1
|
Long B, Zhou H, Xiao L, Jiang X, Li J, Ma Z, He N, Xin W, Zhang B, Zhu X, Yu Z, Jiao Z. Targeting NUF2 suppresses gastric cancer progression through G2/M phase arrest and apoptosis induction. Chin Med J (Engl) 2024; 137:2437-2451. [PMID: 39193700 PMCID: PMC11479523 DOI: 10.1097/cm9.0000000000003006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Indexed: 08/29/2024] Open
Abstract
BACKGROUND Gastric cancer (GC), a malignant tumor with poor prognosis, is one of the leading causes of cancer-related deaths worldwide; consequently, identifying novel therapeutic targets is crucial for its corresponding treatment. NUF2 , a component of the NDC80 kinetochore complex, promotes cancer progression in multiple malignancies. Therefore, this study aimed to explore the potential of NUF2 as a therapeutic target to inhibit GC progression. METHODS Clinical samples were obtained from patients who underwent radical resection of GC at Lanzhou University Second Hospital from 2016 to 2021. Cell count assays, colony formation assays, and cell-derived xenotransplantation (CDX) models were used to determine the effects of NUF2 on GC progression. Flow cytometry was used to detect the effect of NUF2 or quercetin on cell cycle progression and apoptosis. A live-cell time-lapse imaging assay was performed to determine the effect of NUF2 on the regulation of mitotic progression. Transcriptomics was used to investigate the NUF2 -associated molecular mechanisms. Virtual docking and microscale thermophoresis were used to identify NUF2 inhibitors. Finally, CDX, organoid, and patient-derived xenograft (PDX) models were used to examine the efficacy of the NUF2 inhibitor in GC. RESULTS NUF2 expression was significantly increased in GC and was negatively correlated with prognosis. The deletion of NUF2 suppressed GC progression both in vivo and in vitro . NUF2 significantly regulated the mitogen-activated protein kinase (MAPK) pathway, promoted G2/M phase transition, and inhibited apoptosis in GC cells. Additionally, quercetin was identified as a selective NUF2 inhibitor with low toxicity that significantly suppressed tumor growth in GC cells, organoids, CDX, and PDX models. CONCLUSIONS Collectively, NUF2 -mediated G2/M phase transition and apoptosis inhibition promoted GC progression; additionally, NUF2 inhibitors exhibited potent anti-GC activity. This study provides a new strategy for targeting NUF2 to suppress GC progression in clinical settings.
Collapse
Affiliation(s)
- Bo Long
- The First Department of General Surgery, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Huinian Zhou
- The First Department of General Surgery, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Lixia Xiao
- The First Department of General Surgery, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Xiangyan Jiang
- The First Department of General Surgery, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Jian Li
- The First Department of General Surgery, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Zhijian Ma
- The First Department of General Surgery, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Na He
- The First Department of General Surgery, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Wei Xin
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Boya Zhang
- The Second Clinical Medical School of Lanzhou University, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Xiaoqin Zhu
- The Second Clinical Medical School of Lanzhou University, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Zeyuan Yu
- The First Department of General Surgery, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Zuoyi Jiao
- The First Department of General Surgery, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, Gansu 730000, China
| |
Collapse
|
2
|
Ashrafizadeh M, Hushmandi K, Rahmani Moghadam E, Zarrin V, Hosseinzadeh Kashani S, Bokaie S, Najafi M, Tavakol S, Mohammadinejad R, Nabavi N, Hsieh CL, Zarepour A, Zare EN, Zarrabi A, Makvandi P. Progress in Delivery of siRNA-Based Therapeutics Employing Nano-Vehicles for Treatment of Prostate Cancer. Bioengineering (Basel) 2020; 7:E91. [PMID: 32784981 PMCID: PMC7552721 DOI: 10.3390/bioengineering7030091] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/31/2020] [Accepted: 08/06/2020] [Indexed: 02/06/2023] Open
Abstract
Prostate cancer (PCa) accounts for a high number of deaths in males with no available curative treatments. Patients with PCa are commonly diagnosed in advanced stages due to the lack of symptoms in the early stages. Recently, the research focus was directed toward gene editing in cancer therapy. Small interfering RNA (siRNA) intervention is considered as a powerful tool for gene silencing (knockdown), enabling the suppression of oncogene factors in cancer. This strategy is applied to the treatment of various cancers including PCa. The siRNA can inhibit proliferation and invasion of PCa cells and is able to promote the anti-tumor activity of chemotherapeutic agents. However, the off-target effects of siRNA therapy remarkably reduce its efficacy in PCa therapy. To date, various carriers were designed to improve the delivery of siRNA and, among them, nanoparticles are of importance. Nanoparticles enable the targeted delivery of siRNAs and enhance their potential in the downregulation of target genes of interest. Additionally, nanoparticles can provide a platform for the co-delivery of siRNAs and anti-tumor drugs, resulting in decreased growth and migration of PCa cells. The efficacy, specificity, and delivery of siRNAs are comprehensively discussed in this review to direct further studies toward using siRNAs and their nanoscale-delivery systems in PCa therapy and perhaps other cancer types.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz 5166616471, Iran;
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran 1419963114, Iran; (K.H.); (S.B.)
