1
|
Zhu X, Olson B, Keith D, Norgard MA, Levasseur PR, Diba P, Protzek S, Li J, Li X, Korzun T, Sattler AL, Buenafe AC, Grossberg AJ, Marks DL. GDF15 and LCN2 for early detection and prognosis of pancreatic cancer. Transl Oncol 2024; 50:102129. [PMID: 39353236 PMCID: PMC11474189 DOI: 10.1016/j.tranon.2024.102129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 08/20/2024] [Accepted: 09/13/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND The prognosis of pancreatic ductal adenocarcinomas (PDAC) remains very poor, emphasizing the critical importance of early detection, where biomarkers offer unique potential. Although growth differentiation factor 15 (GDF15) and Lipocalin 2 (LCN2) have been linked to PDAC, their precise roles as biomarkers are uncertain. METHODS Circulating levels of GDF15 and LCN2 were examined in human PDAC patients, heathy controls, and individuals with benign pancreatic diseases. Circulating levels of IL-6, CA19-9, and neutrophil-to-lymphocyte ratio (NLR) were measured for comparisons. Correlations between PDAC progression and overall survival were assessed. A mouse PDAC model was employed for comprehensive analyses, complementing the human studies by exploring associations with various metabolic and inflammatory parameters. Sensitivity and specificity of the biomarkers were evaluated. FINDINGS Our results demonstrated elevated levels of circulating GDF15 and LCN2 in PDAC patients compared to both healthy controls and individuals with benign pancreatic diseases, with higher GDF15 levels associated with disease progression and increased mortality. In PDAC mice, circulating GDF15 and LCN2 progressively increased, correlating with tumor growth, behavioral manifestations, tissue and molecular pathology, and cachexia development. GDF15 exhibited highly sensitive and specific for PDAC patients compared to CA19-9, IL-6, or NLR, while LCN2 showed even greater sensitivity and specificity in PDAC mice. Combining GDF15 and LCN2, or GDF15 and CA19-9, enhanced sensitivity and specificity. INTERPRETATION Our findings indicate that GDF15 holds promise as a biomarker for early detection and prognosis of PDAC, while LCN2 could strengthen diagnostic panels.
Collapse
Affiliation(s)
- Xinxia Zhu
- Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, Oregon, USA; Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University, Portland, Oregon, USA
| | - Brennan Olson
- Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, Oregon, USA; Medical Scientist Training program, Oregon Health & Science University, Portland, Oregon, USA; Department of Otolaryngology-Head and Neck Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Dove Keith
- Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University, Portland, Oregon, USA
| | - Mason A Norgard
- Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Peter R Levasseur
- Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, Oregon, USA; Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University, Portland, Oregon, USA
| | - Parham Diba
- Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, Oregon, USA; Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University, Portland, Oregon, USA; Medical Scientist Training program, Oregon Health & Science University, Portland, Oregon, USA
| | - Sara Protzek
- Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University, Portland, Oregon, USA
| | - Ju Li
- Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Xiaolin Li
- Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, Oregon, USA; Nutritional Biology, Division of Human Nutrition, Wageningen University, Wageningen, Netherlands
| | - Tetiana Korzun
- Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, Oregon, USA; Medical Scientist Training program, Oregon Health & Science University, Portland, Oregon, USA
| | - Ariana L Sattler
- Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, Oregon, USA; Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University, Portland, Oregon, USA; Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Abigail C Buenafe
- Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Aaron J Grossberg
- Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University, Portland, Oregon, USA; Department of Radiation Medicine, Oregon Health & Science University, Portland, Oregon, USA; Cancer Early Detection Advanced Research Center, Oregon Health & Science University, Portland, Oregon, USA
| | - Daniel L Marks
- Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, Oregon, USA; Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University, Portland, Oregon, USA; Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA.
| |
Collapse
|
2
|
Pergolizzi RG, Brower ST. Molecular Targets for the Diagnosis and Treatment of Pancreatic Cancer. Int J Mol Sci 2024; 25:10843. [PMID: 39409171 PMCID: PMC11476914 DOI: 10.3390/ijms251910843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/01/2024] [Accepted: 10/07/2024] [Indexed: 10/20/2024] Open
Abstract
Pancreatic cancer is one of the most aggressive and lethal forms of cancer, with a five-year survival rate of less than 10%. Despite advances in treatment modalities, the prognosis for pancreatic cancer patients remains poor, highlighting the urgent need for innovative approaches for early diagnosis and targeted therapies. In recent years, there has been significant progress in understanding the molecular mechanisms underlying pancreatic cancer development and progression. This paper reviews the current knowledge of molecular targets for the diagnosis and treatment of pancreatic cancer.
Collapse
Affiliation(s)
| | - Steven T. Brower
- Department of Surgical Oncology and HPB Surgery, Englewood Health, Englewood, NJ 07631, USA
| |
Collapse
|
3
|
Kawai M, Fukuda A, Otomo R, Obata S, Minaga K, Asada M, Umemura A, Uenoyama Y, Hieda N, Morita T, Minami R, Marui S, Yamauchi Y, Nakai Y, Takada Y, Ikuta K, Yoshioka T, Mizukoshi K, Iwane K, Yamakawa G, Namikawa M, Sono M, Nagao M, Maruno T, Nakanishi Y, Hirai M, Kanda N, Shio S, Itani T, Fujii S, Kimura T, Matsumura K, Ohana M, Yazumi S, Kawanami C, Yamashita Y, Marusawa H, Watanabe T, Ito Y, Kudo M, Seno H. Early detection of pancreatic cancer by comprehensive serum miRNA sequencing with automated machine learning. Br J Cancer 2024; 131:1158-1168. [PMID: 39198617 PMCID: PMC11442445 DOI: 10.1038/s41416-024-02794-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 06/26/2024] [Accepted: 07/03/2024] [Indexed: 09/01/2024] Open
Abstract
BACKGROUND Pancreatic cancer is often diagnosed at advanced stages, and early-stage diagnosis of pancreatic cancer is difficult because of nonspecific symptoms and lack of available biomarkers. METHODS We performed comprehensive serum miRNA sequencing of 212 pancreatic cancer patient samples from 14 hospitals and 213 non-cancerous healthy control samples. We randomly classified the pancreatic cancer and control samples into two cohorts: a training cohort (N = 185) and a validation cohort (N = 240). We created ensemble models that combined automated machine learning with 100 highly expressed miRNAs and their combination with CA19-9 and validated the performance of the models in the independent validation cohort. RESULTS The diagnostic model with the combination of the 100 highly expressed miRNAs and CA19-9 could discriminate pancreatic cancer from non-cancer healthy control with high accuracy (area under the curve (AUC), 0.99; sensitivity, 90%; specificity, 98%). We validated high diagnostic accuracy in an independent asymptomatic early-stage (stage 0-I) pancreatic cancer cohort (AUC:0.97; sensitivity, 67%; specificity, 98%). CONCLUSIONS We demonstrate that the 100 highly expressed miRNAs and their combination with CA19-9 could be biomarkers for the specific and early detection of pancreatic cancer.
Collapse
Affiliation(s)
- Munenori Kawai
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, Japan
| | - Akihisa Fukuda
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, Japan.
| | - Ryo Otomo
- Research and Development Division, ARKRAY, Inc., Yousuien-nai, 59 Gansuin-cho, Kamigyo-ku, Kyoto, Japan
| | - Shunsuke Obata
- Research and Development Division, ARKRAY, Inc., Yousuien-nai, 59 Gansuin-cho, Kamigyo-ku, Kyoto, Japan
| | - Kosuke Minaga
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Masanori Asada
- Department of Gastroenterology and Hepatology, Osaka Red Cross Hospital, Osaka, Japan
| | - Atsushi Umemura
- Department of Pharmacology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yoshito Uenoyama
- Department of Gastroenterology and Hepatology, Japanese Red Cross Wakayama Medical Center, Wakayama, Japan
| | - Nobuhiro Hieda
- Department of Gastroenterology, Otsu Red Cross Hospital, Shiga, Japan
| | - Toshihiro Morita
- Department of Gastroenterology and Hepatology, Kitano Hospital, Tazuke Kofukai Medical Research Institute, Osaka, Japan
| | - Ryuki Minami
- Department of Gastroenterology, Tenri Hospital, Nara, Japan
| | - Saiko Marui
- Department of Gastroenterology and Hepatology, Shiga General Hospital, Shiga, Japan
| | - Yuki Yamauchi
- Department of Gastroenterology, Hyogo Prefectural Amagasaki General Medical Center, Amagasaki, Japan
| | - Yoshitaka Nakai
- Department of Gastroenterology and Hepatology, Kyoto Katsura Hospital, Kyoto, Japan
| | - Yutaka Takada
- Department of Gastroenterology and Hepatology, Kobe City Nishi-Kobe Medical Center, Kobe, Japan
| | - Kozo Ikuta
- Division of Gastroenterology, Shinko Hospital, Kobe, Japan
| | - Takuto Yoshioka
- Department of Gastroenterology and Hepatology, Takatsuki Red Cross Hospital, Takatsuki, Japan
| | - Kenta Mizukoshi
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, Japan
| | - Kosuke Iwane
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, Japan
| | - Go Yamakawa
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, Japan
| | - Mio Namikawa
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, Japan
| | - Makoto Sono
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, Japan
| | - Munemasa Nagao
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, Japan
| | - Takahisa Maruno
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, Japan
| | - Yuki Nakanishi
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, Japan
| | - Mitsuharu Hirai
- Research and Development Division, ARKRAY, Inc., Yousuien-nai, 59 Gansuin-cho, Kamigyo-ku, Kyoto, Japan
| | - Naoki Kanda
- Department of Gastroenterology and Hepatology, Takatsuki Red Cross Hospital, Takatsuki, Japan
| | - Seiji Shio
- Division of Gastroenterology, Shinko Hospital, Kobe, Japan
| | - Toshinao Itani
- Department of Gastroenterology and Hepatology, Kobe City Nishi-Kobe Medical Center, Kobe, Japan
| | - Shigehiko Fujii
- Department of Gastroenterology and Hepatology, Kyoto Katsura Hospital, Kyoto, Japan
| | - Toshiyuki Kimura
- Department of Gastroenterology, Hyogo Prefectural Amagasaki General Medical Center, Amagasaki, Japan
| | - Kazuyoshi Matsumura
- Department of Gastroenterology and Hepatology, Shiga General Hospital, Shiga, Japan
| | - Masaya Ohana
- Department of Gastroenterology, Tenri Hospital, Nara, Japan
| | - Shujiro Yazumi
- Department of Gastroenterology and Hepatology, Kitano Hospital, Tazuke Kofukai Medical Research Institute, Osaka, Japan
| | - Chiharu Kawanami
- Department of Gastroenterology, Otsu Red Cross Hospital, Shiga, Japan
| | - Yukitaka Yamashita
- Department of Gastroenterology and Hepatology, Japanese Red Cross Wakayama Medical Center, Wakayama, Japan
| | - Hiroyuki Marusawa
- Department of Gastroenterology and Hepatology, Osaka Red Cross Hospital, Osaka, Japan
| | - Tomohiro Watanabe
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Yoshito Ito
- Department of Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Masatoshi Kudo
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Hiroshi Seno
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, Japan
| |
Collapse
|
4
|
Yuan J, Yan K, Guo Y, Li Y. MicroRNAs: emerging biomarkers and therapeutic targets in pancreatic cancer. Front Mol Biosci 2024; 11:1457875. [PMID: 39290995 PMCID: PMC11406015 DOI: 10.3389/fmolb.2024.1457875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/23/2024] [Indexed: 09/19/2024] Open
Abstract
Pancreatic cancer (PC) is a highly malignant disease with high aggressiveness and a dismal prognosis, which is challenging to diagnose clinically early and gains low benefit from standard therapies. MicroRNAs (miRNAs) have become a hot topic in oncology research. Current evidence indicates that miRNAs are regulators involved in the entire process of PC, providing new diagnostic and therapeutic strategies for this fatal disease. Related research has been rapidly updated, making it necessary to review it to propose new directions and ideas and provide guidance for the development of precision medicine for PC. We reviewed the relevant literature through Pubmed, Embase, Web of Science and Medline, showing that abnormally expressed miRNAs in PC patients have the potential to be used as biomarkers for diagnosis and prognosis, highlighting the excellent prospect of combining miRNAs with traditional therapies, and the effective application of these factors for PC, especially miRNA mimics and inhibitors. MiRNAs participate in the entire process of PC and play important roles in diagnosis, treatment and prognosis. They are potential factors in conquering PC in the future.
Collapse
Affiliation(s)
- Jiaqian Yuan
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Kaiqi Yan
- Department of Materials Engineering and Science, Ningbo University of Technology, Ningbo, China
| | - Yong Guo
- Department of Medical Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Yan Li
- Department of Medical Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
5
|
Przybyszewski O, Mik M, Nowicki M, Kusiński M, Mikołajczyk-Solińska M, Śliwińska A. Using microRNAs Networks to Understand Pancreatic Cancer-A Literature Review. Biomedicines 2024; 12:1713. [PMID: 39200178 PMCID: PMC11351910 DOI: 10.3390/biomedicines12081713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/26/2024] [Accepted: 07/28/2024] [Indexed: 09/02/2024] Open
Abstract
Pancreatic cancer is a severe disease, challenging to diagnose and treat, and thereby characterized by a poor prognosis and a high mortality rate. Pancreatic ductal adenocarcinoma (PDAC) represents approximately 90% of pancreatic cancer cases, while other cases include neuroendocrine carcinoma. Despite the growing knowledge of the pathophysiology of this cancer, the mortality rate caused by it has not been effectively reduced. Recently, microRNAs have aroused great interest among scientists and clinicians, as they are negative regulators of gene expression, which participate in many processes, including those related to the development of pancreatic cancer. The aim of this review is to show how microRNAs (miRNAs) affect key signaling pathways and related cellular processes in pancreatic cancer development, progression, diagnosis and treatment. We included the results of in vitro studies, animal model of pancreatic cancer and those performed on blood, saliva and tumor tissue isolated from patients suffering from PDAC. Our investigation identified numerous dysregulated miRNAs involved in KRAS, JAK/STAT, PI3/AKT, Wnt/β-catenin and TGF-β signaling pathways participating in cell cycle control, proliferation, differentiation, apoptosis and metastasis. Moreover, some miRNAs (miRNA-23a, miRNA-24, miRNA-29c, miRNA-216a) seem to be engaged in a crosstalk between signaling pathways. Evidence concerning the utility of microRNAs in the diagnosis and therapy of this cancer is poor. Therefore, despite growing knowledge of the involvement of miRNAs in several processes associated with pancreatic cancer, we are beginning to recognize and understand their role and usefulness in clinical practice.
