1
|
León X, Valero C, Fuster G, Bragado P, Camacho M, Avilés-Jurado FX. Predictive capacity for local disease control of neogenin-1 (NEO1) transcriptional expression in patients with head and neck squamous cell carcinoma. Clin Transl Oncol 2024:10.1007/s12094-024-03535-z. [PMID: 38898351 DOI: 10.1007/s12094-024-03535-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/16/2024] [Indexed: 06/21/2024]
Abstract
PURPOSE To analyze the predictive capacity for local disease control of the transcriptional expression of neogenin-1 (NEO1) gene in patients with head and neck squamous cell carcinoma (HNSCC). METHODS/PATIENTS A retrospective study was performed on tumor biopsies from 107 patients with HNSCC treated surgically. The transcriptional expression of NEO1 was determined by RT-PCR. NEO1 transcriptional expression value was categorized according to local disease control by recursive partitioning analysis. RESULTS Lower NEO1 transcriptional expression was associated with worse local control after surgical treatment. Patients with lower NEO1 expression (n = 25, 23.4%) had a 5-year local recurrence-free survival of 61.8% (95% CI: 42.1-81.5%), while patients with higher NEO1 expression (n = 82, 76.6%) had a 5-year local recurrence-free survival of 85.6% (95% CI: 77.6-93.6%), (P = 0.003). According to the result of multivariable analysis, patients with lower NEO1 expression had a 2.7-fold increased risk of local tumor recurrence (95% CI: 1.0-7.0, P = 0.043) compared to patients with higher NEO1 expression. CONCLUSIONS HNSCC patients with a lower transcriptional expression of NEO1 have a significantly higher risk of local recurrence after surgical treatment.
Collapse
Affiliation(s)
- Xavier León
- Otorhinolaryngology Department, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, C/Mas Casanovas, 90, 08041, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
- Facultad de Medicina, UVIC, Universitat Central de Catalunya, Vic, Spain
| | - Cristina Valero
- Otorhinolaryngology Department, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, C/Mas Casanovas, 90, 08041, Barcelona, Spain.
| | - Gemma Fuster
- Department of Biomedicine and Department of Biochemistry and Molecular Biomedicine, University of Barcelona (UB) and Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain
- Biosciences Department, Sciences Technology and Engineering Faculty, Tissue Repair and Regeneration Group, UVIC, Vic, Spain
| | - Paloma Bragado
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Mercedes Camacho
- Genomics of Complex Diseases, Research Institute Hospital Sant Pau, IIB Sant Pau, Barcelona, Spain
| | | |
Collapse
|
2
|
Du X, Li S, Yang K, Cao Y. Downregulation of Sonic hedgehog signaling induces G2-arrest in genital warts. Skin Res Technol 2023; 29:e13265. [PMID: 36704875 PMCID: PMC9838784 DOI: 10.1111/srt.13265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 12/13/2022] [Indexed: 12/31/2022]
Abstract
BACKGROUND Human papillomavirus (HPV) infected keratinocyte dysfunction results in the formation of genital warts, and the specific role of Sonic hedgehog (SHh) signaling in genital warts remains elusive. Thus, this study aimed to identify the correlation between wart formation and SHh signaling. MATERIALS AND METHODS In this study, nine male patients with genital warts were recruited, and the expression of SHh and its downstream signal molecules Patched-1 and GLI family zinc finger 1 (Ptch1 and Gli1) was detected. Moreover, G2-phase cells in the collected genital warts samples were assessed with normal foreskin samples as a comparison. HPV6/11 were detected via in situ hybridization (ISH), and SHh expression of the corresponding paraffin sections was determined via immunohistochemical staining (IHC). In addition, an in vitro down-regulated SHh model was constructed by siRNA transfection of the HaCaT cell line, and the cell cycle was detected at 36 h by flow cytometry with propidium iodide staining. RESULTS SHh, Ptch1, and Gli1 in warts were significantly downregulated in the condyloma acuminatum (CA) group compared to the normal foreskin group. G2-phase cells in the middle section of the spinous layer of CA wart tissues were significantly increased. Moreover, the expression of HPV-DNA was amplified and negatively correlated with SHh activity in CA wart tissues. Lastly, the downregulation of SHh-induced G2 arrest in vitro. CONCLUSIONS The downregulation of the SHh signaling promotes HPV replication and the formation of warts by inducing G2/M arrest in the keratinocytes of CA.
Collapse
Affiliation(s)
- Xiangxi Du
- Department of DermatologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Shan Li
- Department of AnaesthesiologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Kun Yang
- Department of DermatologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yuchun Cao
- Department of DermatologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
3
|
Identification of Potential Key Genes and Molecular Mechanisms of Medulloblastoma Based on Integrated Bioinformatics Approach. BIOMED RESEARCH INTERNATIONAL 2022; 2022:1776082. [PMID: 35127939 PMCID: PMC8816556 DOI: 10.1155/2022/1776082] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 12/14/2021] [Indexed: 11/28/2022]
Abstract
Background Medulloblastoma (MB) is the most occurring brain cancer that mostly happens in childhood age. This cancer starts in the cerebellum part of the brain. This study is designed to screen novel and significant biomarkers, which may perform as potential prognostic biomarkers and therapeutic targets in MB. Methods A total of 103 MB-related samples from three gene expression profiles of GSE22139, GSE37418, and GSE86574 were downloaded from the Gene Expression Omnibus (GEO). Applying the limma package, all three datasets were analyzed, and 1065 mutual DEGs were identified including 408 overexpressed and 657 underexpressed with the minimum cut-off criteria of ∣log fold change | >1 and P < 0.05. The Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and WikiPathways enrichment analyses were executed to discover the internal functions of the mutual DEGs. The outcomes of enrichment analysis showed that the common DEGs were significantly connected with MB progression and development. The Search Tool for Retrieval of Interacting Genes (STRING) database was used to construct the interaction network, and the network was displayed using the Cytoscape tool and applying connectivity and stress value methods of cytoHubba plugin 35 hub genes were identified from the whole network. Results Four key clusters were identified using the PEWCC 1.0 method. Additionally, the survival analysis of hub genes was brought out based on clinical information of 612 MB patients. This bioinformatics analysis may help to define the pathogenesis and originate new treatments for MB.
Collapse
|
4
|
Vásquez X, Sánchez-Gómez P, Palma V. Netrin-1 in Glioblastoma Neovascularization: The New Partner in Crime? Int J Mol Sci 2021; 22:8248. [PMID: 34361013 PMCID: PMC8348949 DOI: 10.3390/ijms22158248] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma (GBM) is the most aggressive and common primary tumor of the central nervous system. It is characterized by having an infiltrating growth and by the presence of an excessive and aberrant vasculature. Some of the mechanisms that promote this neovascularization are angiogenesis and the transdifferentiation of tumor cells into endothelial cells or pericytes. In all these processes, the release of extracellular microvesicles by tumor cells plays an important role. Tumor cell-derived extracellular microvesicles contain pro-angiogenic molecules such as VEGF, which promote the formation of blood vessels and the recruitment of pericytes that reinforce these structures. The present study summarizes and discusses recent data from different investigations suggesting that Netrin-1, a highly versatile protein recently postulated as a non-canonical angiogenic ligand, could participate in the promotion of neovascularization processes in GBM. The relevance of determining the angiogenic signaling pathways associated with the interaction of Netrin-1 with its receptors is posed. Furthermore, we speculate that this molecule could form part of the microvesicles that favor abnormal tumor vasculature. Based on the studies presented, this review proposes Netrin-1 as a novel biomarker for GBM progression and vascularization.