| | - Ebrahim Rahmani Moghadam
- Department of Anatomical Sciences, School of Medicine, Student Research Committee, Shiraz University of Medical Sciences, Shiraz 7134814336, Iran;
| | - Vahideh Zarrin
- Laboratory for Stem Cell Research, Shiraz University of Medical Sciences, Shiraz 7134814336, Iran;
| | | | - Saied Bokaie
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran 1419963114, Iran; (K.H.); (S.B.)
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran;
| | - Shima Tavakol
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614525, Iran;
| | - Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kermaan 55425147, Iran;
| | - Noushin Nabavi
- Research Services, University of Victoria, Victoria, BC V8W 2Y2, Canada;
| | - Chia-Ling Hsieh
- Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei City 110, Taiwan;
| | - Atefeh Zarepour
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan 8174673441, Iran;
| | | | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul 34956, Turkey
- Center of Excellence for Functional Surfaces and Interfaces (EFSUN), Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, Istanbul 34956, Turkey
| | - Pooyan Makvandi
- Istituto Italiano di Tecnologia, Centre for Micro-BioRobotics, viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa, Italy
- Chemistry Department, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz 61537-53843, Iran
| |
Collapse
|
3
|
Wu ZH, Fang M, Zhou Y. Comprehensive analysis of the expression and prognosis for CDCAs in head and neck squamous cell carcinoma. PLoS One 2020; 15:e0236678. [PMID: 32716971 PMCID: PMC7384661 DOI: 10.1371/journal.pone.0236678] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/09/2020] [Indexed: 12/12/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC), a tumor included oral cavity, lips, larynx, oropharynx, and the nasopharynx et al. The cell division cycle-associated (CDCA) protein family (CDCA1-8) critical for normal cell function and cancer cell proliferation. We explored the mutation signatures and expression levels of various CDCAs in detail in HNSCC. A comprehensive bioinformatics analysis pipeline based on copy number and gene expressions data from patients with HNSCC in order to given new insights into the possible functions and distinct prognostics that underlie CDCAs regulation. We compared the transcriptional expression of CDCAs in HNSCC and found significantly elevated mRNA expression of CDCA1-8 in HNSCC tissues across multiple datasets. We also found CDCA5/6/8 are over-expressed both transcriptionally and translationally in patients with HNSCC. Our results suggested that that mRNA levels of CDCA1/2/4/7 related to the prognosis and can be used as a new useful biomarker for predicting the survival of HNSCC patients. The top 5 CDCAs neighboring gene alterations in HNSCCs were found in MYC, STAG1, RAD21, KLHL9 and NDC80. Multivariable Cox proportional hazard model also showed that CD8+ T cells were higher (P<0.05) in HNSCC-HPV-pos patients and that this was related to CDCA1/2/3/4/5/7. This study utilizes online tools to conduct specific gene analyses from free open databases, but our study requires more large-scale genomics research and basic research.