Collapse
Affiliation(s)
- Oskar Przybyszewski
- Department of Nucleic Acid Biochemistry, Medical University of Lodz, 251 Pomorska St., 92-213 Lodz, Poland
| | - Michał Mik
- Department of General and Colorectal Surgery, Medical University of Lodz, 113 Stefana Żeromskiego St., 90-549 Lodz, Poland; (M.M.); (M.N.)
| | - Michał Nowicki
- Department of General and Colorectal Surgery, Medical University of Lodz, 113 Stefana Żeromskiego St., 90-549 Lodz, Poland; (M.M.); (M.N.)
| | - Michał Kusiński
- Department of Endocrinological, General and Oncological Surgery, Medical University of Lodz, 62 Pabianicka St., 93-513 Lodz, Poland;
| | - Melania Mikołajczyk-Solińska
- Department of Internal Medicine, Diabetology and Clinical Pharmacology, Medical University of Lodz, 251 Pomorska St., 92-213 Lodz, Poland;
| | - Agnieszka Śliwińska
- Department of Nucleic Acid Biochemistry, Medical University of Lodz, 251 Pomorska St., 92-213 Lodz, Poland
| |
Collapse
|
6
|
Wang C, Cai H, Cai Q, Wu J, Stolzenberg-Solomon R, Guo X, Zhu C, Gao YT, Berlin J, Ye F, Zheng W, Setiawan VW, Shu XO. Circulating microRNAs in association with pancreatic cancer risk within 5 years. Int J Cancer 2024; 155:519-531. [PMID: 38602070 PMCID: PMC11214275 DOI: 10.1002/ijc.34956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/08/2024] [Accepted: 03/12/2024] [Indexed: 04/12/2024]
Abstract
Early detection is critical for improving pancreatic cancer prognosis. Our study aims to identify circulating microRNAs (miRNAs) associated with pancreatic cancer risk. The two-stage study used plasma samples collected ≤5 years prior to cancer diagnosis, from case-control studies nested in five prospective cohort studies. The discovery stage included 185 case-control pairs from the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial. Replication stage samples comprised 277 pairs from Shanghai Women's Health Study/Shanghai Men's Health Study, Southern Community Cohort Study, and Multiethnic Cohort Study. Seven hundred and ninety-eight miRNAs were measured using the NanoString nCounter Analysis System. Odds ratios (OR) and 95% confidence intervals (CI) for per 10% change in miRNAs in association with pancreatic cancer risk were derived from conditional logistic regression analysis in discovery and replication studies, separately, and then meta-analyzed. Stratified analysis was conducted by age at diagnosis (<65/≥65 years) and time interval between sample collection and diagnosis (≤2/>2 years). In the discovery stage, 120 risk associated miRNAs were identified at p < .05. Three were validated in the replication stage: hsa-miR-199a-3p/hsa-miR-199b-3p, hsa-miR-767-5p, and hsa-miR-191-5p, with respective ORs (95% CI) being 0.89 (0.84-0.95), 1.08 (1.02-1.13), and 0.90 (0.85-0.95). Five additional miRNAs, hsa-miR-640, hsa-miR-874-5p, hsa-miR-1299, hsa-miR-22-3p, and hsa-miR-449b-5p, were validated among patients diagnosed at ≥65 years, with OR (95% CI) of 1.23 (1.09-1.39), 1.33 (1.16-1.52), 1.25 (1.09-1.43), 1.28 (1.12-1.46), 0.76 (0.65-0.89), and 1.22 (1.07-1.39), respectively. The miRNA targets were enriched in pancreatic carcinogenesis/progression-related pathways. Our study suggests that circulating miRNAs may identify individuals at high risk for pancreatic cancer ≤5 years prior to diagnosis, indicating its potential utility in cancer screening and surveillance.
Collapse
Affiliation(s)
- Cong Wang
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Hui Cai
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Qiuyin Cai
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jie Wu
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Rachael Stolzenberg-Solomon
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Xingyi Guo
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Claire Zhu
- Division of Cancer Prevention, National Cancer Institute, Bethesda, MD, USA
| | - Yu-Tang Gao
- Department of Epidemiology, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jordan Berlin
- Division of Hematology and Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Fei Ye
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Veronica Wendy Setiawan
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
7
|
Imamura T, Komatsu S, Nishibeppu K, Kiuchi J, Ohashi T, Konishi H, Shiozaki A, Yamamoto Y, Moriumura R, Ikoma H, Ochiai T, Otsuji E. Urinary microRNA-210-3p as a novel and non-invasive biomarker for the detection of pancreatic cancer, including intraductal papillary mucinous carcinoma. BMC Cancer 2024; 24:907. [PMID: 39069624 DOI: 10.1186/s12885-024-12676-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 07/23/2024] [Indexed: 07/30/2024] Open
Abstract
BACKGROUND This study aims to explore novel microRNAs in urine for screening and predicting clinical characteristics in pancreatic cancer (PC) patients using a microRNA array-based approach. METHODS We used the Toray® 3D-Gene microRNA array-based approach to compare urinary levels between PC patients and healthy volunteers. RESULTS (1) Four oncogenic microRNAs (miR-744-5p, miR-572, miR-210-3p, and miR-575) that were highly upregulated in the urine of PC patients compared to healthy individuals were identified by comprehensive microRNA array analysis. (2) Test-scale analysis by quantitative RT-PCR for each group of 20 cases showed that miR-210-3p was significantly upregulated in the urine of PC patients compared to healthy individuals (P = 0.009). (3) Validation analysis (58 PC patients and 35 healthy individuals) confirmed that miR-210-3p was significantly upregulated in the urine of PC patients compared to healthy individuals (P < 0.001, area under the receiver operating characteristic curve = 0.79, sensitivity: 0.828, specificity: 0.743). We differentiated PC patients into invasive ductal carcinoma (IDCa) and intraductal papillary mucinous carcinoma (IPMC) groups. In addition to urinary miR-210-3p levels being upregulated in IDCa over healthy individuals (P = 0.009), urinary miR-210-3p levels were also elevated in IPMC over healthy individuals (P = 0.0018). Urinary miR-210-3p can differentiate IPMC from healthy individuals by a cutoff of 8.02 with an AUC value of 0.762, sensitivity of 94%, and specificity of 63%. (4) To test whether urinary miR210-3p levels reflected plasma miR-210-3p levels, we examined the correlation between urinary and plasma levels. Spearman's correlation analysis showed a moderate positive correlation (ρ = 0.64, P = 0.005) between miR-210-3p expression in plasma and urine. CONCLUSIONS Urinary miR-210-3p is a promising, non-invasive diagnostic biomarker of PC, including IPMC. TRIAL REGISTRATION Not applicable.
Collapse
MESH Headings
- Humans
- MicroRNAs/urine
- MicroRNAs/blood
- MicroRNAs/genetics
- Female
- Male
- Biomarkers, Tumor/urine
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/blood
- Pancreatic Neoplasms/urine
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/diagnosis
- Pancreatic Neoplasms/blood
- Middle Aged
- Aged
- Adenocarcinoma, Mucinous/urine
- Adenocarcinoma, Mucinous/genetics
- Adenocarcinoma, Mucinous/diagnosis
- ROC Curve
- Case-Control Studies
- Gene Expression Regulation, Neoplastic
- Adult
- Carcinoma, Pancreatic Ductal/urine
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/diagnosis
- Carcinoma, Pancreatic Ductal/blood
Collapse
Affiliation(s)
- Taisuke Imamura
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii- cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Shuhei Komatsu
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii- cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan.
| | - Keiji Nishibeppu
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii- cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Jun Kiuchi
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii- cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Takuma Ohashi
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii- cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Hirotaka Konishi
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii- cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Atsushi Shiozaki
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii- cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Yusuke Yamamoto
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii- cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Ryo Moriumura
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii- cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Hisashi Ikoma
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii- cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Toshiya Ochiai
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii- cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Eigo Otsuji
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, 465 Kajii- cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| |
Collapse
|
8
|
Mottini C, Auciello FR, Manni I, Pilarsky C, Caputo D, Caracciolo G, Rossetta A, Di Gennaro E, Budillon A, Blandino G, Roca MS, Piaggio G. The cross-talk between the macro and micro-environment in precursor lesions of pancreatic cancer leads to new and promising circulating biomarkers. J Exp Clin Cancer Res 2024; 43:198. [PMID: 39020414 PMCID: PMC11256648 DOI: 10.1186/s13046-024-03117-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 07/06/2024] [Indexed: 07/19/2024] Open
Abstract
Pancreatic cancer (PC) is a clinically challenging tumor to combat due to its advanced stage at diagnosis as well as its resistance to currently available therapies. The absence of early symptoms and known detectable biomarkers renders this disease incredibly difficult to detect/manage. Recent advances in the understanding of PC biology have highlighted the importance of cancer-immune cell interactions, not only in the tumor micro-environment but also in distant systemic sites, like the bone marrow, spleen and circulating immune cells, the so-called macro-environment. The response of the macro-environment is emerging as a determining factor in tumor development by contributing to the formation of an increasingly immunogenic micro-environment promoting tumor homeostasis and progression. We will summarize the key events associated with the feedback loop between the tumor immune micro-environment (TIME) and the tumor immune macroenvironment (TIMaE) in pancreatic precancerous lesions along with how it regulates disease development and progression. In addition, liquid biopsy biomarkers capable of diagnosing PC at an early stage of onset will also be discussed. A clearer understanding of the early crosstalk between micro-environment and macro-environment could contribute to identifying new molecular therapeutic targets and biomarkers, consequently improving early PC diagnosis and treatment.
Collapse
Affiliation(s)
- Carla Mottini
- Department of Research, Diagnosis and Innovative Technologies, UOSD SAFU, IRCCS Regina Elena National Cancer Institute, 00144, Rome, Italy
| | - Francesca Romana Auciello
- UOC Translational Oncology Research, IRCSS Regina Elena National Cancer Institute, 00144, Rome, Italy
| | - Isabella Manni
- Department of Research, Diagnosis and Innovative Technologies, UOSD SAFU, IRCCS Regina Elena National Cancer Institute, 00144, Rome, Italy
| | | | | | - Giulio Caracciolo
- Dipartimento Di Medicina Molecolare Sapienza, Università Di Roma, Rome, Italy
| | | | - Elena Di Gennaro
- Experimental Pharmacology, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Via M. Semmola, 80131, Naples, Italy
| | - Alfredo Budillon
- Scientific Directorate, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131, Naples, Italy
| | - Giovanni Blandino
- UOC Translational Oncology Research, IRCSS Regina Elena National Cancer Institute, 00144, Rome, Italy
| | - Maria Serena Roca
- Experimental Pharmacology, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Via M. Semmola, 80131, Naples, Italy.
| | - Giulia Piaggio
- Department of Research, Diagnosis and Innovative Technologies, UOSD SAFU, IRCCS Regina Elena National Cancer Institute, 00144, Rome, Italy
| |
Collapse
|
9
|
Sakaue T, Koga H, Iwamoto H, Nakamura T, Masuda A, Tanaka T, Suzuki H, Suga H, Hirai S, Hisaka T, Naito Y, Ohta K, Nakamura KI, Selvendiran K, Okabe Y, Torimura T, Kawaguchi T. Pancreatic Juice-Derived microRNA-4516 and microRNA-4674 as Novel Biomarkers for Pancreatic Ductal Adenocarcinoma. GASTRO HEP ADVANCES 2024; 3:761-772. [PMID: 39280916 PMCID: PMC11401553 DOI: 10.1016/j.gastha.2024.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 04/24/2024] [Indexed: 09/18/2024]
Abstract
Background and Aims Precise diagnostic biomarkers are urgently required for pancreatic ductal adenocarcinoma (PDAC). Therefore, the aim of this study was to identify PDAC-specific exosomal microRNAs (Ex-miRs) from pancreatic juice (PJ) and evaluate their diagnostic potential. Methods Exosomes in PJ and serum were extracted using ultracentrifugation and confirmed morphologically and biochemically. PDAC-specific Ex-miRs were identified using our original miR arrays, in which "Ex-miRs derived from the PJ of patients with chronic pancreatitis (CP)" were subtracted from Ex-miRs commonly expressed in both "human PDAC cell lines" and "the PJ of patients with PDAC." We verified the expression of these miRs using quantitative real-time reverse transcription polymerase chain reaction. Changes in serum Ex-miR levels were assessed in 2 patients with PDAC who underwent curative resection. In situ hybridization was performed to directly visualize PDAC-specific miR expression in cancer cells. Results We identified novel Ex-miR-4516 and Ex-miR-4674 from the PJ of patients with PDAC, and they showed 80.0% and 81.8% sensitivity, 80.8% and 73.3% specificity, and 90.9% and 80.8% accuracy, respectively. The sensitivity, specificity, and accuracy of a triple assay of Ex-miR-4516/4674/PJ cytology increased to 93.3%, 81.8%, and 88.5%, respectively. In serum samples (n = 88), the sensitivity, specificity, and accuracy of Ex-miR-4516 were 97.5%, 34.3%, and 68%, respectively. Presurgical levels of serum-derived Ex-miR-4516 in 2 patients with relatively early disease stages declined after curative resection. In situ hybridization demonstrated that Ex-miR-4516 expression exclusively occurred in cancer cells. Conclusion Liquid assays using the in situ-proven Ex-miR-4516 may have a high potential for detecting relatively early-stage PDAC and monitoring its clinical course.
Collapse
Affiliation(s)
- Takahiko Sakaue
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
- Liver Cancer Research Division, Kurume University Research Center for Innovative Cancer Therapy, Kurume, Japan
- Division of Gynecologic Oncology, Department of Obstetrics/Gynecology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Hironori Koga
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
- Liver Cancer Research Division, Kurume University Research Center for Innovative Cancer Therapy, Kurume, Japan
| | - Hideki Iwamoto
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
- Liver Cancer Research Division, Kurume University Research Center for Innovative Cancer Therapy, Kurume, Japan
| | - Toru Nakamura
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
- Liver Cancer Research Division, Kurume University Research Center for Innovative Cancer Therapy, Kurume, Japan
| | - Atsutaka Masuda
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
- Liver Cancer Research Division, Kurume University Research Center for Innovative Cancer Therapy, Kurume, Japan
| | - Toshimitsu Tanaka
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
- Liver Cancer Research Division, Kurume University Research Center for Innovative Cancer Therapy, Kurume, Japan
- Center for Multidisciplinary Treatment of Cancer, Kurume University Hospital, Kurume, Japan
| | - Hiroyuki Suzuki
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
- Liver Cancer Research Division, Kurume University Research Center for Innovative Cancer Therapy, Kurume, Japan
| | - Hideya Suga
- Department of Gastroenterology and Hepatology, Yanagawa Hospital, Yanagawa, Japan
| | - Shingo Hirai
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Toru Hisaka
- Department of Surgery, Kurume University School of Medicine, Kurume, Japan
| | - Yoshiki Naito
- Department of Clinical Laboratory Medicine, Kurume University Hospital, Kurume, Japan
| | - Keisuke Ohta
- Division of Microscopic and Developmental Anatomy, Department of Anatomy, Kurume University School of Medicine, Kurume, Japan
| | - Kei-Ichiro Nakamura
- Division of Microscopic and Developmental Anatomy, Department of Anatomy, Kurume University School of Medicine, Kurume, Japan
| | - Karuppaiyah Selvendiran
- Division of Gynecologic Oncology, Department of Obstetrics/Gynecology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Yoshinobu Okabe
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Takuji Torimura
- Department of Gastroenterology, Omuta City Hospital, Omuta, Japan
| | - Takumi Kawaguchi
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| |
Collapse
|
10
|
Takahashi K, Inuzuka T, Shimizu Y, Sawamoto K, Taniue K, Ono Y, Asai F, Koyama K, Sato H, Kawabata H, Iwamoto H, Yamakita K, Kitano Y, Teramoto T, Fujiya M, Fujii S, Mizukami Y, Okumura T. Liquid Biopsy for Pancreatic Cancer by Serum Extracellular Vesicle-Encapsulated Long Noncoding RNA HEVEPA. Pancreas 2024; 53:e395-e404. [PMID: 38416857 DOI: 10.1097/mpa.0000000000002315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/01/2024]
Abstract
OBJECTIVES The role of long noncoding RNAs (lncRNAs) in pancreatic ductal adenocarcinoma (PDAC) remain unclear. Extracellular vesicle (EV)-encapsulated RNAs could be effective targets for liquid biopsy. We aimed to identify previously unknown EV-encapsulated lncRNAs in PDAC and establish highly accurate methods for isolating EVs. MATERIALS AND METHODS Extracellular vesicles were isolated using existing and newly developed methods, namely, PEViA-UC and PEViA-IP, from serum samples of 20 patients with PDAC, 22 patients with intraductal papillary mucinous neoplasms, and 21 healthy individuals. Extracellular vesicle lncRNA expression was analyzed using digital PCR. RESULTS Gene expression analysis using cDNA microarray revealed a highly expressed lncRNA, HEVEPA , in serum EVs from patients with PDAC. We established PEViA-UC and PEViA-IP using PEViA reagent, ultracentrifugation, and immunoprecipitation. Although detection of EV-encapsulated HEVEPA using existing methods is challenging, PEViA-UC and PEViA-IP detected EV HEVEPA , which was highly expressed in patients with PDAC compared with non-PDAC patients. The detection sensitivity for discriminating PDAC from non-PDAC using the combination of HEVEPA and HULC , which are highly expressed lncRNAs in PDAC, and carbohydrate antigen 19-9 (CA19-9), was higher than that of HEVEPA , HULC , or CA19-9 alone. CONCLUSIONS Extracellular vesicle lncRNAs isolated using PEViA-IP and CA19-9 together could be effective targets in liquid biopsy for PDAC diagnosis.