Collapse
Affiliation(s)
- Ximena Vásquez
- Laboratory of Stem Cells and Developmental Biology, Faculty of Sciences, Universidad de Chile, Santiago 7800003, Chile;
| | - Pilar Sánchez-Gómez
- Neurooncology Unit, Unidad Funcional de Investigación de Enfermedades Crónicas (UFIEC), Instituto de Salud Carlos III (ISCIII), 28220 Madrid, Spain
| | - Verónica Palma
- Laboratory of Stem Cells and Developmental Biology, Faculty of Sciences, Universidad de Chile, Santiago 7800003, Chile;
| |
Collapse
|
5
|
Iriana S, Asha K, Repak M, Sharma-Walia N. Hedgehog Signaling: Implications in Cancers and Viral Infections. Int J Mol Sci 2021; 22:1042. [PMID: 33494284 PMCID: PMC7864517 DOI: 10.3390/ijms22031042] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/11/2021] [Accepted: 01/14/2021] [Indexed: 12/14/2022] Open
Abstract
The hedgehog (SHH) signaling pathway is primarily involved in embryonic gut development, smooth muscle differentiation, cell proliferation, adult tissue homeostasis, tissue repair following injury, and tissue polarity during the development of vertebrate and invertebrate organisms. GLIoma-associated oncogene homolog (GLI) family of zinc-finger transcription factors and smoothened (SMO) are the signal transducers of the SHH pathway. Both SHH ligand-dependent and independent mechanisms activate GLI proteins. Various transcriptional mechanisms, posttranslational modifications (phosphorylation, ubiquitination, proteolytic processing, SUMOylation, and acetylation), and nuclear-cytoplasmic shuttling control the activity of SHH signaling pathway proteins. The dysregulated SHH pathway is associated with bone and soft tissue sarcomas, GLIomas, medulloblastomas, leukemias, and tumors of breast, lung, skin, prostate, brain, gastric, and pancreas. While extensively studied in development and sarcomas, GLI family proteins play an essential role in many host-pathogen interactions, including bacterial and viral infections and their associated cancers. Viruses hijack host GLI family transcription factors and their downstream signaling cascades to enhance the viral gene transcription required for replication and pathogenesis. In this review, we discuss a distinct role(s) of GLI proteins in the process of tumorigenesis and host-pathogen interactions in the context of viral infection-associated malignancies and cancers due to other causes. Here, we emphasize the potential of the Hedgehog (HH) pathway targeting as a potential anti-cancer therapeutic approach, which in the future could also be tested in infection-associated fatalities.
Collapse
|
6
|
Identification of NEO1 as a prognostic biomarker and its effects on the progression of colorectal cancer. Cancer Cell Int 2020; 20:510. [PMID: 33088218 PMCID: PMC7568410 DOI: 10.1186/s12935-020-01604-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 10/12/2020] [Indexed: 11/20/2022] Open
Abstract
Background Due to the high morbidity and poor clinical outcomes, early predictive and prognostic biomarker identification is desiderated in colorectal cancer (CRC). As a homologue of the Deleted in Colorectal Cancer (DCC) gene, the role of Neogenin-1 (NEO1) in CRC remained unveiled. This study was designed to probe into the effects and potential function of NEO1 in CRC. Methods Online databases, Gene Set Enrichment Analysis (GSEA), quantitative real-time PCR and western blotting were used to evaluate NEO1 expression in colorectal cancer tissues. Survival analysis was performed to predict the prognosis of CRC patients based on NEO1 expression level. Then, cell proliferation was detected by colony formation and Cell Counting Kit 8 (CCK-8) assays. CRC cell migration and invasion were examined by transwell assays. Finally, we utilized the Gene Set Variation Analysis (GSVA) and GSEA to dig the potential mechanisms of NEO1 in CRC. Results Oncomine database and The Cancer Genome Atlas (TCGA) database showed that NEO1 was down-regulated in CRC. Further results validated that NEO1 mRNA and protein expression were both significantly lower in CRC tumor tissues than in the adjacent tissues in our clinical samples. NEO1 expression was decreased with the progression of CRC. Survival and other clinical characteristic analyses exhibited that low NEO1 expression was related with poor prognosis. A gain-of-function study showed that overexpression of NEO1 restrained proliferation, migration and invasion of CRC cells while a loss-of-function showed the opposite effects. Finally, functional pathway enrichment analysis revealed that NEO1 low expression samples were enriched in inflammation-related signaling pathways, EMT and angiogenesis. Conclusion A tumor suppressor gene NEO1 was identified and verified to be correlated with the prognosis and progression of CRC, which could serve as a prognostic biomarker for CRC patients.
Collapse
|
7
|
Doheny D, Manore SG, Wong GL, Lo HW. Hedgehog Signaling and Truncated GLI1 in Cancer. Cells 2020; 9:cells9092114. [PMID: 32957513 PMCID: PMC7565963 DOI: 10.3390/cells9092114] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/10/2020] [Accepted: 09/15/2020] [Indexed: 12/18/2022] Open
Abstract
The hedgehog (HH) signaling pathway regulates normal cell growth and differentiation. As a consequence of improper control, aberrant HH signaling results in tumorigenesis and supports aggressive phenotypes of human cancers, such as neoplastic transformation, tumor progression, metastasis, and drug resistance. Canonical activation of HH signaling occurs through binding of HH ligands to the transmembrane receptor Patched 1 (PTCH1), which derepresses the transmembrane G protein-coupled receptor Smoothened (SMO). Consequently, the glioma-associated oncogene homolog 1 (GLI1) zinc-finger transcription factors, the terminal effectors of the HH pathway, are released from suppressor of fused (SUFU)-mediated cytoplasmic sequestration, permitting nuclear translocation and activation of target genes. Aberrant activation of this pathway has been implicated in several cancer types, including medulloblastoma, rhabdomyosarcoma, basal cell carcinoma, glioblastoma, and cancers of lung, colon, stomach, pancreas, ovarian, and breast. Therefore, several components of the HH pathway are under investigation for targeted cancer therapy, particularly GLI1 and SMO. GLI1 transcripts are reported to undergo alternative splicing to produce truncated variants: loss-of-function GLI1ΔN and gain-of-function truncated GLI1 (tGLI1). This review covers the biochemical steps necessary for propagation of the HH activating signal and the involvement of aberrant HH signaling in human cancers, with a highlight on the tumor-specific gain-of-function tGLI1 isoform.
Collapse
Affiliation(s)
- Daniel Doheny
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA; (D.D.); (S.G.M.); (G.L.W.)
| | - Sara G. Manore
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA; (D.D.); (S.G.M.); (G.L.W.)
| | - Grace L. Wong
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA; (D.D.); (S.G.M.); (G.L.W.)
| | - Hui-Wen Lo
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA; (D.D.); (S.G.M.); (G.L.W.)
- Wake Forest Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA
- Correspondence: ; Tel.: +1-336-716-0695
| |
Collapse
|
8
|
Twenty years experience in treating childhood medulloblastoma: Between the past and the present. Cancer Radiother 2019; 23:179-187. [PMID: 31109839 DOI: 10.1016/j.canrad.2018.05.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 05/09/2018] [Accepted: 05/15/2018] [Indexed: 01/16/2023]
Abstract
PURPOSE Medulloblastoma is the most common primary malignant central nervous system tumour in children. These last decades, treatment modalities have largely evolved resulting in better survival rates. Nevertheless, long-term toxicity is a major concern in this setting. The purpose of this study was to analyse the clinical results and medical outcomes of a cohort of paediatric patients treated for medulloblastoma in Xhinhua Hospital in Shanghai. These results are compared with those from other centres reported in literature. PATIENTS AND METHODS This was a retrospective study conducted at Xhinhua Hospital in Shanghai, China. It included 121 patients treated for medulloblastoma from 1993 to December 2013. RESULTS Mean age at diagnosis was 6.7 years (range: 1-14.3 years). Total surgical resection was achieved in 60% of the cases. Classic medulloblastoma was found in 59% of the cases. Adjuvant radiotherapy was delivered in all cases and chemotherapy concerned 70.2% of the studied cohort. The median follow-up time of the study was 84 months (range: 24-120 months). Five- and 10 years progression-free survival rates were 83.2%, and 69.5% and 5 years and 10 years. Overall survival rates were 82.5%, and 72.5%. Patient's age significantly influenced survival: patients under 3 years old had the worse outcomes (P=0.01). T and M stages also significantly impacted survival rates: advanced stages were associated with lower rates (P=0.08 and 0.05 respectively). Finally, patients receiving temezolomide had bad outcomes when compared to the new standard protocol used in the department (P=0.03). The most commonly reported late toxicity was growth suppression in 35 patients (52.2%). Hypothyroidism requiring hormone replacement was recorded in 29% of the cases. Hearing loss, and problems including poor concentration, poor memory and learning difficulties were reported in 19% and 25% of the cases respectively. Second cancers were noted in three cases. CONCLUSION Overall, our results are comparable to those reported in literature. Nevertheless, efforts should be made to ensure longer follow-ups and correctly assess treatment-related toxicity.
