke A B Multhaupt
- Department of Biomedical Sciences and Biotech Research & Innovation Center, University of Copenhagen, Denmark
| | - Mario Hubo
- University of Frankfurt, Institute of Pharmacology and Toxicology, Theodor-Stern Kai 7, Frankfurt 60590, Germany
| | - Helena Frey
- University of Frankfurt, Institute of Pharmacology and Toxicology, Theodor-Stern Kai 7, Frankfurt 60590, Germany
| | - Sandeep Gopal
- Department of Biomedical Sciences and Biotech Research & Innovation Center, University of Copenhagen, Denmark
| | - Angélica Gomes
- Department of Biomedical Sciences and Biotech Research & Innovation Center, University of Copenhagen, Denmark
| | - Nikos Afratis
- Department of Biomedical Sciences and Biotech Research & Innovation Center, University of Copenhagen, Denmark
| | - Hooi Ching Lim
- Department of Biomedical Sciences and Biotech Research & Innovation Center, University of Copenhagen, Denmark
| | - John R Couchman
- Department of Biomedical Sciences and Biotech Research & Innovation Center, University of Copenhagen, Denmark
| | - Jorge Filmus
- Department of Biological Sciences, Sunnybrook Research Institute and Department of Medical Biophysics, University of Toronto, Canada
| | - Ralph D Sanderson
- University of Alabama at Birmingham, Department of Pathology, UAB Comprehensive Cancer Center, 1720 2nd Ave. S, WTI 602B, Birmingham, AL 35294, USA
| | - Liliana Schaefer
- University of Frankfurt, Institute of Pharmacology and Toxicology, Theodor-Stern Kai 7, Frankfurt 60590, Germany
| | - Renato V Iozzo
- Department of Pathology, Anatomy and Cell Biology and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Nikos K Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26500 Patras, Greece.
| |
Collapse
|
9
|
Versican and the regulation of cell phenotype in disease. Biochim Biophys Acta Gen Subj 2014; 1840:2441-51. [PMID: 24401530 DOI: 10.1016/j.bbagen.2013.12.028] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 12/23/2013] [Indexed: 12/22/2022]
Abstract
BACKGROUND Versican is an extracellular matrix (ECM) proteoglycan that is present in the pericellular environment of most tissues and increases in many different diseases. Versican interacts with cells to influence the ability of cells to proliferate, migrate, adhere and assemble an ECM. SCOPE OF REVIEW The structure of the versican molecule is briefly reviewed and studies highlighting those factors that promote versican synthesis and degradation and their impact on cell phenotype in disease are discussed. Particular attention is given to vascular disease, but other diseases where versican is important are covered as well, most notably different forms of cancers. Attention is given to mechanisms(s) by which versican influences cell behaviors through either direct or indirect processes. Versican produced by either stromal cells or myeloid cells can have a major impact influencing immunity and inflammation. Finally, studies controlling versican accumulation that either delay or inhibit the progression of disease will be highlighted. MAJOR CONCLUSIONS Versican is one component of the ECM that can influence the ability of cells to proliferate, migrate, adhere, and remodel the ECM. Targeting versican as a way to control cell phenotype offers a novel approach in the treatment of disease. SIGNIFICANCE ECM molecules such as versican contribute to the structural integrity of tissues and interact with cells through direct and indirect means to regulate, in part, cellular events that form the basis of disease. This article is part of a Special Issue entitled Matrix-mediated cell behaviour and properties.
Collapse
|