Collapse
Affiliation(s)
- Kenji Takahashi
- From the Division of Gastroenterology, Department of Medicine, Asahikawa Medical University, Asahikawa, Hokkaido
| | | | | | - Kazuki Sawamoto
- From the Division of Gastroenterology, Department of Medicine, Asahikawa Medical University, Asahikawa, Hokkaido
| | | | - Yusuke Ono
- Institute of Biomedical Research, Sapporo Higashi Tokushukai Hospital, Sapporo
| | - Fumi Asai
- H.U. Group Research Institute G.K., Akiruno
| | - Kazuya Koyama
- From the Division of Gastroenterology, Department of Medicine, Asahikawa Medical University, Asahikawa, Hokkaido
| | - Hiroki Sato
- From the Division of Gastroenterology, Department of Medicine, Asahikawa Medical University, Asahikawa, Hokkaido
| | - Hidemasa Kawabata
- From the Division of Gastroenterology, Department of Medicine, Asahikawa Medical University, Asahikawa, Hokkaido
| | - Hidetaka Iwamoto
- From the Division of Gastroenterology, Department of Medicine, Asahikawa Medical University, Asahikawa, Hokkaido
| | - Keisuke Yamakita
- From the Division of Gastroenterology, Department of Medicine, Asahikawa Medical University, Asahikawa, Hokkaido
| | - Yohei Kitano
- From the Division of Gastroenterology, Department of Medicine, Asahikawa Medical University, Asahikawa, Hokkaido
| | - Takashi Teramoto
- Division of Mathematics, Asahikawa Medical University, Asahikawa, Hokkaido
| | - Mikihiro Fujiya
- From the Division of Gastroenterology, Department of Medicine, Asahikawa Medical University, Asahikawa, Hokkaido
| | - Satoshi Fujii
- Department of Laboratory Medicine, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Yusuke Mizukami
- From the Division of Gastroenterology, Department of Medicine, Asahikawa Medical University, Asahikawa, Hokkaido
| | - Toshikatsu Okumura
- From the Division of Gastroenterology, Department of Medicine, Asahikawa Medical University, Asahikawa, Hokkaido
| |
Collapse
|
11
|
Kikuchi Y, Shimada H, Yamasaki F, Yamashita T, Araki K, Horimoto K, Yajima S, Yashiro M, Yokoi K, Cho H, Ehira T, Nakahara K, Yasuda H, Isobe K, Hayashida T, Hatakeyama S, Akakura K, Aoki D, Nomura H, Tada Y, Yoshimatsu Y, Miyachi H, Takebayashi C, Hanamura I, Takahashi H. Clinical practice guidelines for molecular tumor marker, 2nd edition review part 2. Int J Clin Oncol 2024; 29:512-534. [PMID: 38493447 DOI: 10.1007/s10147-024-02497-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 02/21/2024] [Indexed: 03/19/2024]
Abstract
In recent years, rapid advancement in gene/protein analysis technology has resulted in target molecule identification that may be useful in cancer treatment. Therefore, "Clinical Practice Guidelines for Molecular Tumor Marker, Second Edition" was published in Japan in September 2021. These guidelines were established to align the clinical usefulness of external diagnostic products with the evaluation criteria of the Pharmaceuticals and Medical Devices Agency. The guidelines were scoped for each tumor, and a clinical questionnaire was developed based on a serious clinical problem. This guideline was based on a careful review of the evidence obtained through a literature search, and recommendations were identified following the recommended grades of the Medical Information Network Distribution Services (Minds). Therefore, this guideline can be a tool for cancer treatment in clinical practice. We have already reported the review portion of "Clinical Practice Guidelines for Molecular Tumor Marker, Second Edition" as Part 1. Here, we present the English version of each part of the Clinical Practice Guidelines for Molecular Tumor Marker, Second Edition.
Collapse
Affiliation(s)
| | - Hideaki Shimada
- Department of Clinical Oncology, Toho University, Tokyo, Japan.
- Department of Surgery, Toho University, Tokyo, Japan.
| | - Fumiyuki Yamasaki
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Taku Yamashita
- Department of Otorhinolaryngology-Head and Neck Surgery, Kitasato University School of Medicine, Kanagawa, Japan
| | - Koji Araki
- Department of Otorhinolaryngology-Head and Neck Surgery, National Defense Medical College, Saitama, Japan
| | - Kohei Horimoto
- Department of Dermatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | | | - Masakazu Yashiro
- Department of Molecular Oncology and Therapeutics, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Keigo Yokoi
- Department of Lower Gastrointestinal Surgery, Kitasato University School of Medicine, Kanagawa, Japan
| | - Haruhiko Cho
- Department of Surgery, Tokyo Metropolitan Komagome Hospital, Tokyo, Japan
| | - Takuya Ehira
- Department of Gastroenterology, St. Marianna University School of Medicine, Kanagawa, Japan
| | - Kazunari Nakahara
- Department of Gastroenterology, St. Marianna University School of Medicine, Kanagawa, Japan
| | - Hiroshi Yasuda
- Department of Gastroenterology, St. Marianna University School of Medicine, Kanagawa, Japan
| | - Kazutoshi Isobe
- Division of Respiratory Medicine, Department of Internal Medicine (Omori), Toho University, Tokyo, Japan
| | - Tetsu Hayashida
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Shingo Hatakeyama
- Department of Urology, Hirosaki University Graduate School of Medicine, Aomori, Japan
| | | | - Daisuke Aoki
- International University of Health and Welfare Graduate School, Tokyo, Japan
| | - Hiroyuki Nomura
- Department of Obstetrics and Gynecology, School of Medicine, Fujita Health University, Aichi, Japan
| | - Yuji Tada
- Department of Pulmonology, School of Medicine, International University of Health and Welfare, Chiba, Japan
| | - Yuki Yoshimatsu
- Department of Patient-Derived Cancer Model, Tochigi Cancer Center Research Institute, Tochigi, Japan
| | - Hayato Miyachi
- Faculty of Clinical Laboratory Sciences, Nitobe Bunka College, Tokyo, Japan
| | - Chiaki Takebayashi
- Division of Hematology and Oncology, Department of Internal Medicine (Omori), Toho University, Tokyo, Japan
| | - Ichiro Hanamura
- Division of Hematology, Department of Internal Medicine, Aichi Medical University, Aichi, Japan
| | | |
Collapse
|
12
|
Gu X, Minko T. Targeted Nanoparticle-Based Diagnostic and Treatment Options for Pancreatic Cancer. Cancers (Basel) 2024; 16:1589. [PMID: 38672671 PMCID: PMC11048786 DOI: 10.3390/cancers16081589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC), one of the deadliest cancers, presents significant challenges in diagnosis and treatment due to its aggressive, metastatic nature and lack of early detection methods. A key obstacle in PDAC treatment is the highly complex tumor environment characterized by dense stroma surrounding the tumor, which hinders effective drug delivery. Nanotechnology can offer innovative solutions to these challenges, particularly in creating novel drug delivery systems for existing anticancer drugs for PDAC, such as gemcitabine and paclitaxel. By using customization methods such as incorporating conjugated targeting ligands, tumor-penetrating peptides, and therapeutic nucleic acids, these nanoparticle-based systems enhance drug solubility, extend circulation time, improve tumor targeting, and control drug release, thereby minimizing side effects and toxicity in healthy tissues. Moreover, nanoparticles have also shown potential in precise diagnostic methods for PDAC. This literature review will delve into targeted mechanisms, pathways, and approaches in treating pancreatic cancer. Additional emphasis is placed on the study of nanoparticle-based delivery systems, with a brief mention of those in clinical trials. Overall, the overview illustrates the significant advances in nanomedicine, underscoring its role in transcending the constraints of conventional PDAC therapies and diagnostics.
Collapse
Affiliation(s)
- Xin Gu
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08554, USA
| | - Tamara Minko
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08554, USA
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| |
Collapse
|
13
|
Taniguchi T, Ideno N, Araki T, Miura S, Yamamoto M, Nakafusa T, Higashijima N, Yamamoto T, Tamura K, Nakamura S, Abe T, Ikenaga N, Nakata K, Ohuchida K, Oda Y, Ohtsuka T, Nakamura M. MicroRNA-20a in extracellular vesicles derived from duodenal fluid is a possible biomarker for pancreatic ductal adenocarcinoma. DEN OPEN 2024; 4:e333. [PMID: 38434144 PMCID: PMC10908371 DOI: 10.1002/deo2.333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/27/2023] [Accepted: 12/30/2023] [Indexed: 03/05/2024]
Abstract
Background Pancreatic ductal adenocarcinoma (PDAC) has a high mortality rate owing to its late diagnosis and aggression. In addition, there are relatively few minimally invasive screening methods for the early detection of PDAC, making the identification of biomarkers for this disease a critical priority. Recent studies have reported that microRNAs in extracellular vesicles (EV-miRs) from bodily fluids can be useful for the diagnosis of PDACs. Given this, we designed this study to evaluate the utility of cancer EVs extracted from duodenal fluid (DF) and their resident EV-miRs as potential biomarkers for the detection of PDAC. Methods EV-miRs were evaluated and identified in the supernatants of various pancreatic cancer cell lines (Panc-1, SUIT2, and MIAPaca2), human pancreatic duct epithelial cells, and the DF from patients with PDAC and healthy controls. EVs were extracted using ultracentrifugation and the relative expression of EV-miR-20a was quantified. Results We collected a total of 34 DF samples (27 PDAC patients and seven controls) for evaluation and our data suggest that the relative expression levels of EV-miR-20a were significantly higher in patients with PDAC than in controls (p = 0.0025). In addition, EV-miR-20a expression could discriminate PDAC from control patients regardless of the location of the tumor with an area under the curve values of 0.88 and 0.88, respectively. Conclusions We confirmed the presence of EVs in the DF and suggest that the expression of EV-miR-20a in these samples may act as a potential diagnostic biomarker for PDAC.
Collapse
Affiliation(s)
- Takashi Taniguchi
- Department of Surgery and OncologyGraduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Noboru Ideno
- Department of Surgery and OncologyGraduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Tomoyuki Araki
- Department of Surgery and OncologyGraduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Shun Miura
- Department of Surgery and OncologyGraduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Masahiro Yamamoto
- Department of Surgery and OncologyGraduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Tomoki Nakafusa
- Department of Surgery and OncologyGraduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Nobuhiro Higashijima
- Department of Surgery and OncologyGraduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Takeo Yamamoto
- Department of Anatomic PathologyGraduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Koji Tamura
- Department of Surgery and OncologyGraduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - So Nakamura
- Department of Surgery and OncologyGraduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Toshiya Abe
- Department of Surgery and OncologyGraduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Naoki Ikenaga
- Department of Surgery and OncologyGraduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Kohei Nakata
- Department of Surgery and OncologyGraduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Kenoki Ohuchida
- Department of Surgery and OncologyGraduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Yoshinao Oda
- Department of Anatomic PathologyGraduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Takao Ohtsuka
- Department of Digestive SurgeryBreast and Thyroid SurgeryGraduate School of Medical and Dental SciencesKagoshima UniversityKagoshimaJapan
| | - Masafumi Nakamura
- Department of Surgery and OncologyGraduate School of Medical SciencesKyushu UniversityFukuokaJapan
| |
Collapse
|
14
|
Stosic K, Senar OA, Tarfouss J, Bouchart C, Navez J, Van Laethem JL, Arsenijevic T. A Comprehensive Review of the Potential Role of Liquid Biopsy as a Diagnostic, Prognostic, and Predictive Biomarker in Pancreatic Ductal Adenocarcinoma. Cells 2023; 13:3. [PMID: 38201207 PMCID: PMC10778087 DOI: 10.3390/cells13010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
Pancreatic ductal adenocarcinoma is one of the most lethal malignant diseases, with a mortality rate being close to incidence. Due to its heterogeneity and plasticity, as well as the lack of distinct symptoms in the early phases, it is very often diagnosed at an advanced stage, resulting in poor prognosis. Traditional tissue biopsies remain the gold standard for making a diagnosis, but have an obvious disadvantage in their inapplicability for frequent sampling. Blood-based biopsies represent a non-invasive method which potentially offers easy and repeated sampling, leading to the early detection and real-time monitoring of the disease and hopefully an accurate prognosis. Given the urgent need for a reliable biomarker that can estimate a patient's condition and response to an assigned treatment, blood-based biopsies are emerging as a potential new tool for improving patients' survival and surveillance. In this article, we discuss the current advances and challenges in using liquid biopsies for pancreatic cancer, focusing on circulating tumour DNA (ctDNA), extracellular vesicles (EVs), and circulating tumour cells (CTCs), and compare the performance and reliability of different biomarkers and combinations of biomarkers.
Collapse
Affiliation(s)
- Kosta Stosic
- Laboratory of Experimental Gastroenterology, Université Libre de Bruxelles, 1070 Brussels, Belgium (O.A.S.); (C.B.)
| | - Oier Azurmendi Senar
- Laboratory of Experimental Gastroenterology, Université Libre de Bruxelles, 1070 Brussels, Belgium (O.A.S.); (C.B.)
| | - Jawad Tarfouss
- Laboratory of Experimental Gastroenterology, Université Libre de Bruxelles, 1070 Brussels, Belgium (O.A.S.); (C.B.)
| | - Christelle Bouchart
- Laboratory of Experimental Gastroenterology, Université Libre de Bruxelles, 1070 Brussels, Belgium (O.A.S.); (C.B.)
- Department of Radiation Oncology, Hopital Universitaire de Bruxelles (H.U.B.), Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - Julie Navez
- Laboratory of Experimental Gastroenterology, Université Libre de Bruxelles, 1070 Brussels, Belgium (O.A.S.); (C.B.)
- Department of Hepato-Biliary-Pancreatic Surgery, Hopital Universitaire de Bruxelles (H.U.B.), Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - Jean-Luc Van Laethem
- Laboratory of Experimental Gastroenterology, Université Libre de Bruxelles, 1070 Brussels, Belgium (O.A.S.); (C.B.)
- Department of Gastroenterology, Hepatology and Digestive Oncology, Hopital Universitaire de Bruxelles (H.U.B.), Université Libre de Bruxelles (ULB), Route de Lennik 808, 1070 Brussels, Belgium
| | - Tatjana Arsenijevic
- Laboratory of Experimental Gastroenterology, Université Libre de Bruxelles, 1070 Brussels, Belgium (O.A.S.); (C.B.)