Collapse
|
9
|
Yang B, Dai JX, Pan YB, Ma YB, Chu SH. Examining the biomarkers and molecular mechanisms of medulloblastoma based on bioinformatics analysis. Oncol Lett 2019; 18:433-441. [PMID: 31289514 PMCID: PMC6540325 DOI: 10.3892/ol.2019.10314] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 04/02/2019] [Indexed: 12/17/2022] Open
Abstract
Medulloblastoma (MB) is the most common malignant brain tumor in children. The aim of the present study was to predict biomarkers and reveal their potential molecular mechanisms in MB. The gene expression profiles of GSE35493, GSE50161, GSE74195 and GSE86574 were downloaded from the Gene Expression Omnibus (GEO) database. Using the Limma package in R, a total of 1,006 overlapped differentially expressed genes (DEGs) with the cut-off criteria of P<0.05 and |log2fold-change (FC)|>1 were identified between MB and normal samples, including 540 upregulated and 466 downregulated genes. Furthermore, the Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were also performed using the Database for Annotation, Visualization and Integrated Discovery (DAVID) online tool to analyze functional and pathway enrichment. The Search Tool for Retrieval of Interacting Genes database was subsequently used to construct a protein-protein interaction (PPI) network and the network was visualized in Cytoscape. The top 11 hub genes, including CDK1, CCNB1, CCNB2, PLK1, CDC20, MAD2L1, AURKB, CENPE, TOP2A, KIF2C and PCNA, were identified from the PPI network. The survival curves for hub genes in the dataset GSE85217 predicted the association between the genes and survival of patients with MB. The top 3 modules were identified by the Molecular Complex Detection plugin. The results indicated that the pathways of DEGs in module 1 were primarily enriched in cell cycle, progesterone-mediated oocyte maturation and oocyte meiosis; and the most significant functional pathways in modules 2 and 3 were primarily enriched in mismatch repair and ubiquitin-mediated proteolysis, respectively. These results may help elucidate the pathogenesis and design novel treatments for MB.
Collapse
Affiliation(s)
- Biao Yang
- Department of Neurosurgery, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 201999, P.R. China
| | - Jun-Xi Dai
- Department of Neurosurgery, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 201999, P.R. China
| | - Yuan-Bo Pan
- Department of Neurosurgery, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 201999, P.R. China
| | - Yan-Bin Ma
- Department of Neurosurgery, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 201999, P.R. China
| | - Sheng-Hua Chu
- Department of Neurosurgery, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 201999, P.R. China
| |
Collapse
|
10
|
Villanueva AA, Puvogel S, Lois P, Muñoz-Palma E, Ramírez Orellana M, Lubieniecki F, Casco Claro F, Gallegos I, García-Castro J, Sanchez-Gomez P, Torres VA, Palma V. The Netrin-4/Laminin γ1/Neogenin-1 complex mediates migration in SK-N-SH neuroblastoma cells. Cell Adh Migr 2018; 13:33-40. [PMID: 30160193 PMCID: PMC6527380 DOI: 10.1080/19336918.2018.1506652] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Neuroblastoma (NB) is the most common pediatric extracranial solid tumor. It arises during development of the sympathetic nervous system. Netrin-4 (NTN4), a laminin-related protein, has been proposed as a key factor to target NB metastasis, although there is controversy about its function. Here, we show that NTN4 is broadly expressed in tumor, stroma and blood vessels of NB patient samples. Furthermore, NTN4 was shown to act as a cell adhesion molecule required for the migration induced by Neogenin-1 (NEO1) in SK-N-SH neuroblastoma cells. Therefore, we propose that NTN4, by forming a ternary complex with Laminin γ1 (LMγ1) and NEO1, acts as an essential extracellular matrix component, which induces the migration of SK-N-SH cells.
Collapse
Affiliation(s)
- Andrea A Villanueva
- a Faculty of Sciences , Laboratory of Stem Cells and Developmental Biology, Universidad de Chile , Santiago , Chile
| | - Sofía Puvogel
- a Faculty of Sciences , Laboratory of Stem Cells and Developmental Biology, Universidad de Chile , Santiago , Chile
| | - Pablo Lois
- a Faculty of Sciences , Laboratory of Stem Cells and Developmental Biology, Universidad de Chile , Santiago , Chile
| | - Ernesto Muñoz-Palma
- a Faculty of Sciences , Laboratory of Stem Cells and Developmental Biology, Universidad de Chile , Santiago , Chile
| | | | - Fabiana Lubieniecki
- c Hospital de Pediatría Dr. Prof. Juan P. Garrahan , Buenos Aires , Argentina
| | | | - Iván Gallegos
- e Faculty of Medicine , Universidad de Chile , Santiago , Chile
| | | | | | - Vicente A Torres
- h Institute for Research in Dental Sciences and Advanced Center for Chronic Diseases (ACCDiS), Faculty of Dentistry , Universidad de Chile , Santiago , Chile
| | - Verónica Palma
- a Faculty of Sciences , Laboratory of Stem Cells and Developmental Biology, Universidad de Chile , Santiago , Chile
| |
Collapse
|
11
|
Miranda Kuzan-Fischer C, Juraschka K, Taylor MD. Medulloblastoma in the Molecular Era. J Korean Neurosurg Soc 2018; 61:292-301. [PMID: 29742881 PMCID: PMC5957312 DOI: 10.3340/jkns.2018.0028] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 02/14/2018] [Accepted: 03/03/2018] [Indexed: 12/31/2022] Open
Abstract
Medulloblastoma is the most common malignant brain tumor of childhood and remains a major cause of cancer related mortality in children. Significant scientific advancements have transformed the understanding of medulloblastoma, leading to the recognition of four distinct clinical and molecular subgroups, namely wingless (WNT), sonic hedgehog, group 3, and group 4. Subgroup classification combined with the recognition of subgroup specific molecular alterations has also led to major changes in risk stratification of medulloblastoma patients and these changes have begun to alter clinical trial design, in which the newly recognized subgroups are being incorporated as individualized treatment arms. Despite these recent advancements, identification of effective targeted therapies remains a challenge for several reasons. First, significant molecular heterogeneity exists within the four subgroups, meaning this classification system alone may not be sufficient to predict response to a particular therapy. Second, the majority of novel agents are currently tested at the time of recurrence, after which significant selective pressures have been exerted by radiation and chemotherapy. Recent studies demonstrate selection of tumor sub-clones that exhibit genetic divergence from the primary tumor, exist within metastatic and recurrent tumor populations. Therefore, tumor resampling at the time of recurrence may become necessary to accurately select patients for personalized therapy.