Collapse
Affiliation(s)
- Zeng-Hong Wu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ming Fang
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yan Zhou
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- * E-mail:
| |
Collapse
|
4
|
Wei X, Chen F, Xin K, Wang Q, Yu L, Liu B, Liu Q. Cancer-Testis Antigen Peptide Vaccine for Cancer Immunotherapy: Progress and Prospects. Transl Oncol 2019; 12:733-738. [PMID: 30877975 PMCID: PMC6423365 DOI: 10.1016/j.tranon.2019.02.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 02/19/2019] [Accepted: 02/19/2019] [Indexed: 12/31/2022] Open
Abstract
Cancer vaccines, including peptide-based vaccines, have been considered a key tool of effective and protective cancer immunotherapy because of their capacity to provide long-term clinical benefit for tumors. Among a large number of explorations of peptide antigen-based vaccines, cancer-testis antigens (CTAs), which are activated in cancers but silenced in normal tissues (except testis tissue), are considered as ideal targets. Currently, personalized treatment for cancer has become a trend due to its superior clinical efficacy. Thus, we envisage rational selection of CTA peptides to design "personalized" CTA peptide vaccines. This review summarizes the advances in CTA peptide vaccine research and discusses the feasibility of establishing "personalized" CTA peptide vaccines.
Collapse
Affiliation(s)
- Xiao Wei
- The Comprehensive Cancer Center of Drum Tower Hospital, Nanjing Medical University
| | - Fangjun Chen
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University
| | - Kai Xin
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University
| | - Qin Wang
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University
| | - Lixia Yu
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University
| | - Baorui Liu
- The Comprehensive Cancer Center of Drum Tower Hospital, Nanjing Medical University; The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University
| | - Qin Liu
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University.
| |
Collapse
|
5
|
Obara W, Kanehira M, Katagiri T, Kato R, Kato Y, Takata R. Present status and future perspective of peptide-based vaccine therapy for urological cancer. Cancer Sci 2018; 109:550-559. [PMID: 29345737 PMCID: PMC5834812 DOI: 10.1111/cas.13506] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 12/26/2017] [Accepted: 01/12/2018] [Indexed: 12/20/2022] Open
Abstract
Use of peptide‐based vaccines as therapeutics aims to elicit immune responses through antigenic epitopes derived from tumor antigens. Peptide‐based vaccines are easily synthesized and lack significant side‐effects when given in vivo. Peptide‐based vaccine therapy against several cancers including urological cancers has made progress for several decades, but there is no worldwide approved peptide vaccine. Peptide vaccines were also shown to induce a high frequency of immune response in patients accompanied by clinical efficacy. These data are discussed in light of the recent progression of immunotherapy caused by the addition of immune checkpoint inhibitors thus providing a general picture of the potential therapeutic efficacy of peptide‐based vaccines and their combination with other biological agents. In this review, we discuss the mechanism of the antitumor effect of peptide‐based vaccine therapy, development of our peptide vaccine, recent clinical trials using peptide vaccines for urological cancers, and perspectives of peptide‐based vaccine therapy.