- Department of Gastroenterology, Hepatology and Digestive Oncology, Hopital Universitaire de Bruxelles (H.U.B.), Université Libre de Bruxelles (ULB), Route de Lennik 808, 1070 Brussels, Belgium
| |
Collapse
|
15
|
Mato Prado M, Puik JR, Castellano L, López-Jiménez E, Liu DSK, Meijer LL, Le Large TYS, Rees E, Funel N, Sivakumar S, Pereira SP, Kazemier G, Zonderhuis BM, Erdmann JI, Swijnenburg RJ, Frilling A, Jiao LR, Stebbing J, Giovannetti E, Krell J, Frampton AE. A bile-based microRNA signature for differentiating malignant from benign pancreaticobiliary disease. Exp Hematol Oncol 2023; 12:101. [PMID: 38041102 PMCID: PMC10693033 DOI: 10.1186/s40164-023-00458-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/12/2023] [Indexed: 12/03/2023] Open
Abstract
Differentiating between pancreatic ductal adenocarcinoma (PDAC) and cholangiocarcinoma (CCA) is crucial for the appropriate course of treatment, especially with advancements in the role of neoadjuvant chemotherapies for PDAC, compared to CCA. Furthermore, benign pancreaticobiliary diseases can mimic malignant disease, and indeterminate lesions may require repeated investigations to achieve a diagnosis. As bile flows in close proximity to these lesions, we aimed to establish a bile-based microRNA (miRNA) signature to discriminate between malignant and benign pancreaticobiliary diseases. We performed miRNA discovery by global profiling of 800 miRNAs using the NanoString nCounter platform in prospectively collected bile samples from malignant (n = 43) and benign (n = 14) pancreaticobiliary disease. Differentially expressed miRNAs were validated by RT-qPCR and further assessed in an independent validation cohort of bile from malignant (n = 37) and benign (n = 38) pancreaticobiliary disease. MiR-148a-3p was identified as a discriminatory marker that effectively distinguished malignant from benign pancreaticobiliary disease in the discovery cohort (AUC = 0.797 [95% CI 0.68-0.92]), the validation cohort (AUC = 0.772 [95% CI 0.66-0.88]), and in the combined cohorts (AUC = 0.752 [95% CI 0.67-0.84]). We also established a two-miRNA signature (miR-125b-5p and miR-194-5p) that distinguished PDAC from CCA (validation: AUC = 0.815 [95% CI 0.67-0.96]; and combined cohorts: AUC = 0.814 [95% CI 0.70-0.93]). Our research stands as the largest, multicentric, global profiling study of miRNAs in the bile from patients with pancreaticobiliary disease. We demonstrated their potential as clinically useful diagnostic tools for the detection and differentiation of malignant pancreaticobiliary disease. These bile miRNA biomarkers could be developed to complement current approaches for diagnosing pancreaticobiliary cancers.
Collapse
Affiliation(s)
- Mireia Mato Prado
- Division of Cancer, Department of Surgery & Cancer, Imperial College London, London, UK
- UK Dementia Research Institute, Institute of Neurology, University College London, London, UK
| | - Jisce R Puik
- Department of Surgery, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Leandro Castellano
- Division of Cancer, Department of Surgery & Cancer, Imperial College London, London, UK
- School of Life Sciences, University of Sussex, John Maynard Smith Building, Falmer, Brighton, BN1 9QG, UK
| | - Elena López-Jiménez
- Division of Cancer, Department of Surgery & Cancer, Imperial College London, London, UK
| | - Daniel S K Liu
- Division of Cancer, Department of Surgery & Cancer, Imperial College London, London, UK
| | - Laura L Meijer
- Department of Surgery, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Tessa Y S Le Large
- Department of Surgery, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Eleanor Rees
- Division of Cancer, Department of Surgery & Cancer, Imperial College London, London, UK
| | - Niccola Funel
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Shivan Sivakumar
- Oncology Department and Institute of Immunology and Immunotherapy, Birmingham Medical School, University of Birmingham, Birmingham, B15 2TT, UK
| | - Stephen P Pereira
- Institute for Liver & Digestive Health, Royal Free Hospital Campus, University College London, London, UK
| | - Geert Kazemier
- Department of Surgery, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Babs M Zonderhuis
- Department of Surgery, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Joris I Erdmann
- Department of Surgery, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Rutger-Jan Swijnenburg
- Department of Surgery, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Andrea Frilling
- HPB Surgical Unit, Department of Surgery & Cancer, Imperial College London, London, UK
| | - Long R Jiao
- HPB Surgical Unit, Department of Surgery & Cancer, Imperial College London, London, UK
| | - Justin Stebbing
- Division of Cancer, Department of Surgery & Cancer, Imperial College London, London, UK
- Department of Biomedical Sciences, Anglia Ruskin University, Cambridge, UK
| | - Elisa Giovannetti
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands.
- Cancer Pharmacology Lab, Fondazione Pisana per la Scienza, Pisa, Italy.
| | - Jonathan Krell
- Division of Cancer, Department of Surgery & Cancer, Imperial College London, London, UK.
| | - Adam E Frampton
- Division of Cancer, Department of Surgery & Cancer, Imperial College London, London, UK.
- HPB Surgical Unit, Department of Surgery & Cancer, Imperial College London, London, UK.
- HPB Surgical Unit, Royal Surrey NHS Foundation Trust, Guildford, Surrey, UK.
- Section of Oncology, Dept. of Clinical & Experimental Medicine, FHMS, University of Surrey, Guildford, UK.
| |
Collapse
|
16
|
Ranković B, Hauptman N. Circulating microRNA Panels for Detection of Liver Cancers and Liver-Metastasizing Primary Cancers. Int J Mol Sci 2023; 24:15451. [PMID: 37895131 PMCID: PMC10607808 DOI: 10.3390/ijms242015451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/14/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
Malignant liver tumors, including primary malignant liver tumors and liver metastases, are among the most frequent malignancies worldwide. The disease carries a poor prognosis and poor overall survival, particularly in cases involving liver metastases. Consequently, the early detection and precise differentiation of malignant liver tumors are of paramount importance for making informed decisions regarding patient treatment. Significant research efforts are currently directed towards the development of diagnostic tools for different types of cancer using minimally invasive techniques. A prominent area of focus within this research is the evaluation of circulating microRNA, for which dysregulated expression is well documented in different cancers. Combining microRNAs in panels using serum or plasma samples derived from blood holds great promise for better sensitivity and specificity for detection of certain types of cancer.
Collapse
Affiliation(s)
| | - Nina Hauptman
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Korytkova 2, SI-1000 Ljubljana, Slovenia;
| |
Collapse
|
17
|
Álvarez-Hilario LG, Salmerón-Bárcenas EG, Ávila-López PA, Hernández-Montes G, Aréchaga-Ocampo E, Herrera-Goepfert R, Albores-Saavedra J, Manzano-Robleda MDC, Saldívar-Cerón HI, Martínez-Frías SP, Thompson-Bonilla MDR, Vargas M, Hernández-Rivas R. Circulating miRNAs as Noninvasive Biomarkers for PDAC Diagnosis and Prognosis in Mexico. Int J Mol Sci 2023; 24:15193. [PMID: 37894871 PMCID: PMC10607652 DOI: 10.3390/ijms242015193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/20/2023] [Accepted: 10/08/2023] [Indexed: 10/29/2023] Open
Abstract
Among malignant neoplasms, pancreatic ductal adenocarcinoma (PDAC) has one of the highest fatality rates due to its late detection. Therefore, it is essential to discover a noninvasive, early, specific, and sensitive diagnostic method. MicroRNAs (miRNAs) are attractive biomarkers because they are accessible, highly specific, and sensitive. It is crucial to find miRNAs that could be used as possible biomarkers because PDAC is the eighth most common cause of cancer death in Mexico. With the help of microRNA microarrays, differentially expressed miRNAs (DEmiRNAs) were found in PDAC tissues. The presence of these DEmiRNAs in the plasma of Mexican patients with PDAC was determined using RT-qPCR. Receiver operating characteristic curve analysis was performed to determine the diagnostic capacity of these DEmiRNAs. Gene Expression Omnibus datasets (GEO) were employed to verify our results. The Prisma V8 statistical analysis program was used. Four DEmiRNAs in plasma from PDAC patients and microarray tissues were found. Serum samples from patients with PDAC were used to validate their overexpression in GEO databases. We discovered a new panel of the two miRNAs miR-222-3p and miR-221-3p that could be used to diagnose PDAC, and when miR-221-3p and miR-222-3p were overexpressed, survival rates decreased. Therefore, miR-222-3p and miR-221-3p might be employed as noninvasive indicators for the diagnosis and survival of PDAC in Mexican patients.
Collapse
Affiliation(s)
- Lissuly Guadalupe Álvarez-Hilario
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de Mexico C.P. 07360, Mexico; (L.G.Á.-H.); (E.G.S.-B.); (P.A.Á.-L.); (H.I.S.-C.); (M.V.)
| | - Eric Genaro Salmerón-Bárcenas
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de Mexico C.P. 07360, Mexico; (L.G.Á.-H.); (E.G.S.-B.); (P.A.Á.-L.); (H.I.S.-C.); (M.V.)
| | - Pedro Antonio Ávila-López
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de Mexico C.P. 07360, Mexico; (L.G.Á.-H.); (E.G.S.-B.); (P.A.Á.-L.); (H.I.S.-C.); (M.V.)
| | - Georgina Hernández-Montes
- Coordinación de la Investigación Científica, Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de Mexico C.P. 14080, Mexico;
| | - Elena Aréchaga-Ocampo
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana, Unidad Cuajimalpa, Ciudad de Mexico C.P. 05300, Mexico;
| | - Roberto Herrera-Goepfert
- Departamento de Patología, Instituto Nacional de Cancerología, Ciudad de Mexico C.P. 14080, Mexico;
| | - Jorge Albores-Saavedra
- Departamento de Patología, Medica Sur Clínica y Fundación, Ciudad de Mexico C.P. 14050, Mexico;
| | | | - Héctor Iván Saldívar-Cerón
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de Mexico C.P. 07360, Mexico; (L.G.Á.-H.); (E.G.S.-B.); (P.A.Á.-L.); (H.I.S.-C.); (M.V.)
| | - Sandra Paola Martínez-Frías
- Departamento de Infectología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Avenida Vasco de Quiroga No.15, Colonia Belisario Domínguez Sección XVI, Ciudad de Mexico C.P. 14080, Mexico
| | | | - Miguel Vargas
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de Mexico C.P. 07360, Mexico; (L.G.Á.-H.); (E.G.S.-B.); (P.A.Á.-L.); (H.I.S.-C.); (M.V.)
| | - Rosaura Hernández-Rivas
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de Mexico C.P. 07360, Mexico; (L.G.Á.-H.); (E.G.S.-B.); (P.A.Á.-L.); (H.I.S.-C.); (M.V.)
| |
Collapse
|
18
|
Takahashi K, Takeda Y, Ono Y, Isomoto H, Mizukami Y. Current status of molecular diagnostic approaches using liquid biopsy. J Gastroenterol 2023; 58:834-847. [PMID: 37470859 PMCID: PMC10423147 DOI: 10.1007/s00535-023-02024-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/08/2023] [Indexed: 07/21/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive and lethal cancers, and developing an efficient and reliable approach for its early-stage diagnosis is urgently needed. Precancerous lesions of PDAC, such as pancreatic intraepithelial neoplasia (PanIN) and intraductal papillary mucinous neoplasms (IPMN), arise through multiple steps of driver gene alterations in KRAS, TP53, CDKN2A, SMAD4, or GNAS. Hallmark mutations play a role in tumor initiation and progression, and their detection in bodily fluids is crucial for diagnosis. Recently, liquid biopsy has gained attention as an approach to complement pathological diagnosis, and in addition to mutation signatures in cell-free DNA, cell-free RNA, and extracellular vesicles have been investigated as potential diagnostic and prognostic markers. Integrating such molecular information to revise the diagnostic criteria for pancreatic cancer can enable a better understanding of the pathogenesis underlying inter-patient heterogeneity, such as sensitivity to chemotherapy and disease outcomes. This review discusses the current diagnostic approaches and clinical applications of genetic analysis in pancreatic cancer and diagnostic attempts by liquid biopsy and molecular analyses using pancreatic juice, duodenal fluid, and blood samples. Emerging knowledge in the rapidly advancing liquid biopsy field is promising for molecular profiling and diagnosing pancreatic diseases with significant diversity.
Collapse
Affiliation(s)
- Kenji Takahashi
- Division of Metabolism and Biosystemic Science, Gastroenterology, and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, 2-1 Midorigaoka Higashi, Asahikawa, Hokkaido, 078-8510, Japan.
| | - Yohei Takeda
- Division of Medicine and Clinical Science, Department of Multidisciplinary Internal Medicine, Faculty of Medicine, Tottori University, Tottori, Japan
| | - Yusuke Ono
- Division of Metabolism and Biosystemic Science, Gastroenterology, and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, 2-1 Midorigaoka Higashi, Asahikawa, Hokkaido, 078-8510, Japan
- Institute of Biomedical Research, Sapporo Higashi Tokushukai Hospital, Sapporo, Japan
| | - Hajime Isomoto
- Division of Medicine and Clinical Science, Department of Multidisciplinary Internal Medicine, Faculty of Medicine, Tottori University, Tottori, Japan
| | - Yusuke Mizukami
- Division of Metabolism and Biosystemic Science, Gastroenterology, and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, 2-1 Midorigaoka Higashi, Asahikawa, Hokkaido, 078-8510, Japan
- Institute of Biomedical Research, Sapporo Higashi Tokushukai Hospital, Sapporo, Japan
| |
Collapse
|
19
|
Khan IA, Saraya A. Circulating MicroRNAs as Noninvasive Diagnostic and Prognostic Biomarkers in Pancreatic Cancer: A Review. J Gastrointest Cancer 2023; 54:720-730. [PMID: 36322366 DOI: 10.1007/s12029-022-00877-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2022] [Indexed: 11/05/2022]
Abstract
Pancreatic cancer (PC) is one of the most lethal human cancers. Currently, most PC cases are diagnosed at an already advanced stage. Early detection of PC is critical to improving survival rates. Therefore, there is an urgent need to identify biomarkers for the early detection of PC. Recently, circulating miRNAs in whole blood and other body fluids have been reported as promising biomarkers for the early detection of various cancers, including PC. Furthermore, due to minimal invasiveness and technical availability, circulating miRNAs hold promise for further wide usage. As a potential novel molecular marker, circulating miRNAs not only represent promising noninvasive diagnostic and prognostic tools but could also improve the evaluation of tumor classification, metastasis, and curative effect. The purpose of this review is to outline the available information regarding circulating miRNAs as biomarkers for the early detection of PC.
Collapse
Affiliation(s)
- Imteyaz Ahmad Khan
- Department of Gastroenterology and Human Nutrition Unit, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Anoop Saraya
- Department of Gastroenterology and Human Nutrition Unit, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India.
| |
Collapse
|
20
|
Gupta J, Suliman M, Ali R, Margiana R, Hjazi A, Alsaab HO, Qasim MT, Hussien BM, Ahmed M. Double-edged sword role of miRNA-633 and miRNA-181 in human cancers. Pathol Res Pract 2023; 248:154701. [PMID: 37542859 DOI: 10.1016/j.prp.2023.154701] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/16/2023] [Accepted: 07/18/2023] [Indexed: 08/07/2023]
Abstract
Understanding the function and mode of operation of microRNAs (miRNAs) in cancer is of growing interest. The short non-coding RNAs known as miRNAs, which target mRNA in multicellular organisms, are described as controlling essential cellular processes. The miR-181 family and miR-633 are well-known miRNAs that play a key role in the development and metastasis of tumor cells. They may facilitate either tumor-suppressive or oncogenic function in malignant cells, according to mounting evidence. Metastatic cells that are closely linked to cancer cell migration, invasion, and angiogenesis can be identified by abnormal levels of miR-181 and miR-633. Numerous studies have demonstrated their capacity to control drug resistance, cell growth, apoptosis, and the epithelial-mesenchymal transition (EMT) and metastasis process. Interestingly, the levels of miR-181 and miR-633 and their potential target genes in the basic cellular process can vary depending on the type of cancer cells and their gene expression profile. Such miRNAs' interactions with other non-coding RNAs such as long non-coding RNAs and circular RNAs can influence tumor behaviors. Herein, we concentrated on the multifaceted roles of miR-181 and miR-633 and potential targets in human tumorigenesis, ranging from cell growth and metastasis to drug resistance.