Collapse
Affiliation(s)
- Claudia Miranda Kuzan-Fischer
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Canada.,The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Canada
| | - Kyle Juraschka
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Canada.,The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Canada.,Department of Surgery, University of Toronto, Toronto, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.,Division of Neurosurgery, University of Toronto, Toronto, Canada
| | - Michael D Taylor
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Canada.,The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Canada.,Department of Surgery, University of Toronto, Toronto, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.,Division of Neurosurgery, University of Toronto, Toronto, Canada
| |
Collapse
|
12
|
Villanueva AA, Falcón P, Espinoza N, R LS, Milla LA, Hernandez-SanMiguel E, Torres VA, Sanchez-Gomez P, Palma V. The Netrin-4/ Neogenin-1 axis promotes neuroblastoma cell survival and migration. Oncotarget 2018; 8:9767-9782. [PMID: 28038459 PMCID: PMC5354769 DOI: 10.18632/oncotarget.14213] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 12/05/2016] [Indexed: 12/18/2022] Open
Abstract
Neogenin-1 (NEO1) is a transmembrane receptor involved in axonal guidance, angiogenesis, neuronal cell migration and cell death, during both embryonic development and adult homeostasis. It has been described as a dependence receptor, because it promotes cell death in the absence of its ligands (Netrin and Repulsive Guidance Molecule (RGM) families) and cell survival when they are present. Although NEO1 and its ligands are involved in tumor progression, their precise role in tumor cell survival and migration remain unclear. Public databases contain extensive information regarding the expression of NEO1 and its ligands Netrin-1 (NTN1) and Netrin-4 (NTN4) in primary neuroblastoma (NB) tumors. Analysis of this data revealed that patients with high expression levels of both NEO1 and NTN4 have a poor survival rate. Accordingly, our analyses in NB cell lines with different genetic backgrounds revealed that knocking-down NEO1 reduces cell migration, whereas silencing of endogenous NTN4 induced cell death. Conversely, overexpression of NEO1 resulted in higher cell migration in the presence of NTN4, and increased apoptosis in the absence of ligand. Increased apoptosis was prevented when utilizing physiological concentrations of exogenous Netrin-4. Likewise, cell death induced after NTN4 knock-down was rescued when NEO1 was transiently silenced, thus revealing an important role for NEO1 in NB cell survival. In vivo analysis, using the chicken embryo chorioallantoic membrane (CAM) model, showed that NEO1 and endogenous NTN4 are involved in tumor extravasation and metastasis. Our data collectively demonstrate that endogenous NTN4/NEO1 maintain NB growth via both pro-survival and pro-migratory molecular signaling.
Collapse
Affiliation(s)
- Andrea A Villanueva
- Laboratory of Stem Cells and Developmental Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | - Paulina Falcón
- Laboratory of Stem Cells and Developmental Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | - Natalie Espinoza
- Laboratory of Stem Cells and Developmental Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | - Luis Solano R
- Laboratory of Stem Cells and Developmental Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | - Luis A Milla
- Laboratory of Stem Cells and Developmental Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile.,Current address: School of Medicine, Universidad de Santiago, Santiago, Chile
| | | | - Vicente A Torres
- Institute for Research in Dental Sciences and Advanced Center for Chronic Diseases (ACCDiS), Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | | | - Verónica Palma
- Laboratory of Stem Cells and Developmental Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| |
Collapse
|
13
|
Sun D, Sun XD, Zhao L, Lee DH, Hu JX, Tang FL, Pan JX, Mei L, Zhu XJ, Xiong WC. Neogenin, a regulator of adult hippocampal neurogenesis, prevents depressive-like behavior. Cell Death Dis 2018; 9:8. [PMID: 29311593 PMCID: PMC5849041 DOI: 10.1038/s41419-017-0019-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 09/19/2017] [Accepted: 10/02/2017] [Indexed: 11/09/2022]
Abstract
Adult neurogenesis in hippocampal dentate gyrus (DG) is a complex, but precisely controlled process. Dysregulation of this event contributes to multiple neurological disorders, including major depression. Thus, it is of considerable interest to investigate how adult hippocampal neurogenesis is regulated. Here, we present evidence for neogenin, a multifunctional transmembrane receptor, to regulate adult mouse hippocampal neurogenesis. Loss of neogenin in adult neural stem cells (NSCs) or neural progenitor cells (NPCs) impaired NSCs/NPCs proliferation and neurogenesis, whereas increased their astrocytic differentiation. Mechanistic studies revealed a role for neogenin to positively regulate Gli1, a crucial downstream transcriptional factor of sonic hedgehog, and expression of Gli1 into neogenin depleted NSCs/NPCs restores their proliferation. Further morphological and functional studies showed additional abnormities, including reduced dendritic branches and spines, and impaired glutamatergic neuro-transmission, in neogenin-depleted new-born DG neurons; and mice with depletion of neogenin in NSCs/NPCs exhibited depressive-like behavior. These results thus demonstrate unrecognized functions of neogenin in adult hippocampal NSCs/NPCs-promoting NSCs/NPCs proliferation and neurogenesis and preventing astrogliogenesis and depressive-like behavior, and suggest neogenin regulation of Gli1 signaling as a possible underlying mechanism.
Collapse
Affiliation(s)
- Dong Sun
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Cytology and Genetics, Northeast Normal University, Changchun, Jilin, 130024, China.,Department of Neuroscience & Regenerative Medicine and Department of Neurology, Augusta University, Augusta, GA, 30912, USA
| | - Xiang-Dong Sun
- Department of Neuroscience & Regenerative Medicine and Department of Neurology, Augusta University, Augusta, GA, 30912, USA
| | - Lu Zhao
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Cytology and Genetics, Northeast Normal University, Changchun, Jilin, 130024, China.,Department of Neuroscience & Regenerative Medicine and Department of Neurology, Augusta University, Augusta, GA, 30912, USA
| | - Dae-Hoon Lee
- Department of Neuroscience & Regenerative Medicine and Department of Neurology, Augusta University, Augusta, GA, 30912, USA
| | - Jin-Xia Hu
- Department of Neuroscience & Regenerative Medicine and Department of Neurology, Augusta University, Augusta, GA, 30912, USA.,Department of Neurology, The affiliated hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, 221002, China
| | - Fu-Lei Tang
- Department of Neuroscience & Regenerative Medicine and Department of Neurology, Augusta University, Augusta, GA, 30912, USA
| | - Jin-Xiu Pan
- Department of Neuroscience & Regenerative Medicine and Department of Neurology, Augusta University, Augusta, GA, 30912, USA
| | - Lin Mei
- Department of Neuroscience & Regenerative Medicine and Department of Neurology, Augusta University, Augusta, GA, 30912, USA
| | - Xiao-Juan Zhu
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Cytology and Genetics, Northeast Normal University, Changchun, Jilin, 130024, China.
| | - Wen-Cheng Xiong
- Department of Neuroscience & Regenerative Medicine and Department of Neurology, Augusta University, Augusta, GA, 30912, USA.
| |
Collapse
|
14
|
Gómez C, Jimeno D, Fernández-Medarde A, García-Navas R, Calzada N, Santos E. Ras-GRF2 regulates nestin-positive stem cell density and onset of differentiation during adult neurogenesis in the mouse dentate gyrus. Mol Cell Neurosci 2017; 85:127-147. [PMID: 28966131 DOI: 10.1016/j.mcn.2017.09.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 09/11/2017] [Accepted: 09/17/2017] [Indexed: 12/12/2022] Open
Abstract
Various parameters of neurogenesis were analyzed in parallel in the two neurogenic areas (the Dentate Gyrus[DG] and the Subventricular Zone[SVZ]/Rostral Migratory Stream[RMS]/Main Olfactory Bulb[MOB] neurogenic system) of adult WT and KO mouse strains for the Ras-GRF1/2 genes (Ras-GRF1-KO, Ras-GRF2-KO, Ras-GRF1/2-DKO). Significantly reduced numbers of doublecortin[DCX]-positive cells were specifically observed in the DG, but not the SVZ/RMS/MOB neurogenic region, of Ras-GRF2-KO and Ras-GRF1/2-DKO mice indicating that this novel Ras-GRF2-dependent phenotype is spatially restricted to a specific neurogenic area. Consistent with a role of CREB as mediator of Ras-GRF2 function in neurogenesis, the density of p-CREB-positive cells was also specifically reduced in all neurogenic regions of Ras-GRF2-KO and DKO mice. Similar levels of early neurogenic proliferation markers (Ki67, BrdU) were observed in all different Ras-GRF genotypes analyzed but significantly elevated levels of nestin-immunolabel, particularly of undifferentiated, highly ramified, A-type nestin-positive neurons were specifically detected in the DG but not the SVZ/RMS/MOB of Ras-GRF2-KO and DKO mice. Together with assays of other neurogenic markers (GFAP, Sox2, Tuj1, NeuN), these observations suggest that the deficit of DCX/p-CREB-positive cells in the DG of Ras-GRF2-depleted mice does not involve impaired neuronal proliferation but rather delayed transition from the stem cell stage to the differentiation stages of the neurogenic process. This model is also supported by functional analyses of DG-derived neurosphere cultures and transcriptional characterization of the neurogenic areas of mice of all relevant Ras-GRF genotypes suggesting that the neurogenic role of Ras-GRF2 is exerted in a cell-autonomous manner through a specific transcriptional program.