Collapse
Affiliation(s)
- Wataru Obara
- Department of Urology, Iwate Medical University School of Medicine, Morioka, Japan
| | - Mitsugu Kanehira
- Department of Urology, Iwate Medical University School of Medicine, Morioka, Japan
| | - Toyomasa Katagiri
- Division of Genome Medicine, Institute for Genome Research, Tokushima University, Tokushima, Japan
| | - Renpei Kato
- Department of Urology, Iwate Medical University School of Medicine, Morioka, Japan
| | - Yoichiro Kato
- Department of Urology, Iwate Medical University School of Medicine, Morioka, Japan
| | - Ryo Takata
- Department of Urology, Iwate Medical University School of Medicine, Morioka, Japan
| |
Collapse
|
6
|
Tsuruta M, Ueda S, Yew PY, Fukuda I, Yoshimura S, Kishi H, Hamana H, Hirayama M, Yatsuda J, Irie A, Senju S, Yuba E, Kamba T, Eto M, Nakayama H, Nishimura Y. Bladder cancer-associated cancer-testis antigen-derived long peptides encompassing both CTL and promiscuous HLA class II-restricted Th cell epitopes induced CD4 + T cells expressing converged T-cell receptor genes in vitro. Oncoimmunology 2018; 7:e1415687. [PMID: 29632734 DOI: 10.1080/2162402x.2017.1415687] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 12/02/2017] [Accepted: 12/04/2017] [Indexed: 10/18/2022] Open
Abstract
DEP domain containing 1 (DEPDC1) and M-phase phosphoprotein 1 (MPHOSPH1) are human cancer testis antigens that are frequently overexpressed in urinary bladder cancer. In a phase I/II clinical trial, a DEPDC1- and MPHOSPH1-derived short peptide vaccine demonstrated promising efficacy in preventing bladder cancer recurrence. Here, we aimed to identify long peptides (LPs) derived from DEPDC1 and MPHOSPH1 that induced both T-helper (Th) cells and tumor-reactive cytotoxic T lymphocytes (CTLs). Stimulation of peripheral blood mononuclear cells (PBMCs) from healthy donors with the synthetic DEPDC1- and MPHOSPH1-LPs predicted to bind to promiscuous human leukocyte antigen (HLA) class II molecules by a computer algorithm induced specific CD4+ T cells as revealed by interferon-γ enzyme-linked immunospot assays. Three of six LPs encompassed HLA-A2- or -A24-restricted CTL epitopes or both, and all six LPs stimulated DEPDC1- or MPHOSPH1-specific Th cells restricted by promiscuous and frequently observed HLA class II molecules in the Japanese population. Some LPs are naturally processed from the proteins in DCs, and the capacity of these LPs to cross-prime CTLs was confirmed in vivo using HLA-A2 or -A24 transgenic mice. The LP-specific and HLA class II-restricted T-cell responses were also observed in PBMCs from patients with bladder cancer. Repeated stimulation of PBMCs with DEPDC1-LPs and MPHOSPH1-LPs yielded clonal Th cells expressing specific T-cell receptor (TCR)-α and β genes. These DEPDC1- or MPHOSPH1-derived LPs may have applications in immunotherapy in patients with bladder cancer, and the TCR genes identified may be useful for monitoring of Th cells specific to LPs in vivo.
Collapse
Affiliation(s)
- Miki Tsuruta
- Department of Immunogenetics, Graduate School of Medical Sciences, Kumamoto University, Honjo, Chuo-ku, Kumamoto, Japan.,Department of Oral and Maxillofacial Surgery, Graduate School of Medical Sciences, Kumamoto University, Honjo, Chuo-ku, Kumamoto, Japan
| | - Shohei Ueda
- Department of Immunogenetics, Graduate School of Medical Sciences, Kumamoto University, Honjo, Chuo-ku, Kumamoto, Japan.,Department of Urology, Graduate School of Medical Sciences, Kyushu University, Maidashi, Higashi-ku, Fukuoka, Japan
| | - Poh Yin Yew
- Tumor Immunoanalysis Department, OncoTherapy Science, Inc., Sakado, Takatsu-ku, Kawasaki, Kanagawa, Japan
| | - Isao Fukuda
- Tumor Immunoanalysis Department, OncoTherapy Science, Inc., Sakado, Takatsu-ku, Kawasaki, Kanagawa, Japan
| | - Sachiko Yoshimura
- Tumor Immunoanalysis Department, OncoTherapy Science, Inc., Sakado, Takatsu-ku, Kawasaki, Kanagawa, Japan
| | - Hiroyuki Kishi
- Department of Immunology, Graduate School of Medicine and Pharmaceutical Sciences (Medicine), University of Toyama, Sugitani, Toyama, Toyama, Japan
| | - Hiroshi Hamana
- Department of Innovative Cancer Immunotherapy, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama, Toyama, Japan