Collapse
Affiliation(s)
- Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, U. P., India.
| | - Muath Suliman
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Rida Ali
- Rawalpindi Medical University, Rawalpindi, Pakistan
| | - Ria Margiana
- Department of Anatomy, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia; Master's Programme Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia; Andrology Program, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia; Dr. Soetomo General Academic Hospital, Surabaya, Indonesia.
| | - Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Hashem O Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, Taif University, Taif, Saudi Arabia
| | - Maytham T Qasim
- Department of Anesthesia, College of Health and Medical Technololgy, Al-Ayen University, Thi-Qar, Iraq
| | - Beneen M Hussien
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Muhja Ahmed
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| |
Collapse
|
21
|
Zhao R, Han Z, Zhou H, Xue Y, Chen X, Cao X. Diagnostic and prognostic role of circRNAs in pancreatic cancer: a meta-analysis. Front Oncol 2023; 13:1174577. [PMID: 37361594 PMCID: PMC10285410 DOI: 10.3389/fonc.2023.1174577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/22/2023] [Indexed: 06/28/2023] Open
Abstract
Background Circular RNAs (circRNAs) are types of endogenous noncoding RNAs produced by selective splicing that are expressed highly specifically in various organisms and tissues and have numerous clinical implications in the regulation of cancer development and progression. Since circRNA is resistant to digestion by ribonucleases and has a long half-life, there is increasing evidence that circRNA can be used as an ideal candidate biomarker for the early diagnosis and prognosis of tumors. In this study, we aimed to reveal the diagnostic and prognostic value of circRNA in human pancreatic cancer (PC). Methods A systematic search for publications from inception to 22 July 2022 was conducted on Embase, PubMed, Web of Science (WOS), and the Cochrane Library databases. Available studies that correlated circRNA expression in tissue or serum with the clinicopathological, diagnostic, and prognostic values of PC patients were enrolled. Odds ratios (ORs) and corresponding 95% confidence intervals (CIs) were used to evaluate clinical pathological characteristics. Area under the curve (AUC), sensitivity, and specificity were adopted to assess diagnostic value. Hazard ratios (HRs) were utilized to assess disease-free survival (DFS) and overall survival (OS). Results This meta-analysis enrolled 32 eligible studies, including six on diagnosis and 21 on prognosis, which accounted for 2,396 cases from 245 references. For clinical parameters, high expression of carcinogenic circRNA was significantly associated with degree of differentiation (OR = 1.85, 95% CI = 1.47-2.34), TNM stage (OR = 0.46, 95% CI = 0.35-0.62), lymph node metastasis (OR = 0.39, 95% CI = 0.32-0.48), and distant metastasis (OR = 0.26, 95% CI = 0.13-0.51). As for clinical diagnostic utility, circRNA could discriminate patients with pancreatic cancer from controls, with an AUC of 0.86 (95% CI: 0.82-0.88), a relatively high sensitivity of 84%, and a specificity of 80% in tissue. In terms of prognostic significance, carcinogenic circRNA was correlated with poor OS (HR = 2.00, 95% CI: 1.76-2.26) and DFS (HR = 1.96, 95% CI: 1.47-2.62). Conclusion In summary, this study demonstrated that circRNA may act as a significant diagnostic and prognostic biomarker for pancreatic cancer.
Collapse
Affiliation(s)
- Ruihua Zhao
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhuo Han
- Department of General Surgery, Tangdu Hospital, The Air Force Medical University, Xi’an, China
| | - Haiting Zhou
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Yaru Xue
- Department of Pediatric Medicine, Northwest Women’s and Children’s Hospital, Xi’an, China
| | - Xiaobing Chen
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Xinguang Cao
- Department of Digestive Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
22
|
Bararia A, Chakraborty P, Roy P, Chattopadhay BK, Das A, Chatterjee A, Sikdar N. Emerging role of non-invasive and liquid biopsy biomarkers in pancreatic cancer. World J Gastroenterol 2023; 29:2241-2260. [PMID: 37124888 PMCID: PMC10134423 DOI: 10.3748/wjg.v29.i15.2241] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/02/2023] [Accepted: 03/15/2023] [Indexed: 04/14/2023] Open
Abstract
A global increase in the incidence of pancreatic cancer (PanCa) presents a major concern and health burden. The traditional tissue-based diagnostic techniques provided a major way forward for molecular diagnostics; however, they face limitations based on diagnosis-associated difficulties and concerns surrounding tissue availability in the clinical setting. Late disease development with asymptomatic behavior is a drawback in the case of existing diagnostic procedures. The capability of cell free markers in discriminating PanCa from autoimmune pancreatitis and chronic pancreatitis along with other precancerous lesions can be a boon to clinicians. Early-stage diagnosis of PanCa can be achieved only if these biomarkers specifically discriminate the non-carcinogenic disease stage from malignancy with respect to tumor stages. In this review, we comprehensively described the non-invasive disease detection approaches and why these approaches are gaining popularity for their early-stage diagnostic capability and associated clinical feasibility.
Collapse
Affiliation(s)
- Akash Bararia
- Human Genetics Unit, Indian Statistical Institute, Kolkata 700108, India
| | - Prosenjeet Chakraborty
- Department of Molecular Biosciences, SVYASA School of Yoga and Naturopathy, Bangalore 560105, India
| | - Paromita Roy
- Department of Pathology, Tata Medical Center, Kolkata 700160, India
| | | | - Amlan Das
- Department of Biochemistry, Royal Global University, Assam 781035, India
| | - Aniruddha Chatterjee
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9061, New Zealand
- School of Health Sciences and Technology, University of Petroleum and Energy Studies, Dehradun 248007, India
| | - Nilabja Sikdar
- Human Genetics Unit, Indian Statistical Institute, Kolkata 700108, India
| |
Collapse
|
23
|
Wnuk J, Strzelczyk JK, Gisterek I. Clinical Value of Circulating miRNA in Diagnosis, Prognosis, Screening and Monitoring Therapy of Pancreatic Ductal Adenocarcinoma-A Review of the Literature. Int J Mol Sci 2023; 24:ijms24065113. [PMID: 36982210 PMCID: PMC10049684 DOI: 10.3390/ijms24065113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/28/2023] [Accepted: 03/04/2023] [Indexed: 03/30/2023] Open
Abstract
Pancreatic cancer (PC) is considered to be the seventh most common cause of cancer-related deaths. The number of deaths caused by PC is estimated to increase in the future. An early diagnosis of PC is crucial for improving treatment outcomes. The most common histopathological subtype of PC is pancreatic ductal adenocarcinoma (PDAC). MicroRNAs (miRNAs)-which are endogenous non-coding RNAs involved in the posttranscriptional regulation of multiple gene expression-constitute useful diagnostic and prognostic biomarkers in various neoplasms, including PDAC. Circulating miRNAs detected in a patient's serum or plasma are drawing more and more attention. Hence, this review aims at evaluating the clinical value of circulating miRNA in the screening, diagnosis, prognosis and monitoring of pancreatic ductal adenocarcinoma therapy.
Collapse
Affiliation(s)
- Jakub Wnuk
- Department of Oncology and Radiotherapy, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 35 Ceglana St., 40-515 Katowice, Poland
| | - Joanna Katarzyna Strzelczyk
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 19 Jordana St., 41-808 Zabrze, Poland
| | - Iwona Gisterek
- Department of Oncology and Radiotherapy, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 35 Ceglana St., 40-515 Katowice, Poland
| |
Collapse
|
24
|
Zhang W, Jiang T, Xie K. Epigenetic reprogramming in pancreatic premalignancy and clinical implications. Front Oncol 2023; 13:1024151. [PMID: 36874143 PMCID: PMC9978013 DOI: 10.3389/fonc.2023.1024151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 02/01/2023] [Indexed: 02/18/2023] Open
Abstract
Pancreatic cancer (PC) is the most lethal human cancer, with less than 10% 5-year survival. Pancreatic premalignancy is a genetic and epigenomic disease and is linked to PC initiation. Pancreatic premalignant lesions include pancreatic intraepithelial neoplasia (PanIN), intraductal papillary mucinous neoplasm (IPMN), and mucinous cystic neoplasm (MCN), with pancreatic acinar-to-ductal metaplasia (ADM) as the major source of pancreatic premalignant lesions. Emerging evidence reveals that an epigenetic dysregulation is an early event in pancreatic tumorigenesis. The molecular mechanisms of epigenetic inheritance include chromatin remodeling; modifications in histone, DNA, and RNA; non-coding RNA expression; and alternative splicing of RNA. Changes in those epigenetic modifications contribute to the most notable alterations in chromatin structure and promoter accessibility, thus leading to the silence of tumor suppressor genes and/or activation of oncogenes. The expression profiles of various epigenetic molecules provide a promising opportunity for biomarker development for early diagnosis of PC and novel targeted treatment strategies. However, how the alterations in epigenetic regulatory machinery regulate epigenetic reprogramming in pancreatic premalignant lesions and the different stages of their initiation needs further investigation. This review will summarize the current knowledge of epigenetic reprogramming in pancreatic premalignant initiation and progression, and its clinical applications as detection and diagnostic biomarkers and therapeutic targets in PC.
Collapse
Affiliation(s)
- Wei Zhang
- Center for Pancreatic Cancer Research, School of Medicine, The South China University of Technology, Guangzhou, China.,Department of Pathology, School of Medicine, The South China University of Technology, Guangzhou, China
| | - Tingting Jiang
- Center for Pancreatic Cancer Research, School of Medicine, The South China University of Technology, Guangzhou, China.,Department of Pathology, School of Medicine, The South China University of Technology, Guangzhou, China
| | - Keping Xie
- Center for Pancreatic Cancer Research, School of Medicine, The South China University of Technology, Guangzhou, China.,Department of Pathology, School of Medicine, The South China University of Technology, Guangzhou, China
| |
Collapse
|
25
|
Seimiya T, Otsuka M, Fujishiro M. Roles of circular RNAs in the pathogenesis and treatment of pancreatic cancer. Front Cell Dev Biol 2022; 10:1023332. [PMID: 36467402 PMCID: PMC9712786 DOI: 10.3389/fcell.2022.1023332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/07/2022] [Indexed: 08/29/2023] Open
Abstract
Circular RNAs are single-stranded RNAs with a covalently closed structure formed by the process of back-splicing. Aberrant expression of circular RNAs contributes to the pathogenesis of a wide range of cancers. Pancreatic cancer is one of the most lethal cancers due to diagnostic difficulties and limited therapeutic options. Circular RNAs are emerging as novel diagnostic biomarkers and therapeutic targets for pancreatic cancer. Moreover, recent advances in the therapeutic application of engineered circular RNAs have provided a promising approach to overcoming pancreatic cancer. This review discusses the roles of circular RNAs in the pathogenesis of pancreatic cancer and in potential treatment applications and their usefulness as diagnostic biomarkers.
Collapse
Affiliation(s)
| | - Motoyuki Otsuka
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | | |
Collapse
|
26
|
Zhao B, Zhao B, Chen F. Diagnostic value of serum carbohydrate antigen 19-9 in pancreatic cancer: a systematic review and meta-analysis. Eur J Gastroenterol Hepatol 2022; 34:891-904. [PMID: 35913776 DOI: 10.1097/meg.0000000000002415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Carbohydrate antigen 19-9 (CA19-9) is the most widely used serum biomarker for detecting pancreatic cancer (PC). Since early diagnosis is important for improving PC prognosis, a comprehensive understanding of the diagnostic performance of CA19-9 is critical. This study focused on comprehensive evaluation of the efficacy of CA19-9 in PC diagnosis. Literature research was based on the seven databases. Studies released from January 2002 to January 2022 focused on the efficacy of CA19-9 in the detection of PC were included. Summarized sensitivity, specificity, and sROC/accuracy of discrimination (AUC) were estimated. Potential publication bias was measured with Funnel plot and Egger's test. Meta-regression was performed to detect possible causes of heterogeneity. Subgroup analysis was used to assess the diagnostic efficacy of CA19-9 under different conditions. The study is registered on PROSPERO (CRD42021253861). Seventy-nine studies containing 20 991 participants who met the criteria were included. The pooled sensitivity, specificity, and AUC of CA19-9 in diagnose PC were 72% (95% CI, 71-73%), 86% (95% CI, 85-86%), and 0.8474 (95% CI, 0.8272-0.8676). Subgroup analysis suggested that the diagnostic efficiency of CA19-9 in studies with healthy controls was the highest, followed by intraductal papillary mucinous neoplasm, in pancreatitis and diabetes were consistent with the overall result. Our analysis showed that serum CA19-9 had high and stable diagnostic efficacy for PC (not affected by diabetes). Subgroup analysis showed that serum CA19-9 yielded highest effectiveness in the diagnosis of pancreatic precancerous lesions, which indicated an irreplaceable clinical value in the early detection and warning value for PC.
Collapse
Affiliation(s)
- Boqiang Zhao
- Xi'an Jiaotong University Health Science Center, Xi'an, China
- The First School of Clinical Medicine, Xi'an, China
| | - Boyue Zhao
- Xi'an Jiaotong University Health Science Center, Xi'an, China
- Department of Epidemiology and Biostatistics, School of Public Health, Xi'an, China
| | - Fangyao Chen
- Xi'an Jiaotong University Health Science Center, Xi'an, China
- Department of Epidemiology and Biostatistics, School of Public Health, Xi'an, China
| |
Collapse
|
27
|
Vanek P, Urban O, Zoundjiekpon V, Falt P. Current Screening Strategies for Pancreatic Cancer. Biomedicines 2022; 10:biomedicines10092056. [PMID: 36140157 PMCID: PMC9495594 DOI: 10.3390/biomedicines10092056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a dreaded malignancy with a dismal 5-year survival rate despite maximal efforts on optimizing treatment strategies. Radical surgery is the only potential curative procedure. Unfortunately, the majority of patients are diagnosed with locally advanced or metastatic disease, which renders them ineligible for curative resection. Early detection of PDAC is thus considered to be the most effective way to improve survival. In this regard, pancreatic screening has been proposed to improve results by detecting asymptomatic stages of PDAC and its precursors. There is now evidence of benefits of systematic surveillance in high-risk individuals, and the current guidelines emphasize the potential of screening to affect overall survival in individuals with genetic susceptibility syndromes or familial occurrence of PDAC. Here we aim to summarize the current knowledge about screening strategies for PDAC, including the latest epidemiological data, risk factors, associated hereditary syndromes, available screening modalities, benefits, limitations, as well as management implications.
Collapse
|
28
|
Prinz C, Fehring L, Frese R. MicroRNAs as Indicators of Malignancy in Pancreatic Ductal Adenocarcinoma (PDAC) and Cystic Pancreatic Lesions. Cells 2022; 11:cells11152374. [PMID: 35954223 PMCID: PMC9368175 DOI: 10.3390/cells11152374] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/25/2022] [Accepted: 07/30/2022] [Indexed: 12/04/2022] Open
Abstract
The dysregulation of microRNAs has recently been associated with cancer development and progression in pancreatic ductal adenocarcinoma (PDAC) and cystic pancreatic lesions. In solid pancreatic tumor tissue, the dysregulation of miR-146, miR-196a/b, miR-198, miR-217, miR-409, and miR-490, as well as miR-1290 has been investigated in tumor biopsies of patients with PDAC and was reported to predict cancer presence. However, the value of the predictive biomarkers may further be increased during clinical conditions suggesting cancer development such as hyperinsulinemia or onset of diabetes. In this specific context, the dysregulation of miR-486 and miR-196 in tumors has been observed in the tumor tissue of PDAC patients with newly diagnosed diabetes mellitus. Moreover, miR-1256 is dysregulated in pancreatic cancer, possibly due to the interaction with long non-coding RNA molecules that seem to affect cell-cycle control and diabetes manifestation in PDAC patients, and, thus, these three markers may be of special or “sentinel value”. In blood samples, Next-generation sequencing (NGS) has also identified a set of microRNAs (miR-20a, miR-31-5p, miR-24, miR-25, miR-99a, miR-185, and miR-191) that seem to differentiate patients with pancreatic cancer remarkably from healthy controls, but limited data exist in this context regarding the prediction of cancer presences and outcomes. In contrast to solid pancreatic tumors, in cystic pancreatic cancer lesions, as well as premalignant lesions (such as intraductal papillary neoplasia (IPMN) or mucinous-cystic adenomatous cysts (MCAC)), the dysregulation of a completely different expression panel of miR-31-5p, miR-483-5p, miR-99a-5p, and miR-375 has been found to be of high clinical value in differentiating benign from malignant lesions. Interestingly, signal transduction pathways associated with miR-dysregulation seem to be entirely different in patients with pancreatic cysts when compared to PDAC. Overall, the determination of these different dysregulation “panels” in solid tumors, pancreatic cysts, obtained via fine-needle aspirate biopsies and/or in blood samples at the onset or during the treatment of pancreatic diseases, seems to be a reasonable candidate approach for predicting cancer presence, cancer development, and even therapy responses.