Collapse
Affiliation(s)
- Carmela Gómez
- Centro de Investigación del Cáncer-Instituto de Biología Molecular y Celular del Cáncer (CSIC- Universidad de Salamanca) and CIBERONC, 37007 Salamanca, Spain
| | - David Jimeno
- Centro de Investigación del Cáncer-Instituto de Biología Molecular y Celular del Cáncer (CSIC- Universidad de Salamanca) and CIBERONC, 37007 Salamanca, Spain
| | - Alberto Fernández-Medarde
- Centro de Investigación del Cáncer-Instituto de Biología Molecular y Celular del Cáncer (CSIC- Universidad de Salamanca) and CIBERONC, 37007 Salamanca, Spain
| | - Rósula García-Navas
- Centro de Investigación del Cáncer-Instituto de Biología Molecular y Celular del Cáncer (CSIC- Universidad de Salamanca) and CIBERONC, 37007 Salamanca, Spain
| | - Nuria Calzada
- Centro de Investigación del Cáncer-Instituto de Biología Molecular y Celular del Cáncer (CSIC- Universidad de Salamanca) and CIBERONC, 37007 Salamanca, Spain
| | - Eugenio Santos
- Centro de Investigación del Cáncer-Instituto de Biología Molecular y Celular del Cáncer (CSIC- Universidad de Salamanca) and CIBERONC, 37007 Salamanca, Spain.
| |
Collapse
|
15
|
Downregulation of the Sonic Hedgehog/Gli pathway transcriptional target Neogenin-1 is associated with basal cell carcinoma aggressiveness. Oncotarget 2017; 8:84006-84018. [PMID: 29137400 PMCID: PMC5663572 DOI: 10.18632/oncotarget.21061] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 09/03/2017] [Indexed: 12/24/2022] Open
Abstract
Basal Cell Carcinoma (BCC) is one of the most diagnosed cancers worldwide. It develops due to an unrestrained Sonic Hedgehog (SHH) signaling activity in basal cells of the skin. Certain subtypes of BCC are more aggressive than others, although the molecular basis of this phenomenon remains unknown. We have previously reported that Neogenin-1 (NEO1) is a downstream target gene of the SHH/GLI pathway in neural tissue. Given that SHH participates in epidermal homeostasis, here we analyzed the epidermal expression of NEO1 in order to identify whether it plays a role in adult epidermis or BCC. We describe the mRNA and protein expression profile of NEO1 and its ligands (Netrin-1 and RGMA) in human and mouse control epidermis and in a broad range of human BCCs. We identify in human BCC a significant positive correlation in the levels of NEO1 receptor, NTN-1 and RGMA ligands with respect to GLI1, the main target gene of the canonical SHH pathway. Moreover, we show via cyclopamine inhibition of the SHH/GLI pathway of ex vivo cultures that NEO1 likely functions as a downstream target of SHH/GLI signaling in the skin. We also show how Neo1 expression decreases throughout BCC progression in the K14-Cre:Ptch1lox/lox mouse model and that aggressive subtypes of human BCC exhibit lower levels of NEO1 than non-aggressive BCC samples. Taken together, these data suggest that NEO1 is a SHH/GLI target in epidermis. We propose that NEO1 may be important in tumor onset and is then down-regulated in advanced BCC or aggressive subtypes.
Collapse
|
16
|
Han FS, Yang SJ, Lin MB, Chen YQ, Yang P, Xu JM. Chitooligosaccharides promote radiosensitivity in colon cancer line SW480. World J Gastroenterol 2016; 22:5193-5200. [PMID: 27298562 PMCID: PMC4893466 DOI: 10.3748/wjg.v22.i22.5193] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Revised: 03/02/2016] [Accepted: 03/18/2016] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the anti-proliferation and radiosensitization effect of chitooligosaccharides (COS) on human colon cancer cell line SW480.
METHODS: SW480 cells were treated with 0, 1.0, 2.0, 3.0, 4.0 and 5.0 mg/mL of COS for 48 h. CCK-8 assay was employed to obtain the cell survival ratio of SW480 cells, and the anti-proliferation curve was observed with the inhibition ratio of COS on SW480 cells. The RAY + COS group was treated with 1.0 mg/mL of COS for 48 h, while both the RAY and RAY+COS groups were exposed to X-ray at 0, 1, 2, 4, 6 and 8 Gy, respectively. Clonogenic assay was used to analyze cell viability in the two groups at 10 d after treatment, and a cell survival curve was used to analyze the sensitization ratio of COS. The RAY group was exposed to X-ray at 6 Gy, while the RAY+COS group was treated with 1.0 mg/mL of COS for 48 h in advance and exposed to X-ray at 6 Gy. Flow cytometry was employed to detect cell cycle and apoptosis rate in the non-treatment group, as well as in the RAY and RAY + COS groups after 24 h of treatment.
RESULTS: COS inhibited the proliferation of SW480 cells, and the inhibition rate positively correlated with the concentration of COS (P < 0.01). Cell viability decreased as radiation dose increased in the RAY and RAY+COS groups (P < 0.01). Cell viabilities in the RAY+COS group were lower than in the RAY group at all doses of X-ray exposure (P < 0.01), and the sensitization ratio of COS on SW480 cells was 1.39. Compared with the non-treatment group, there was a significant increase in apoptosis rate in both the RAY and RAY + COS groups; while the apoptosis rate in the RAY+COS group was significantly higher than in the RAY group (P < 0.01). In comparing these three groups, the percentage of G2/M phase in both the RAY and RAY + COS groups significantly increased, and the percentage of the S phase and G0/G1 phase was downregulated. Furthermore, the percentage in the G2/M phase was higher, and the percentage in the S phase and G0/G1 phase was lower in the RAY + COS group vs RAY group (P < 0.01).
CONCLUSION: COS can inhibit the proliferation of SW480 cells and enhance the radiosensitization of SW480 cells, inducing apoptosis and G2/M phase arrest.
Collapse
|
17
|
Kaneko K, Ohkawa Y, Hashimoto N, Ohmi Y, Kotani N, Honke K, Ogawa M, Okajima T, Furukawa K, Furukawa K. Neogenin, Defined as a GD3-associated Molecule by Enzyme-mediated Activation of Radical Sources, Confers Malignant Properties via Intracytoplasmic Domain in Melanoma Cells. J Biol Chem 2016; 291:16630-43. [PMID: 27288875 DOI: 10.1074/jbc.m115.708834] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Indexed: 11/06/2022] Open
Abstract
To investigate mechanisms for increased malignant properties in malignant melanomas by ganglioside GD3, enzyme-mediated activation of radical sources and subsequent mass spectrometry were performed using an anti-GD3 antibody and GD3-positive (GD3+) and GD3-negative (GD3-) melanoma cell lines. Neogenin, defined as a GD3-neighbored molecule, was largely localized in lipid/rafts in GD3+ cells. Silencing of neogenin resulted in the reduction of cell growth and invasion activity. Physical association between GD3 and neogenin was demonstrated by immunoblotting of the immunoprecipitates with anti-neogenin antibody from GD3+ cell lysates. The intracytoplasmic domain of neogenin (Ne-ICD) was detected in GD3+ cells at higher levels than in GD3- cells when cells were treated by a proteasome inhibitor but not when simultaneously treated with a γ-secretase inhibitor. Exogenous GD3 also induced increased Ne-ICD in GD3- cells. Overexpression of Ne-ICD in GD3- cells resulted in the increased cell growth and invasion activity, suggesting that Ne-ICD plays a role as a transcriptional factor to drive malignant properties of melanomas after cleavage with γ-secretase. γ-Secretase was found in lipid/rafts in GD3+ cells. Accordingly, immunocyto-staining revealed that GD3, neogenin, and γ-secretase were co-localized at the leading edge of GD3+ cells. All these results suggested that GD3 recruits γ-secretase to lipid/rafts, allowing efficient cleavage of neogenin. ChIP-sequencing was performed to identify candidates of target genes of Ne-ICD. Some of them actually showed increased expression after expression of Ne-ICD, probably exerting malignant phenotypes of melanomas under GD3 expression.