Collapse
|
29
|
Yang CY, Lin RT, Chen CY, Yeh CC, Tseng CM, Huang WH, Lee TY, Chu CS, Lin JT. Accuracy of simultaneous measurement of serum biomarkers: Carbohydrate antigen 19-9, pancreatic elastase-1, amylase, and lipase for diagnosing pancreatic ductal adenocarcinoma. J Formos Med Assoc 2022; 121:2601-2607. [DOI: 10.1016/j.jfma.2022.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 05/05/2022] [Accepted: 07/11/2022] [Indexed: 12/22/2022]
|
30
|
Ahmad E, Ali A, Nimisha, Kumar Sharma A, Apurva, Kumar A, Dar GM, Sumayya Abdul Sattar R, Verma R, Mahajan B, Singh Saluja S. Molecular markers in cancer. Clin Chim Acta 2022; 532:95-114. [DOI: https:/doi.org/10.1016/j.cca.2022.05.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
|
31
|
Nesteruk K, Levink IJM, de Vries E, Visser IJ, Peppelenbosch MP, Cahen DL, Fuhler GM, Bruno MJ. Extracellular vesicle-derived microRNAs in pancreatic juice as biomarkers for detection of pancreatic ductal adenocarcinoma. Pancreatology 2022; 22:626-635. [PMID: 35613957 DOI: 10.1016/j.pan.2022.04.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 04/15/2022] [Accepted: 04/25/2022] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Pancreatic ductal adenocarcinoma (PDAC) is usually diagnosed in an advanced stage, with minimal likelihood of long-term survival. Only a small subset of patients are diagnosed with early (T1) disease. Early detection is challenging due to the late onset of symptoms and limited visibility of sub-centimeter cancers on imaging. A novel approach is to support the clinical diagnosis with molecular markers. MicroRNA derived from extracellular vehicles (EVs) in blood has shown promise as a potential biomarker for pancreatic neoplasia, but microRNA derived from pancreatic juice (PJ) may be a more sensitive biomarker, given that is in close contact with ductal cells from which PDAC arises. This study aims to evaluate and compare the performance of PJ- and serum-derived EV-miRNA for the detection of PDAC. METHODS PJ was collected from the duodenum during EUS after secretin stimulation from 54 patients with PDAC and 118 non-malignant controls. Serum was available for a subset of these individuals. MiR-16, miR-21, miR-25, miR-155 and miR-210 derived from EVs isolated from PJ and serum were analyzed by qPCR, and serum CA19-9 levels were determined by electrochemiluminescence immunoassay. For statistical analysis, either a Mann-Whitney U test or a Wilcoxon Signed Rank test was performed. ROC curves and AUC were used to assess the sensitivity and specificity of miR expression for PDAC detection. RESULTS Expression of EV-miR-21, EV-miR-25 and EV-miR-16 were increased in cases vs controls in PJ, while only EV-miR-210 was increased in serum. The potential to detect PC was good for a combination of PJ EV-miR-21, EV-miR-25, EV-miR-16 and serum miR-210, CA-19-9, with an area under the curve of 0.91, a specificity of 84.2% and a sensitivity of 81.5%. CONCLUSION Detection of miRNA from EVs in PJ is feasible. A combined panel of PJ EV-miR-21, EV-miR-25, EV-miR-16, and serum EV-miR-210 and CA19-9 distinguishes cases with PDAC from controls undergoing surveillance with a specificity of 81.5% and sensitivity of 84.2%.
Collapse
Affiliation(s)
- Kateryna Nesteruk
- Department of Gastroenterology & Hepatology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Iris J M Levink
- Department of Gastroenterology & Hepatology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Esther de Vries
- Department of Gastroenterology & Hepatology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Isis J Visser
- Department of Gastroenterology & Hepatology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Maikel P Peppelenbosch
- Department of Gastroenterology & Hepatology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Djuna L Cahen
- Department of Gastroenterology & Hepatology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Gwenny M Fuhler
- Department of Gastroenterology & Hepatology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Marco J Bruno
- Department of Gastroenterology & Hepatology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands.
| |
Collapse
|
32
|
Ahmad E, Ali A, Nimisha, Kumar Sharma A, Apurva, Kumar A, Mehdi G, Sumayya Abdul Sattar R, Verma R, Mahajan B, Singh Saluja S. Molecular markers in cancer. Clin Chim Acta 2022; 532:95-114. [DOI: 10.1016/j.cca.2022.05.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/31/2022] [Accepted: 05/31/2022] [Indexed: 12/01/2022]
|
33
|
Huang Q, Zhang Y, Zheng Y, Yang H, Yang Y, Mo Y, Li L, Zhang H. Molecular Mechanism of Curcumin and Its Analogs as Multifunctional Compounds against Pancreatic Cancer. Nutr Cancer 2022; 74:3096-3108. [PMID: 35583289 DOI: 10.1080/01635581.2022.2071451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 03/30/2022] [Accepted: 04/25/2022] [Indexed: 12/24/2022]
Abstract
Pancreatic cancer (PC) is one of the most common malignant tumors with a poor prognosis and high mortality. Surgical resection is the most effective treatment for PC; however, only a minority of patients have resectable tumors. Chemotherapy is the primary treatment for PC. Curcumin is a natural chemical substance obtained from plants with a wide range of pharmacological activities. Research evidence suggests that curcumin can influence PC development through multiple molecular mechanisms. The synthesis of novel curcumin analogs and preparation of curcumin nano-formulations are effective strategies to overcome the low bioavailability of curcumin in the treatment of PC. This review aims to summarize the mechanisms of action of curcumin in preclinical and clinical studies on PC and research progress in enhancing its bioavailability.
Collapse
Affiliation(s)
- Qun Huang
- Department of Ophthalmology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ya Zhang
- Endocrinology Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yanlin Zheng
- Department of Ophthalmology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hongjing Yang
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yang Yang
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ya Mo
- Department of Ophthalmology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Liuying Li
- Department of Integrated Chinese and Western Medicine, The First People's Hospital of Zigong City, Zigong, China
| | - Hong Zhang
- Emergency Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
34
|
Pekarek L, Fraile-Martinez O, Garcia-Montero C, Saez MA, Barquero-Pozanco I, Del Hierro-Marlasca L, de Castro Martinez P, Romero-Bazán A, Alvarez-Mon MA, Monserrat J, García-Honduvilla N, Buján J, Alvarez-Mon M, Guijarro LG, Ortega MA. Clinical Applications of Classical and Novel Biological Markers of Pancreatic Cancer. Cancers (Basel) 2022; 14:1866. [PMID: 35454771 PMCID: PMC9029823 DOI: 10.3390/cancers14081866] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/02/2022] [Accepted: 04/06/2022] [Indexed: 01/27/2023] Open
Abstract
The incidence and prevalence of pancreatic adenocarcinoma have increased in recent years. Pancreatic cancer is the seventh leading cause of cancer death, but it is projected to become the second leading cause of cancer-related mortality by 2040. Most patients are diagnosed in an advanced stage of the disease, with very limited 5-year survival. The discovery of different tissue markers has elucidated the underlying pathophysiology of pancreatic adenocarcinoma and allowed stratification of patient risk at different stages and assessment of tumour recurrence. Due to the invasive capacity of this tumour and the absence of screening markers, new immunohistochemical and serological markers may be used as prognostic markers for recurrence and in the study of possible new therapeutic targets because the survival of these patients is low in most cases. The present article reviews the currently used main histopathological and serological markers and discusses the main characteristics of markers under development.
Collapse
Affiliation(s)
- Leonel Pekarek
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Oncology Service, Guadalajara University Hospital, 19002 Guadalajara, Spain
| | - Oscar Fraile-Martinez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Cielo Garcia-Montero
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Miguel A Saez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Pathological Anatomy Service, Central University Hospital of Defence-UAH Madrid, 28801 Alcala de Henares, Spain
| | - Ines Barquero-Pozanco
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
| | - Laura Del Hierro-Marlasca
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
| | - Patricia de Castro Martinez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
| | - Adoración Romero-Bazán
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
| | - Miguel A Alvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Jorge Monserrat
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Natalio García-Honduvilla
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Julia Buján
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Melchor Alvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Immune System Diseases-Rheumatology, Oncology Service an Internal Medicine (CIBEREHD), University Hospital Príncipe de Asturias, 28806 Alcala de Henares, Spain
| | - Luis G Guijarro
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Unit of Biochemistry and Molecular Biology, Department of System Biology (CIBEREHD), University of Alcalá, 28801 Alcala de Henares, Spain
| | - Miguel A Ortega
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Cancer Registry and Pathology Department, Principe de Asturias University Hospital, 28806 Alcala de Henares, Spain
| |
Collapse
|
35
|
Dielectrophoresis-Based Biosensor for Detection of the Cancer Biomarkers CEA and CA 242 in Serum. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10030104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We show that dielectrophoresis (DEP) spectroscopy is an effective transduction mechanism for detection of the concentration levels of the pancreatic cancer biomarkers cancer antigen (CA) 242 and carcinoembryonic antigen (CEA) in serum. We noticed a frequency dependence of the negative DEP force applied by interdigitated electrodes on functionalized polystyrene microspheres (PM) with respect to changes in the number of these cancer antigens bound to the PM. An electrode array with a well-defined gradient of the electric field was designed and used, which enabled the automation of the signal processing and reproducibility of the signal acquired by the biosensor.
Collapse
|
36
|
Sagami R, Sato T, Mizukami K, Motomura M, Okamoto K, Fukuchi S, Otsuka Y, Abe T, Ono H, Mori K, Wada K, Iwaki T, Nishikiori H, Honda K, Amano Y, Murakami K. Diagnostic Strategy of Early Stage Pancreatic Cancer via Clinical Predictor Assessment: Clinical Indicators, Risk Factors and Imaging Findings. Diagnostics (Basel) 2022; 12:diagnostics12020377. [PMID: 35204468 PMCID: PMC8871200 DOI: 10.3390/diagnostics12020377] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 01/27/2022] [Accepted: 01/27/2022] [Indexed: 01/27/2023] Open
Abstract
Early detection of pancreatic ductal adenocarcinoma (PDAC) in the general population is difficult due to unknown clinical characteristics. This study was conducted to clarify the factors associated with early stage PDAC. Well-known symptoms and factors associated with PDAC were classified into clinical indicators, risk factors, and imaging findings concomitant with early stage PDAC. To analyze these factors for the detection of patients with early stage PDAC compared to patients without PDAC, we constructed new diagnostic strategies. The factors of 35 patients with early stage PDAC (stage 0 and IA) and 801 patients without PDAC were compared retrospectively. Clinical indicators; presence and number of indicators, elevated pancreatic enzyme level, tumor biomarker level, acute pancreatitis history, risk factors; familial pancreatic cancer, diabetes mellitus, smoking history, imaging findings; presence and number of findings, and main pancreatic duct dilation were significant factors for early stage PDAC detection. A new screening strategy to select patients who should be examined by imaging modalities from evaluating clinical indicators and risk factors and approaching a definitive diagnosis by evaluating imaging findings had a relatively high sensitivity, specificity, and areas under the curve of 80.0%, 80.8%, and 0.80, respectively. Diagnosis based on the new category and strategy may be reasonable for early stage PDAC detection.
Collapse
Affiliation(s)
- Ryota Sagami
- Department of Gastroenterology, Oita San-ai Medical Center, 1213 Oaza Ichi, Oita 870-1151, Japan; (R.S.); (T.S.); (H.N.)
| | - Takao Sato
- Department of Gastroenterology, Oita San-ai Medical Center, 1213 Oaza Ichi, Oita 870-1151, Japan; (R.S.); (T.S.); (H.N.)
| | - Kazuhiro Mizukami
- Department of Gastroenterology, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasamacho, Yufu 879-5593, Japan; (K.O.); (K.M.); (K.H.); (K.M.)
- Correspondence: ; Tel.: +81-97-586-6193
| | - Mitsuteru Motomura
- Department of Gastroenterology, Oita Red Cross Hospital, 3-2-37 Chiyo-Machi, Oita 870-0033, Japan;
| | - Kazuhisa Okamoto
- Department of Gastroenterology, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasamacho, Yufu 879-5593, Japan; (K.O.); (K.M.); (K.H.); (K.M.)
| | - Satoshi Fukuchi
- Department of Gastroenterology, Oita City Medical Association Almeida Memorial Hospital, 1509-2 Miyazaki, Oita 870-1195, Japan; (S.F.); (K.W.)
| | - Yuichiro Otsuka
- Department of Gastroenterology, Oita Medical Center, 2-11-45 Yokota, Oita 870-0263, Japan;
| | - Takashi Abe
- Department of Gastroenterology, Oita Kouseiren Tsurumi Hospital, 4333 Tsurumi, Beppu 874-8585, Japan;
| | - Hideki Ono
- Department of Gastroenterology, Oita Prefectural Hospital, 2-8-1 Bunyo, Oita 870-8511, Japan;
| | - Kei Mori
- Department of Gastroenterology, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasamacho, Yufu 879-5593, Japan; (K.O.); (K.M.); (K.H.); (K.M.)
| | - Kurato Wada
- Department of Gastroenterology, Oita City Medical Association Almeida Memorial Hospital, 1509-2 Miyazaki, Oita 870-1195, Japan; (S.F.); (K.W.)
| | - Tomoyuki Iwaki
- Department of Endoscopy, Urawa Kyosai Hospital, 3-15-31 Harayama, Saitama 336-0931, Japan; (T.I.); (Y.A.)
| | - Hidefumi Nishikiori
- Department of Gastroenterology, Oita San-ai Medical Center, 1213 Oaza Ichi, Oita 870-1151, Japan; (R.S.); (T.S.); (H.N.)
| | - Koichi Honda
- Department of Gastroenterology, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasamacho, Yufu 879-5593, Japan; (K.O.); (K.M.); (K.H.); (K.M.)
| | - Yuji Amano
- Department of Endoscopy, Urawa Kyosai Hospital, 3-15-31 Harayama, Saitama 336-0931, Japan; (T.I.); (Y.A.)
| | - Kazunari Murakami
- Department of Gastroenterology, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasamacho, Yufu 879-5593, Japan; (K.O.); (K.M.); (K.H.); (K.M.)
| |
Collapse
|
37
|
Zhang W, Xing J, Liu T, Zhang J, Dai Z, Zhang H, Wang D, Tang D. Small extracellular vesicles: from mediating cancer cell metastasis to therapeutic value in pancreatic cancer. Cell Commun Signal 2022; 20:1. [PMID: 34980146 PMCID: PMC8722298 DOI: 10.1186/s12964-021-00806-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 11/20/2021] [Indexed: 02/07/2023] Open
Abstract
Pancreatic cancer is a highly malignant tumor and, is extremely difficult to diagnose and treat. Metastasis is one of the critical steps in the development of cancer and uses cell to cell communication to mediate changes in the microenvironment. Small extracellular vesicles (sEVs)-carry proteins, nucleic acids and other bioactive substances, and are important medium for communication between cells. There are two primary steps in sVEs-mediated metastasis: communication between pancreatic cancer cells and their surrounding microenvironment; and the communication between primary tumor cells and distant organ cells in distant organs that promotes angiogenesis, reshaping extracellular matrix, forming immunosuppressive environment and other ways to form appropriate pre-metastasis niche. Here, we explore the mechanism of localization and metastasis of pancreatic cancer and use sEVs as early biomarkers for the detection and treatment of pancreatic cancer. Video Abstract.