Collapse
Affiliation(s)
- Kei Kaneko
- From the Department of Biochemistry II, Nagoya University Graduate School of Medicine, Nagoya 466-0065
| | - Yuki Ohkawa
- Department of Life Biomedical Sciences, Chubu University College of Life and Health Sciences, Kasuigai, Aichi 487-8501
| | - Noboru Hashimoto
- From the Department of Biochemistry II, Nagoya University Graduate School of Medicine, Nagoya 466-0065
| | - Yuhsuke Ohmi
- From the Department of Biochemistry II, Nagoya University Graduate School of Medicine, Nagoya 466-0065
| | - Norihiro Kotani
- Department of Biochemistry, Faculty of Medicine, Saitama Medical University, Moroyama-machi, Iruma-gun, Saitama 350-0495, and
| | - Koichi Honke
- Department of Biochemistry, Kochi University School of Medicine, Kochi 783-8505, Japan
| | - Mitsutaka Ogawa
- From the Department of Biochemistry II, Nagoya University Graduate School of Medicine, Nagoya 466-0065
| | - Tetsuya Okajima
- From the Department of Biochemistry II, Nagoya University Graduate School of Medicine, Nagoya 466-0065
| | - Keiko Furukawa
- Department of Life Biomedical Sciences, Chubu University College of Life and Health Sciences, Kasuigai, Aichi 487-8501
| | - Koichi Furukawa
- From the Department of Biochemistry II, Nagoya University Graduate School of Medicine, Nagoya 466-0065, Department of Life Biomedical Sciences, Chubu University College of Life and Health Sciences, Kasuigai, Aichi 487-8501,
| |
Collapse
|
18
|
Lv B, Song C, Wu L, Zhang Q, Hou D, Chen P, Yu S, Wang Z, Chu Y, Zhang J, Yang D, Liu J. Netrin-4 as a biomarker promotes cell proliferation and invasion in gastric cancer. Oncotarget 2016; 6:9794-806. [PMID: 25909166 PMCID: PMC4496398 DOI: 10.18632/oncotarget.3400] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 02/15/2015] [Indexed: 12/28/2022] Open
Abstract
Gastric cancer (GC) is the second most common cause of cancer-related death with limited serum biomarkers for diagnosis and prognosis. Netrin-4 (Ntn4) is a laminin-related secreted molecule found to regulate tumor progression and metastasis. However, it is completely unknown whether Ntn4 has roles in GC development. Here, we first reported Ntn4 knockdown significantly suppressed cell proliferation and motility, while overexpression or addition of exogenous Ntn4 reversed these effects. In addition, Ntn4 receptor, neogenin (Neo) was also found highly expressed in GC cells and mediated the Ntn4-induced cell proliferation and invasion. Moreover, Ntn4 or Neo silencing decreased the phosphorylation of Stat3, ERK, Akt and p38, indicating multi-oncogenic pathways (Jak/Stat, PI3K/Akt, and ERK/MAPK) were involved in Ntn4-induced effects on the GC cells. Importantly, Ntn4 level was significantly increased in 82 tumor tissues (p = 0.001) and 52 serum samples (p < 0.0001) from GC patients and positively correlated with Neo expression (p = 0.003). Ntn4 expression was negatively correlated with the survival period (p = 0.038), and positively associated with the severity of pathological stages of the tumors (p = 0.008). Taken together, Ntn4 promoted the proliferation and motility of GC cells which was mediated by its receptor Neo and through further activation of multi-oncogenic pathways. Elevated Ntn4 was detected in both tumor tissues and serum samples of GC patients and suggested a relatively poor survival, indicating Ntn4 may be used as a potential non-invasive biomarker for diagnosis and prognosis of GC.
Collapse
Affiliation(s)
- Bin Lv
- Department of Digestive Diseases of Huashan Hospital, Fudan University, Shanghai, China
| | - Chunhua Song
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Lijun Wu
- Department of Digestive Diseases of Huashan Hospital, Fudan University, Shanghai, China
| | - Qi Zhang
- Department of Digestive Diseases of Huashan Hospital, Fudan University, Shanghai, China.,Institutes of Biomedical Sciences of Shanghai Medical School, Fudan University, Shanghai, China
| | - Daisen Hou
- Department of Digestive Diseases of Huashan Hospital, Fudan University, Shanghai, China.,Institutes of Biomedical Sciences of Shanghai Medical School, Fudan University, Shanghai, China
| | - Ping Chen
- Department of Digestive Diseases of Huashan Hospital, Fudan University, Shanghai, China.,Institutes of Biomedical Sciences of Shanghai Medical School, Fudan University, Shanghai, China
| | - Shunji Yu
- Department of Digestive Diseases of Huashan Hospital, Fudan University, Shanghai, China.,Institutes of Biomedical Sciences of Shanghai Medical School, Fudan University, Shanghai, China
| | - Zhicheng Wang
- Department of Laboratory Medicine of Huashan Hospital, Fudan University, Shanghai, China
| | - Yiwei Chu
- Department of Immunology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jun Zhang
- Department of Digestive Diseases of Huashan Hospital, Fudan University, Shanghai, China
| | - Dongqin Yang
- Department of Digestive Diseases of Huashan Hospital, Fudan University, Shanghai, China
| | - Jie Liu
- Department of Digestive Diseases of Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
19
|
Expressions of oncogenes c-fos and c-myc in skin lesion of cutaneous squamous cell carcinoma. ASIAN PAC J TROP MED 2015; 7:761-4. [PMID: 25129456 DOI: 10.1016/s1995-7645(14)60132-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Revised: 06/15/2014] [Accepted: 07/23/2014] [Indexed: 11/20/2022] Open
Abstract
OBJECTIVES To explore the expressions of c-fos and c-myc in skin lesion of cutaneous squamous cell carcinoma (CSCC). METHODS Using retrospective analysis, 73 cases of CSCC were selected from Department of Dermatology, the Second Affiliated Hospital of Xi'an Jiaotong University, which were removed between January 2000 and January 2012. It was considered as experimental group. Meanwhile, 11 cases of normal skin specimens of non tumor patients were selected as control group. The expression level of c-fos and c-myc was compared in the two groups. RESULTS The expressions of c-fos [72.60% (53/73)] and c-myc [83.56% (61/73)] in experimental group were statistically significant (P≤0.05) compared with control group (0%). Expression of c-myc protein was negatively related to differentiation of CSCC. The difference was statistically significant (χ(2)=7.26, P=0.001<0.05). While expression of c-fos protein was positively related to differentiation of CSCC, which was statistically significant (χ(2)=7.47, P=0.001 2<0.025). CONCLUSIONS The expression level of c-fos and c-myc can be used as an important indicator of CSCC differentiation, and it has closely connection with the differentiated degree, which can guide clinical prognosis.
Collapse
|
20
|
HEDGEHOG/GLI-E2F1 axis modulates iASPP expression and function and regulates melanoma cell growth. Cell Death Differ 2015; 22:2006-19. [PMID: 26024388 PMCID: PMC4816112 DOI: 10.1038/cdd.2015.56] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 03/26/2015] [Accepted: 04/08/2015] [Indexed: 02/01/2023] Open
Abstract
HEDGEHOG (HH) signaling is a key regulator of tissue development and its aberrant activation is involved in several cancer types, including melanoma. We and others have shown a reciprocal cross talk between HH signaling and p53, whose function is often impaired in melanoma. Here we present evidence that both GLI1 and GLI2, the final effectors of HH signaling, regulate the transcription factor E2F1 in melanoma cells, by binding to a functional non-canonical GLI consensus sequence. Consistently, we find a significant correlation between E2F1 and PATCHED1 (PTCH1), GLI1 and GLI2 expression in human melanomas. Functionally, we find that E2F1 is a crucial mediator of HH signaling and it is required for melanoma cell proliferation and xenograft growth induced by activation of the HH pathway. Interestingly, we present evidence that the HH/GLI-E2F1 axis positively modulates the inhibitor of apoptosis-stimulating protein of p53 (iASPP) at multiple levels. HH activation induces iASPP expression through E2F1, which directly binds to iASPP promoter. HH pathway also contributes to iASPP function, by the induction of Cyclin B1 and by the E2F1-dependent regulation of CDK1, which are both involved in iASPP activation. Our data show that activation of HH signaling enhances proliferation in presence of E2F1 and promotes apoptosis in its absence or upon CDK1 inhibition, suggesting that E2F1/iASPP dictates the outcome of HH signaling in melanoma. Together, these findings identify a novel HH/GLI-E2F1-iASPP axis that regulates melanoma cell growth and survival, providing an additional mechanism through which HH signaling restrains p53 proapoptotic function.
Collapse
|
21
|
Kim SJ, Wang YG, Lee HW, Kang HG, La SH, Choi IJ, Irimura T, Ro JY, Bresalier RS, Chun KH. Up-regulation of neogenin-1 increases cell proliferation and motility in gastric cancer. Oncotarget 2015; 5:3386-98. [PMID: 24930499 PMCID: PMC4102817 DOI: 10.18632/oncotarget.1960] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Although elevated expression of neogenin-1 has been detected in human gastric cancer tissue, its role in gastric tumorigenesis remains unclear due to the lack of neogenin-1 studies in cancer. Therefore, we demonstrated here the function and regulatory mechanism of neogenin-1 in gastric cancer. Neogenin-1 ablation decreased proliferation and migration of gastric cancer cells, whereas its over-expression reversed these effects. Xenografted analyses using gastric cancer cells displayed statistically significant inhibition of tumor growth by neogenin-1 depletion. Interestingly, galectin-3 interacted with HSF-1 directly, which facilitated nuclear-localization and binding on neogenin-1 promoter to drive its transcription and gastric cancer cell motility. The galectin-3-increased gastric cancer cell motility was down-regulated by HSF-1 depletion. Moreover, the parallel expression patterns of galectin-3 and neogenin-1, as well as those of HSF-1 and neogenin-1, were detected in the malignant tissues of gastric cancer patients. Taken together, high-expression of neogenin-1 promotes gastric cancer proliferation and motility and its expression is regulated by HSF-1 and galectin-3 interaction. In addition, we propose further studies for neogenin-1 and its associated pathways to provide them as a proper target for gastric cancer therapy.
Collapse
Affiliation(s)
- Seok-Jun Kim
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Du W, Liu X, Chen L, Dou Z, Lei X, Chang L, Cai J, Cui Y, Yang D, Sun Y, Li Y, Jiang C. Targeting the SMO oncogene by miR-326 inhibits glioma biological behaviors and stemness. Neuro Oncol 2014; 17:243-53. [PMID: 25173582 DOI: 10.1093/neuonc/nou217] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Few studies have associated microRNAs (miRNAs) with the hedgehog (Hh) pathway. Here, we investigated whether targeting smoothened (SMO) with miR-326 would affect glioma biological behavior and stemness. METHODS To investigate the expression of SMO and miR-326 in glioma specimens and cell lines, we utilized quantitative real-time (qRT)-PCR, Western blot, immunohistochemistry, and fluorescence in situ hybridization. The luciferase reporter assay was used to verify the relationship between SMO and miR-326. We performed cell counting kit-8, transwell, and flow cytometric assays using annexin-V labeling to detect changes after transfection with siRNA against SMO or miR-326. qRT-PCR assays, neurosphere formation, and immunofluorescence were utilized to detect the modification of self-renewal and stemness in U251 tumor stem cells. A U251-implanted intracranial model was used to study the effect of miR-326 on tumor volume and SMO suppression efficacy. RESULTS SMO was upregulated in gliomas and was associated with tumor grade and survival period. SMO inhibition suppressed the biological behaviors of glioma cells. SMO expression was inversely correlated with miR-326 and was identified as a novel direct target of miR-326. miR-326 overexpression not only repressed SMO and downstream genes but also decreased the activity of the Hh pathway. Moreover, miR-326 overexpression decreased self-renewal and stemness and partially prompted differentiation in U251 tumor stem cells. In turn, the inhibition of Hh partially elevated miR-326 expression. Intracranial tumorigenicity induced by the transfection of miR-326 was reduced and was partially mediated by the decreased SMO expression. CONCLUSIONS This work suggests a possible molecular mechanism of the miR- 326/SMO axis, which can be a potential alternative therapeutic pathway for gliomas.
Collapse
Affiliation(s)
- Wenzhong Du
- Department of Neurosurgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China (W.D., X.L., Z.D., X.L., L.C., J.C., Y.C., D.Y., Y.S., Y.L., C.J.); Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China (L.C.)
| | - Xing Liu
- Department of Neurosurgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China (W.D., X.L., Z.D., X.L., L.C., J.C., Y.C., D.Y., Y.S., Y.L., C.J.); Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China (L.C.)
| | - Lingchao Chen
- Department of Neurosurgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China (W.D., X.L., Z.D., X.L., L.C., J.C., Y.C., D.Y., Y.S., Y.L., C.J.); Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China (L.C.)
| | - Zhijin Dou
- Department of Neurosurgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China (W.D., X.L., Z.D., X.L., L.C., J.C., Y.C., D.Y., Y.S., Y.L., C.J.); Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China (L.C.)
| | - Xuhui Lei
- Department of Neurosurgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China (W.D., X.L., Z.D., X.L., L.C., J.C., Y.C., D.Y., Y.S., Y.L., C.J.); Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China (L.C.)
| | - Liang Chang
- Department of Neurosurgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China (W.D., X.L., Z.D., X.L., L.C., J.C., Y.C., D.Y., Y.S., Y.L., C.J.); Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China (L.C.)
| | - Jinquan Cai
- Department of Neurosurgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China (W.D., X.L., Z.D., X.L., L.C., J.C., Y.C., D.Y., Y.S., Y.L., C.J.); Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China (L.C.)
| | - Yuqiong Cui
- Department of Neurosurgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China (W.D., X.L., Z.D., X.L., L.C., J.C., Y.C., D.Y., Y.S., Y.L., C.J.); Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China (L.C.)
| | - Dongbo Yang
- Department of Neurosurgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China (W.D., X.L., Z.D., X.L., L.C., J.C., Y.C., D.Y., Y.S., Y.L., C.J.); Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China (L.C.)
| | - Ying Sun
- Department of Neurosurgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China (W.D., X.L., Z.D., X.L., L.C., J.C., Y.C., D.Y., Y.S., Y.L., C.J.); Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China (L.C.)
| | - Yongli Li
- Department of Neurosurgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China (W.D., X.L., Z.D., X.L., L.C., J.C., Y.C., D.Y., Y.S., Y.L., C.J.); Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China (L.C.)
| | - Chuanlu Jiang
- Department of Neurosurgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China (W.D., X.L., Z.D., X.L., L.C., J.C., Y.C., D.Y., Y.S., Y.L., C.J.); Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China (L.C.)