Collapse
Affiliation(s)
- Wenjie Zhang
- grid.268415.cClinical Medical College, Yangzhou University, Yangzhou, Jiangsu Province China
| | - Juan Xing
- grid.268415.cClinical Medical College, Yangzhou University, Yangzhou, Jiangsu Province China
| | - Tian Liu
- grid.268415.cClinical Medical College, Yangzhou University, Yangzhou, Jiangsu Province China
| | - Jie Zhang
- grid.268415.cClinical Medical College, Yangzhou University, Yangzhou, Jiangsu Province China
| | - Zhujiang Dai
- grid.268415.cClinical Medical College, Yangzhou University, Yangzhou, Jiangsu Province China
| | - Huan Zhang
- grid.268415.cClinical Medical College, Yangzhou University, Yangzhou, Jiangsu Province China
| | - Daorong Wang
- grid.268415.cDepartment of General Surgery, Institute of General Surgery, Clinical Medical College, Northern Jiangsu Province Hospital, Yangzhou University, Yangzhou, 225001 China
| | - Dong Tang
- grid.268415.cDepartment of General Surgery, Institute of General Surgery, Clinical Medical College, Northern Jiangsu Province Hospital, Yangzhou University, Yangzhou, 225001 China
| |
Collapse
|
38
|
Vanek P, Eid M, Psar R, Zoundjiekpon V, Urban O, Kunovský L. Current trends in the diagnosis of pancreatic cancer. VNITRNI LEKARSTVI 2022; 68:363-370. [PMID: 36316197 DOI: 10.36290/vnl.2022.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a dreaded malignancy with a dismal 5-year survival rate despite maximal efforts on optimizing treatment strategies. Currently, early detection is considered to be the most effective way to improve survival as radical resection is the only potential cure. PDAC is often divided into four categories based on the extent of disease: resectable, borderline resectable, locally advanced, and metastatic. Unfortunately, the majority of patients are diagnosed with locally advanced or metastatic disease, which renders them ineligible for curative resection. This is mainly due to the lack of or vague symptoms while the disease is still localized, although appropriate utilization and prompt availability of adequate diagnostic tools is also critical given the aggressive nature of the disease. A cost-effective biomarker with high specificity and sensitivity allowing early detection of PDAC without the need for advanced or invasive methods is still not available. This leaves the diagnosis dependent on radiodiagnostic methods or endoscopic ultrasound. Here we summarize the latest epidemiological data, risk factors, clinical manifestation, and current diagnostic trends and implications of PDAC focusing on serum biomarkers and imaging modalities. Additionally, up-to-date management and therapeutic algorithms are outlined.
Collapse
|
39
|
Rasuleva K, Elamurugan S, Bauer A, Khan M, Wen Q, Li Z, Steen P, Guo A, Xia W, Mathew S, Jansen R, Sun D. β-Sheet Richness of the Circulating Tumor-Derived Extracellular Vesicles for Noninvasive Pancreatic Cancer Screening. ACS Sens 2021; 6:4489-4498. [PMID: 34846848 PMCID: PMC8715533 DOI: 10.1021/acssensors.1c02022] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
![]()
Tumor-derived extracellular
vesicles (EVs) are under intensive
study for their potential as noninvasive diagnosis biomarkers. Most
EV-based cancer diagnostic assays trace supernumerary of a single
cancer-associated marker or marker signatures. These types of biomarker
assays are either subtype-specific or vulnerable to be masked by high
background signals. In this study, we introduce using the β-sheet
richness (BR) of the tumor-derived EVs as an effective way to discriminate
EVs originating from malignant and nonmalignant cells, where EV contents
are evaluated as a collective attribute rather than single factors.
Circular dichroism, Fourier transform infrared spectroscopy, fluorescence
staining assays, and a de novo workflow combining proteomics, bioinformatics,
and protein folding simulations were employed to validate the collective
attribute at both cellular and EV levels. Based on the BR of the tumorous
EVs, we integrated immunoprecipitation and fluorescence labeling targeting
the circulating tumor-derived EVs in serum and developed the process
into a clinical assay, named EvIPThT. The assay can distinguish patients
with and without malignant disease in a pilot cohort, with weak correlations
to prognosis biomarkers, suggesting the potential for a cancer screening
panel with existing prognostic biomarkers to improve overall performance.
Collapse
Affiliation(s)
- Komila Rasuleva
- Department of Electrical and Computer Engineering, North Dakota State University, 1411 Centennial Blvd., 101S, Fargo, North Dakota 58102, United States
| | - Santhalingam Elamurugan
- Biomedical Engineering Program, North Dakota State University, 1401 Centennial Blvd, Engineering Administration, Room 203, Fargo, North Dakota 58102, United States
| | - Aaron Bauer
- Biomedical Engineering Program, North Dakota State University, 1401 Centennial Blvd, Engineering Administration, Room 203, Fargo, North Dakota 58102, United States
| | - Mdrakibhasan Khan
- Department of Electrical and Computer Engineering, North Dakota State University, 1411 Centennial Blvd., 101S, Fargo, North Dakota 58102, United States
| | - Qian Wen
- Department of Statistics, North Dakota State University, 1230 Albrecht Blvd, Fargo, North Dakota 58102, United States
| | - Zhaofan Li
- Department of Civil, Construction and Environmental Engineering, North Dakota State University, 1410 North 14th Avenue, CIE 201, Fargo, North Dakota 58102, United States
| | - Preston Steen
- Sanford Roger Maris Cancer Center, 820 4th Street N, Fargo, North Dakota 58122, United States
| | - Ang Guo
- Department of Pharmaceutical Sciences, North Dakota State University, 1401 Albrecht Blvd, Fargo, North Dakota 58102, United States
| | - Wenjie Xia
- Department of Civil, Construction and Environmental Engineering, North Dakota State University, 1410 North 14th Avenue, CIE 201, Fargo, North Dakota 58102, United States
| | - Sijo Mathew
- Department of Pharmaceutical Sciences, North Dakota State University, 1401 Albrecht Blvd, Fargo, North Dakota 58102, United States
| | - Rick Jansen
- Department of Public Health, North Dakota State University, 1455 14th Ave N, Fargo, North Dakota 58102, United States
- Genomics and Bioinformatics Program, North Dakota State University, 1230 161/2 Street North, Fargo, North Dakota 58102, United States
| | - Dali Sun
- Department of Electrical and Computer Engineering, North Dakota State University, 1411 Centennial Blvd., 101S, Fargo, North Dakota 58102, United States
- Biomedical Engineering Program, North Dakota State University, 1401 Centennial Blvd, Engineering Administration, Room 203, Fargo, North Dakota 58102, United States
| |
Collapse
|
40
|
Takahashi K, Taniue K, Ono Y, Fujiya M, Mizukami Y, Okumura T. Long Non-Coding RNAs in Epithelial-Mesenchymal Transition of Pancreatic Cancer. Front Mol Biosci 2021; 8:717890. [PMID: 34820419 PMCID: PMC8606592 DOI: 10.3389/fmolb.2021.717890] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 10/25/2021] [Indexed: 12/17/2022] Open
Abstract
Non-coding RNAs (ncRNAs), or RNA molecules that do not code for proteins, are generally categorized as either small or long ncRNA (lncRNA) and are involved in the pathogenesis of several diseases including many cancers. Identification of a large number of ncRNAs could help to elucidate previously unknown mechanisms in phenotype regulation. Some ncRNAs are encapsulated by extracellular vesicles (EVs) and transferred to recipient cells to regulate cellular processes, including epigenetic and post-transcriptional regulations. Recent studies have uncovered novel molecular mechanisms and functions of lncRNAs in pancreatic ductal adenocarcinoma (PDAC), one of the most intractable cancers that is highly invasive and metastatic. As the epithelial-mesenchymal transition (EMT) triggers tumor cell invasion and migration, clarification of the roles of lncRNA in EMT and tumor cell stemness would be critical for improving diagnostic and therapeutic approaches in metastatic cancers. This review provides an overview of relevant studies on lncRNA and its involvement with EMT in PDAC. Emerging knowledge offers evidence for the dysregulated expression of lncRNAs and essential insights into the potential contribution of both lncRNAs and EVs in the pathogenesis of PDAC. Future directions and new clinical applications for PDAC are also discussed.
Collapse
Affiliation(s)
- Kenji Takahashi
- Division of Metabolism and Biosystemic Science, Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Kenzui Taniue
- Division of Metabolism and Biosystemic Science, Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa, Japan.,Isotope Science Center, The University of Tokyo, Bunkyo, Japan
| | - Yusuke Ono
- Institute of Biomedical Research, Sapporo Higashi Tokushukai Hospital, Sapporo, Japan
| | - Mikihiro Fujiya
- Division of Metabolism and Biosystemic Science, Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Yusuke Mizukami
- Division of Metabolism and Biosystemic Science, Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa, Japan.,Institute of Biomedical Research, Sapporo Higashi Tokushukai Hospital, Sapporo, Japan
| | - Toshikatsu Okumura
- Division of Metabolism and Biosystemic Science, Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| |
Collapse
|
41
|
Clinical Characteristics of Resected Acinar Cell Carcinoma of the Pancreas: A Korean Multi-Institutional Study. Cancers (Basel) 2021; 13:cancers13205095. [PMID: 34680244 PMCID: PMC8534044 DOI: 10.3390/cancers13205095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/05/2021] [Accepted: 10/09/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Pancreatic acinar cell carcinoma accounts for less than 1% of primary pancreatic neoplasms. Because of its rarity, its characteristics and clinical outcomes remain unclear. Treatment strategies for pancreatic acinar cell carcinoma have relied on those of pancreatic ductal adenocarcinoma. In previous studies, it has been difficult to identify its characteristics due to the lack of cohort numbers in single institutional studies with detailed data and the lack of detailed data in large cohort multi-institutional studies. This retrospective multicenter cohort used a database founded in 2015 by the Korean Association of Hepato-Biliary Pancreatic Surgery. This database has collected nationwide patient data with details. In the present study, we aimed to better understand clinical outcomes of resected pancreatic acinar cell carcinoma and to lay the groundwork for establishing proper treatment strategies. Abstract Given the rare incidence of pancreatic acinar cell carcinoma (PACC), its post-resection clinical outcomes remain unclear. Treatment strategies for PACC have relied on those of pancreatic ductal adenocarcinoma (PDAC). The present study retrospectively investigated clinicopathologic characteristics of resected PACC registered in the Korea Tumor Registry System Biliary Pancreas database. Among 59 patients with a mean age of 59.2 years and a male predominance (83.1%), 43, 5, 7, and 4 had pure PACC, ductal differentiations, mixed neuroendocrine carcinomas, and intraductal and papillary variants, respectively. The mean tumor size was 4.6 cm, consisting of eight at T1, 26 at T2, and 25 at T3 stages. Metastasis to regional lymph node was identified in 15 (25.4%) patients. Thirty-one (52.5%) patients received adjuvant therapy. Five-year survival rate was 57.4%. The median survival was 78.8 months. In survival comparison according to the stage with AJCC system, N stage (lymph node metastasis), but not T stage, showed significant differences (p = 0.027). Resected PACC appeared to have clinical outcomes distinct from those of PDAC in this nationwide study. Therefore, large-scale multinational studies are needed to overcome the rarity of PACC and to establish an appropriate treatment strategies and staging system.
Collapse
|
42
|
Schlick K, Kiem D, Greil R. Recent Advances in Pancreatic Cancer: Novel Prognostic Biomarkers and Targeted Therapy-A Review of the Literature. Biomolecules 2021; 11:1469. [PMID: 34680101 PMCID: PMC8533343 DOI: 10.3390/biom11101469] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/27/2021] [Accepted: 10/01/2021] [Indexed: 12/14/2022] Open
Abstract
Pancreatic adenocarcinoma carries a devastating prognosis. For locally advanced and metastatic disease, several chemotherapeutic regimens are currently being used. Over the past years, novel approaches have included targeting EGFR, NTRK, PARP, K-Ras as well as stroma and fibrosis, leading to approval of NTRK and PARP inhibitors. Moreover, immune check point inhibitors and different combinational approaches involving immunotherapeutic agents are being investigated in many clinical trials. MiRNAs represent a novel tool and are thought to greatly improve management by allowing for earlier diagnosis and for more precise guidance of treatment.
Collapse
Affiliation(s)
- Konstantin Schlick
- Oncologic Center, Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Paracelsus Medical University, 5020 Salzburg, Austria; (K.S.); (D.K.)
- Cancer Cluster Salzburg, 5020 Salzburg, Austria
| | - Dominik Kiem
- Oncologic Center, Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Paracelsus Medical University, 5020 Salzburg, Austria; (K.S.); (D.K.)
- Cancer Cluster Salzburg, 5020 Salzburg, Austria
| | - Richard Greil
- Oncologic Center, Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Paracelsus Medical University, 5020 Salzburg, Austria; (K.S.); (D.K.)
- Cancer Cluster Salzburg, 5020 Salzburg, Austria
- Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Salzburg Cancer Research Institute, 5020 Salzburg, Austria
| |
Collapse
|
43
|
Pancreatic Cancer Small Extracellular Vesicles (Exosomes): A Tale of Short- and Long-Distance Communication. Cancers (Basel) 2021; 13:cancers13194844. [PMID: 34638330 PMCID: PMC8508300 DOI: 10.3390/cancers13194844] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/21/2021] [Accepted: 09/24/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Even today, pancreatic cancer still has a dismal prognosis. It is characterized by a lack of early symptoms and thus late diagnosis as well as early metastasis. The majority of patients suffer from pancreatic ductal adenocarcinoma (PDAC). PDACs communicate extensively with cellular components of their microenvironment, but also with distant metastatic niches to facilitate tumor progression and dissemination. This crosstalk is substantially enabled by small extracellular vesicles (sEVs, exosomes) with a size of 30–150 nm that are released from the tumor cells. sEVs carry bioactive cargos that reprogram target cells to promote tumor growth, migration, metastasis, immune evasion, or chemotherapy resistance. Interestingly, sEVs also carry novel diagnostic, prognostic and potentially also predictive biomarkers. Moreover, engineered sEVs may be utilized as therapeutic agents, improving treatment options. The role of sEVs for PDAC development, progression, diagnosis, prognosis, and treatment is the focus of this review. Abstract Even with all recent advances in cancer therapy, pancreatic cancer still has a dismal 5-year survival rate of less than 7%. The most prevalent tumor subtype is pancreatic ductal adenocarcinoma (PDAC). PDACs display an extensive crosstalk with their tumor microenvironment (TME), e.g., pancreatic stellate cells, but also immune cells to regulate tumor growth, immune evasion, and metastasis. In addition to crosstalk in the local TME, PDACs were shown to induce the formation of pre-metastatic niches in different organs. Recent advances have attributed many of these interactions to intercellular communication by small extracellular vesicles (sEVs, exosomes). These nanovesicles are derived of endo-lysosomal structures (multivesicular bodies) with a size range of 30–150 nm. sEVs carry various bioactive cargos, such as proteins, lipids, DNA, mRNA, or miRNAs and act in an autocrine or paracrine fashion to educate recipient cells. In addition to tumor formation, progression, and metastasis, sEVs were described as potent biomarker platforms for diagnosis and prognosis of PDAC. Advances in sEV engineering have further indicated that sEVs might once be used as effective drug carriers. Thus, extensive sEV-based communication and applications as platform for biomarker analysis or vehicles for treatment suggest a major impact of sEVs in future PDAC research.