| |
Collapse
|
23
|
Neogenin as a receptor for early cell fate determination in preimplantation mouse embryos. PLoS One 2014; 9:e101989. [PMID: 25013897 PMCID: PMC4094428 DOI: 10.1371/journal.pone.0101989] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Accepted: 06/12/2014] [Indexed: 01/03/2023] Open
Abstract
The first cell lineage determination in embryos takes place when two cell populations are set apart, each differentiating into the trophectoderm (TE) and inner cell mass (ICM), respectively. It is widely believed that position/polarity cues play a key role in triggering this differentiation, but it remains unclear how extracellular cues are transduced into cell fate determination. Here, we provide evidence that supports that neogenin is implicated in relaying extracellular cues into the first cell fate determination in preimplantation mouse embryos. A polarized and transient distribution of neogenin was manifested in early blastomeres. Neogenin up-regulation by its overexpression accelerated ICM development in the blastocyst concomitant with the activation of the ICM-specific transcription factors Oct3/4, Sox2, and Nanog while its depletion by small hairpin RNAs (shRNAs) caused a developmental abnormality of poorly endowed ICM accompanied by the deactivation of Oct3/4, Sox2, and Nanog. Treatment with netrin-1 among neogenin ligands further impaired both embryonic development and ICM formation while repulsive guidance molecule c (RGMc) led to opposite consequences, enhancing ICM formation. From this study, we propose a model whereby neogenin interprets its own expression level to control the first cell fate determination in response to extracellular cues.
Collapse
|
24
|
Akino T, Han X, Nakayama H, McNeish B, Zurakowski D, Mammoto A, Klagsbrun M, Smith E. Netrin-1 promotes medulloblastoma cell invasiveness and angiogenesis, and demonstrates elevated expression in tumor tissue and urine of patients with pediatric medulloblastoma. Cancer Res 2014; 74:3716-26. [PMID: 24812271 DOI: 10.1158/0008-5472.can-13-3116] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Invasion and dissemination of medulloblastoma within the central nervous system is the principal factor predicting medulloblastoma treatment failure and death. Netrin-1 is an axon guidance factor implicated in tumor and vascular biology, including in invasive behaviors. We found that exogenous netrin-1 stimulated invasion of human medulloblastoma cells and endothelial cells in contrast to VEGF-A, which promoted invasion of endothelial cells but not medulloblastoma cells. Furthermore, medulloblastoma cells expressed endogenous netrin-1 along with its receptors, neogenin and UNC5B. Blockades in endogenous netrin-1, neogenin, or UNC5B reduced medulloblastoma invasiveness. Neogenin blockade inhibited netrin-1-induced endothelial cells tube formation and recruitment of endothelial cells into Matrigel plugs, two hallmarks of angiogenesis. In patients with pediatric medulloblastoma, netrin-1 mRNA levels were increased 1.7-fold in medulloblastoma tumor specimens compared with control specimens from the same patient. Immunohistochemical analyses showed that netrin-1 was elevated in medulloblastoma tumors versus cerebellum controls. Notably, urinary levels of netrin-1 were 9-fold higher in patients with medulloblastoma compared with control individuals. Moreover, urinary netrin-1 levels were higher in patients with invasive medulloblastoma compared with patients with noninvasive medulloblastoma. Finally, we noted that urinary netrin-1 levels diminished after medulloblastoma resection in patients. Our results suggest netrin-1 is a candidate biomarker capable of detecting an invasive, disseminated phenotype in patients with medulloblastoma and predicting their disease status.
Collapse
Affiliation(s)
- Tomoshige Akino
- Authors' Affiliations: Vascular Biology Program; Departments of Surgery
| | - Xuezhe Han
- Authors' Affiliations: Vascular Biology Program; Departments of Neurosurgery, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts; and Department of Neurosurgery, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, PR China
| | - Hironao Nakayama
- Authors' Affiliations: Vascular Biology Program; Departments of Surgery
| | - Brendan McNeish
- Authors' Affiliations: Vascular Biology Program; Departments of Surgery
| | | | - Akiko Mammoto
- Authors' Affiliations: Vascular Biology Program; Departments of Surgery
| | - Michael Klagsbrun
- Authors' Affiliations: Vascular Biology Program; Departments of Surgery, Pathology,
| | - Edward Smith
- Authors' Affiliations: Vascular Biology Program; Departments of Neurosurgery, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts; and
| |
Collapse
|
25
|
Ferent J, Traiffort E. Hedgehog: Multiple Paths for Multiple Roles in Shaping the Brain and Spinal Cord. Neuroscientist 2014; 21:356-71. [PMID: 24743306 DOI: 10.1177/1073858414531457] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Since the discovery of the segment polarity gene Hedgehog in Drosophila three decades ago, our knowledge of Hedgehog signaling pathway has considerably improved and paved the way to a wide field of investigations in the developing and adult central nervous system. Its peculiar transduction mechanism together with its implication in tissue patterning, neural stem cell biology, and neural tissue homeostasis make Hedgehog pathway of interest in a high number of normal or pathological contexts. Consistent with its role during brain development, misregulation of Hedgehog signaling is associated with congenital diseases and tumorigenic processes while its recruitment in damaged neural tissue may be part of the repairing process. This review focuses on the most recent data regarding the Hedgehog pathway in the developing and adult central nervous system and also its relevance as a therapeutic target in brain and spinal cord diseases.
Collapse
Affiliation(s)
- Julien Ferent
- IRCM, Molecular Biology of Neural Development, Montreal, Quebec, Canada
| | - Elisabeth Traiffort
- INSERM-Université Paris Sud, Neuroprotection and Neuroregeneration: Small Neuroactive Molecules UMR 788, Le Kremlin-Bicêtre, France
| |
Collapse
|
26
|
Medulloblastoma Down Under 2013: a report from the third annual meeting of the International Medulloblastoma Working Group. Acta Neuropathol 2014; 127:189-201. [PMID: 24264598 PMCID: PMC3895219 DOI: 10.1007/s00401-013-1213-7] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 11/08/2013] [Indexed: 12/13/2022]
Abstract
Medulloblastoma is curable in approximately 70 % of patients. Over the past decade, progress in improving survival using conventional therapies has stalled, resulting in reduced quality of life due to treatment-related side effects, which are a major concern in survivors. The vast amount of genomic and molecular data generated over the last 5–10 years encourages optimism that improved risk stratification and new molecular targets will improve outcomes. It is now clear that medulloblastoma is not a single-disease entity, but instead consists of at least four distinct molecular subgroups: WNT/Wingless, Sonic Hedgehog, Group 3, and Group 4. The Medulloblastoma Down Under 2013 meeting, which convened at Bunker Bay, Australia, brought together 50 leading clinicians and scientists. The 2-day agenda included focused sessions on pathology and molecular stratification, genomics and mouse models, high-throughput drug screening, and clinical trial design. The meeting established a global action plan to translate novel biologic insights and drug targeting into treatment regimens to improve outcomes. A consensus was reached in several key areas, with the most important being that a novel classification scheme for medulloblastoma based on the four molecular subgroups, as well as histopathologic features, should be presented for consideration in the upcoming fifth edition of the World Health Organization’s classification of tumours of the central nervous system. Three other notable areas of agreement were as follows: (1) to establish a central repository of annotated mouse models that are readily accessible and freely available to the international research community; (2) to institute common eligibility criteria between the Children’s Oncology Group and the International Society of Paediatric Oncology Europe and initiate joint or parallel clinical trials; (3) to share preliminary high-throughput screening data across discovery labs to hasten the development of novel therapeutics. Medulloblastoma Down Under 2013 was an effective forum for meaningful discussion, which resulted in enhancing international collaborative clinical and translational research of this rare disease. This template could be applied to other fields to devise global action plans addressing all aspects of a disease, from improved disease classification, treatment stratification, and drug targeting to superior treatment regimens to be assessed in cooperative international clinical trials.
Collapse
|