Collapse
|
44
|
Smolarz B, Durczyński A, Romanowicz H, Hogendorf P. The Role of microRNA in Pancreatic Cancer. Biomedicines 2021; 9:biomedicines9101322. [PMID: 34680441 PMCID: PMC8533140 DOI: 10.3390/biomedicines9101322] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/18/2021] [Accepted: 09/22/2021] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are small ribonucleic acid molecules that play a key role in regulating gene expression. The increasing number of studies undertaken on the functioning of microRNAs in the tumor formation clearly indicates their important potential in oncological therapy. Pancreatic cancer is one of the deadliest cancers. The expression of miRNAs released into the bloodstream appears to be a good indicator of progression and evaluation of the aggressiveness of pancreatic cancer, as indicated by studies. The work reviewed the latest literature on the importance of miRNAs for pancreatic cancer development.
Collapse
Affiliation(s)
- Beata Smolarz
- Laboratory of Cancer Genetics, Department of Pathology, Polish Mother’s Memorial Hospital Research Institute, 93-338 Lodz, Poland;
- Correspondence: ; Tel.: +48-42-271-1290
| | - Adam Durczyński
- Department of General and Transplant Surgery, N. Barlicki Memorial Clinical Hospital, Medical University of Lodz, 90-153 Lodz, Poland; (A.D.); (P.H.)
| | - Hanna Romanowicz
- Laboratory of Cancer Genetics, Department of Pathology, Polish Mother’s Memorial Hospital Research Institute, 93-338 Lodz, Poland;
| | - Piotr Hogendorf
- Department of General and Transplant Surgery, N. Barlicki Memorial Clinical Hospital, Medical University of Lodz, 90-153 Lodz, Poland; (A.D.); (P.H.)
| |
Collapse
|
45
|
Tonini V, Zanni M. Pancreatic cancer in 2021: What you need to know to win. World J Gastroenterol 2021; 27:5851-5889. [PMID: 34629806 PMCID: PMC8475010 DOI: 10.3748/wjg.v27.i35.5851] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 07/14/2021] [Accepted: 08/23/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer is one of the solid tumors with the worst prognosis. Five-year survival rate is less than 10%. Surgical resection is the only potentially curative treatment, but the tumor is often diagnosed at an advanced stage of the disease and surgery could be performed in a very limited number of patients. Moreover, surgery is still associated with high post-operative morbidity, while other therapies still offer very disappointing results. This article reviews every aspect of pancreatic cancer, focusing on the elements that can improve prognosis. It was written with the aim of describing everything you need to know in 2021 in order to face this difficult challenge.
Collapse
Affiliation(s)
- Valeria Tonini
- Department of Medical Sciences and Surgery, University of Bologna- Emergency Surgery Unit, IRCCS Sant’Orsola Hospital, Bologna 40121, Italy
| | - Manuel Zanni
- University of Bologna, Emergency Surgery Unit, IRCCS Sant'Orsola Hospital, Bologna 40121, Italy
| |
Collapse
|
46
|
Guo S, Qin H, Liu K, Wang H, Bai S, Liu S, Shao Z, Zhang Y, Song B, Xu X, Shen J, Zeng P, Shi X, Chen H, Gao S, Xu J, Pan Y, Xiong L, Li F, Zhang D, Jiao X, Jin G. Blood small extracellular vesicles derived miRNAs to differentiate pancreatic ductal adenocarcinoma from chronic pancreatitis. Clin Transl Med 2021; 11:e520. [PMID: 34586739 PMCID: PMC8431442 DOI: 10.1002/ctm2.520] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/17/2021] [Accepted: 07/22/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The differential diagnosis of pancreatic ductal adenocarcinoma (PDAC) from chronic pancreatitis (CP) is clinically challenging due to a lack of minimally invasive diagnosis methods. MicroRNAs (miRNAs) derived from small extracellular vesicles (EVs) in the blood have been reported as a promising diagnosis biomarker for various types of cancer. However, blood small EV miRNA signatures and their diagnostic value to differentiate between PDAC and CP remain to be determined. METHODS In this study, 107 patients with PDAC or CP were recruited, and 90 patients were finally enrolled for a training cohort (n = 48) and test cohort (n = 42). Small RNA sequencing was used to assess the expression of blood small EV miRNAs in these patients. RESULTS The linear model from the differentially expressed blood small EV miR-95-3p divided by miR-26b-5p showed an average sensitivity of 84.1% and an average specificity of 96.6% to identify PDAC from CP in the training cohort and the test cohort, respectively. When the model was combined with serum carbohydrate antigen 19-9 (CA19-9), the average sensitivity increased to 96.5%, and the average specificity remained at 96.4% of both cohorts, which demonstrated the best performance of all the published biomarkers for distinguishing between PDAC and CP. The causal analysis performed using the Bayesian network demonstrated that miR-95-3p was associated with a "consequence" of "cancer" and miR-26b-5p as a "cause" of "pancreatitis." A subgroup analysis revealed that blood small EV miR-335-5p/miR-340-5p could predict metastases in both cohorts and was associated with an overall survival (p = 0.020). CONCLUSIONS This study indicated that blood small EV miR-95-3p/miR-26b-5p and its combination with serum levels of CA19-9 could separate PDAC from CP, and miR-335-5p/miR-340-5p was identified to associate with PDAC metastasis and poor prognosis. These results suggested the potentiality of blood small EV miRNAs as differential diagnosis and metastases biomarkers of PDAC.
Collapse
Affiliation(s)
- Shiwei Guo
- Department of Hepatobiliary Pancreatic SurgeryChanghai HospitalNaval Medical UniversityShanghaiChina
| | - Hao Qin
- 3D Medicines Inc.ShanghaiChina
| | - Ke Liu
- Department of Medical OncologyChangzheng HospitalNaval Medical UniversityShanghaiChina
| | - Huan Wang
- Department of Hepatobiliary Pancreatic SurgeryChanghai HospitalNaval Medical UniversityShanghaiChina
| | - Sijia Bai
- Department of Hepatobiliary Pancreatic SurgeryChanghai HospitalNaval Medical UniversityShanghaiChina
| | | | - Zhuo Shao
- Department of Hepatobiliary Pancreatic SurgeryChanghai HospitalNaval Medical UniversityShanghaiChina
| | | | - Bin Song
- Department of Hepatobiliary Pancreatic SurgeryChanghai HospitalNaval Medical UniversityShanghaiChina
| | | | - Jing Shen
- Department of Hepatobiliary Pancreatic SurgeryChanghai HospitalNaval Medical UniversityShanghaiChina
| | | | - Xiaohan Shi
- Department of Hepatobiliary Pancreatic SurgeryChanghai HospitalNaval Medical UniversityShanghaiChina
| | | | - Suizhi Gao
- Department of Hepatobiliary Pancreatic SurgeryChanghai HospitalNaval Medical UniversityShanghaiChina
| | | | - Yaqi Pan
- Department of Hepatobiliary Pancreatic SurgeryChanghai HospitalNaval Medical UniversityShanghaiChina
| | | | | | | | - Xiaodong Jiao
- Department of Medical OncologyChangzheng HospitalNaval Medical UniversityShanghaiChina
| | - Gang Jin
- Department of Hepatobiliary Pancreatic SurgeryChanghai HospitalNaval Medical UniversityShanghaiChina
| |
Collapse
|
47
|
Yang J, Xu R, Wang C, Qiu J, Ren B, You L. Early screening and diagnosis strategies of pancreatic cancer: a comprehensive review. Cancer Commun (Lond) 2021; 41:1257-1274. [PMID: 34331845 PMCID: PMC8696234 DOI: 10.1002/cac2.12204] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/15/2021] [Accepted: 07/26/2021] [Indexed: 12/14/2022] Open
Abstract
Pancreatic cancer is a highly malignant digestive system tumor with a poor prognosis. Most pancreatic cancer patients are diagnosed at an advanced stage or even metastasis due to its highly aggressive characteristics and lack of typical early symptoms. Thus, an early diagnosis of pancreatic cancer is crucial for improving its prognosis. Currently, screening is often applied in high‐risk individuals to achieve the early diagnosis of pancreatic cancer. Fully understanding the risk factors of pancreatic cancer and pathogenesis could help us identify the high‐risk population and achieve early diagnosis and timely treatment of pancreatic cancer. Notably, accumulating studies have been undertaken to improve the detection rate of different imaging methods and the diagnostic accuracy of endoscopic ultrasound‐guided fine‐needle aspiration (EUS‐FNA) which is the golden standard for pancreatic cancer diagnosis. In addition, there are currently no biomarkers with sufficient sensitivity and specificity for the diagnosis of pancreatic cancer to be applied in the clinic. As the only serum biomarker approved by the United States Food and Drug Administration, carbohydrate antigen 19‐9 (CA19‐9) is not recommended to be used in the early screening of pancreatic cancer because of its limited specificity. Recently, increasing numbers of studies focused on the discovering of novel serum biomarkers and exploring their combination with CA19‐9 in the detection of pancreatic cancer. Besides, the application of liquid biopsy involving circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), microRNAs (miRNAs), and exosomes in blood and biomarkers in urine, and saliva in pancreatic cancer diagnosis are drawing more and more attention. Furthermore, many innovative technologies such as artificial intelligence, computer‐aided diagnosis system, metabolomics technology, ion mobility spectrometry (IMS) associated technologies, and novel nanomaterials have been tested for the early diagnosis of pancreatic cancer and have shown promising prospects. Hence, this review aims to summarize the recent progress in the development of early screening and diagnostic methods, including imaging, pathological examination, serological examination, liquid biopsy, as well as other potential diagnostic strategies for pancreatic cancer.
Collapse
Affiliation(s)
- Jinshou Yang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, P. R. China
| | - Ruiyuan Xu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, P. R. China
| | - Chengcheng Wang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, P. R. China
| | - Jiangdong Qiu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, P. R. China
| | - Bo Ren
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, P. R. China
| | - Lei You
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, P. R. China
| |
Collapse
|
48
|
O'Neill RS, Stoita A. Biomarkers in the diagnosis of pancreatic cancer: Are we closer to finding the golden ticket? World J Gastroenterol 2021; 27:4045-4087. [PMID: 34326612 PMCID: PMC8311531 DOI: 10.3748/wjg.v27.i26.4045] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/24/2021] [Accepted: 06/15/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer (PC) is a leading cause of cancer related mortality on a global scale. The disease itself is associated with a dismal prognosis, partly due to its silent nature resulting in patients presenting with advanced disease at the time of diagnosis. To combat this, there has been an explosion in the last decade of potential candidate biomarkers in the research setting in the hope that a diagnostic biomarker may provide a glimmer of hope in what is otherwise quite a substantial clinical dilemma. Currently, serum carbohydrate antigen 19-9 is utilized in the diagnostic work-up of patients diagnosed with PC however this biomarker lacks the sensitivity and specificity associated with a gold-standard marker. In the search for a biomarker that is both sensitive and specific for the diagnosis of PC, there has been a paradigm shift towards a focus on liquid biopsy and the use of diagnostic panels which has subsequently proved to have efficacy in the diagnosis of PC. Currently, promising developments in the field of early detection on PC using diagnostic biomarkers include the detection of microRNA (miRNA) in serum and circulating tumour cells. Both these modalities, although in their infancy and yet to be widely accepted into routine clinical practice, possess merit in the early detection of PC. We reviewed over 300 biomarkers with the aim to provide an in-depth summary of the current state-of-play regarding diagnostic biomarkers in PC (serum, urinary, salivary, faecal, pancreatic juice and biliary fluid).
Collapse
Affiliation(s)
- Robert S O'Neill
- Department of Gastroenterology, St Vincent's Hospital Sydney, Sydney 2010, Australia
- St George and Sutherland Clinical School, Faculty of Medicine, University of New South Wales, Sydney 2010, Australia
| | - Alina Stoita
- Department of Gastroenterology, St Vincent's Hospital Sydney, Sydney 2010, Australia
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney 2010, Australia
| |
Collapse
|
49
|
Mortoglou M, Tabin ZK, Arisan ED, Kocher HM, Uysal-Onganer P. Non-coding RNAs in pancreatic ductal adenocarcinoma: New approaches for better diagnosis and therapy. Transl Oncol 2021; 14:101090. [PMID: 33831655 PMCID: PMC8042452 DOI: 10.1016/j.tranon.2021.101090] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/14/2021] [Accepted: 03/26/2021] [Indexed: 12/12/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive malignancies with a 5-year survival rate less than 8%, which has remained unchanged over the last 50 years. Early detection is particularly difficult due to the lack of disease-specific symptoms and a reliable biomarker. Multimodality treatment including chemotherapy, radiotherapy (used sparingly) and surgery has become the standard of care for patients with PDAC. Carbohydrate antigen 19-9 (CA 19-9) is the most common diagnostic biomarker; however, it is not specific enough especially for asymptomatic patients. Non-coding RNAs are often deregulated in human malignancies and shown to be involved in cancer-related mechanisms such as cell growth, differentiation, and cell death. Several micro, long non-coding and circular RNAs have been reported to date which are involved in PDAC. Aim of this review is to discuss the roles and functions of non-coding RNAs in diagnosis and treatments of PDAC.
Collapse
Affiliation(s)
- Maria Mortoglou
- Cancer Research Group, School of Life Sciences, University of Westminster, London W1W 6UW, UK.
| | - Zoey Kathleen Tabin
- Cancer Research Group, School of Life Sciences, University of Westminster, London W1W 6UW, UK.
| | - E Damla Arisan
- Institution of Biotechnology, Gebze Technical University, Gebze, Turkey.
| | - Hemant M Kocher
- Centre for Tumour Biology, Barts Cancer Institute-a CRUK Centre of Excellence, Queen Mary University London, London EC1M 6BQ, UK.
| | - Pinar Uysal-Onganer
- Cancer Research Group, School of Life Sciences, University of Westminster, London W1W 6UW, UK.
| |
Collapse
|
50
|
Exosomal microRNA in Pancreatic Cancer Diagnosis, Prognosis, and Treatment: From Bench to Bedside. Cancers (Basel) 2021; 13:cancers13112777. [PMID: 34204940 PMCID: PMC8199777 DOI: 10.3390/cancers13112777] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Pancreatic cancer is the fourth leading cause of cancer death in the United States and over 90% of the patients suffer from pancreatic ductal adenocarcinoma (PDAC). PDAC is the most lethal gastrointestinal malignancies and only 10% of the people survive more than 5 years, therefore, novel diagnostic, prognostic, and therapeutic strategies are an immediate necessity. Studies have demonstrated microRNAs in bodily fluids that are bound with membranes (exosomes) can act as stable biomarkers both for disease development and metastasis. The diagnostic, prognostic, as well as therapeutic roles of exosomal microRNAs in pancreatic cancer have been discussed in this review. Abstract Pancreatic cancer is the fourth leading cause of cancer death among men and women in the United States, and pancreatic ductal adenocarcinoma (PDAC) accounts for more than 90% of pancreatic cancer cases. PDAC is one of the most lethal gastrointestinal malignancies with an overall five-year survival rate of ~10%. Developing effective therapeutic strategies against pancreatic cancer is a great challenge. Novel diagnostic, prognostic, and therapeutic strategies are an immediate necessity to increase the survival of pancreatic cancer patients. So far, studies have demonstrated microRNAs (miRNAs) as sensitive biomarkers because of their significant correlation with disease development and metastasis. The miRNAs have been shown to be more stable inside membrane-bound vesicles in the extracellular environment called exosomes. Varieties of miRNAs are released into the body fluids via exosomes depending on the normal physiological or pathological conditions of the body. In this review, we discuss the recent findings on the diagnostic, prognostic, and therapeutic roles of exosomal miRNAs in pancreatic cancer.
Collapse
|