| | - Masatoshi Hirayama
- Department of Immunogenetics, Graduate School of Medical Sciences, Kumamoto University, Honjo, Chuo-ku, Kumamoto, Japan.,Department of Oral and Maxillofacial Surgery, Graduate School of Medical Sciences, Kumamoto University, Honjo, Chuo-ku, Kumamoto, Japan
| | - Junji Yatsuda
- Department of Urology, Graduate School of Medical Sciences, Kumamoto University, Honjo, Chuo-ku, Kumamoto, Japan
| | - Atsushi Irie
- Department of Immunogenetics, Graduate School of Medical Sciences, Kumamoto University, Honjo, Chuo-ku, Kumamoto, Japan
| | - Satoru Senju
- Department of Immunogenetics, Graduate School of Medical Sciences, Kumamoto University, Honjo, Chuo-ku, Kumamoto, Japan
| | - Eiji Yuba
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, Gakuen-cho, Naka-ku, Sakai, Osaka, Japan
| | - Tomomi Kamba
- Department of Urology, Graduate School of Medical Sciences, Kumamoto University, Honjo, Chuo-ku, Kumamoto, Japan
| | - Masatoshi Eto
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Maidashi, Higashi-ku, Fukuoka, Japan.,Department of Urology, Graduate School of Medical Sciences, Kumamoto University, Honjo, Chuo-ku, Kumamoto, Japan
| | - Hideki Nakayama
- Department of Oral and Maxillofacial Surgery, Graduate School of Medical Sciences, Kumamoto University, Honjo, Chuo-ku, Kumamoto, Japan
| | - Yasuharu Nishimura
- Department of Immunogenetics, Graduate School of Medical Sciences, Kumamoto University, Honjo, Chuo-ku, Kumamoto, Japan.,Nishimura Project Laboratory, Center for Resource Development and Analysis, Kumamoto University, Honjo, Chuo-ku, Kumamoto, Japan
| |
Collapse
|
7
|
Obara W, Sato F, Takeda K, Kato R, Kato Y, Kanehira M, Takata R, Mimata H, Sugai T, Nakamura Y, Fujioka T. Phase I clinical trial of cell division associated 1 (CDCA1) peptide vaccination for castration resistant prostate cancer. Cancer Sci 2017; 108:1452-1457. [PMID: 28498618 PMCID: PMC5497926 DOI: 10.1111/cas.13278] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 05/02/2017] [Accepted: 05/04/2017] [Indexed: 12/19/2022] Open
Abstract
Cell division associated 1 (CDCA1) was screened as an oncogene that is overexpressed on several cancers, including prostate cancer. A highly immunogenic HLA‐A*2402‐restricted epitope peptide corresponding to part of the CDCA1 protein was also identified. A phase I clinical trial was conducted for patients with castration resistant prostate cancer (CRPC) using a CDCA1 peptide vaccination. Twelve patients having HLA‐A*2402 with CRPC after failure of docetaxel chemotherapy were enrolled. They received subcutaneous administration of the CDCA1 peptide as an emulsion with Montanide ISA51VG once a week in a dose‐escalation manner (doses of 1.0 or 3.0 mg/body, six patients received each dose). The primary endpoint was safety, and the secondary endpoints were the immunological and clinical responses. Vaccination with CDCA1 peptide was well tolerated without any serious adverse events. Peptide‐specific cytotoxic T lymphocyte (CTL) responses using ELISPOT assay and dextramer assay were observed in three patients receiving the 1.0 mg dose and five patients receiving the 3.0 mg dose. The median overall survival time was 11.0 months and specific CTL reacting to CDCA1 peptide were recognized in long‐surviving patients. CDCA1‐derived peptide vaccine treatment was tolerable and might effectively induce peptide‐specific CTLs for CRPC patients. This novel peptide vaccine therapy for CRPC appears promising. (ClinicalTrials.gov number, NCT01225471).
Collapse
Affiliation(s)
- Wataru Obara
- Department of Urology, Iwate Medical University School of Medicine, Morioka, Japan
| | - Fuminori Sato
- Department of Urology, Oita University Faculty of Medicine, Oita, Japan
| | - Kazuyoshi Takeda
- Division of Cell Biology, Biomedical Research Center, Graduated School of Medicine, Juntendo University, Tokyo, Japan.,Department of Biofunctional Micribiota, Graduated School of Medicine, Juntendo University, Tokyo, Japan
| | - Renpei Kato
- Department of Urology, Iwate Medical University School of Medicine, Morioka, Japan
| | - Yoichiro Kato
- Department of Urology, Iwate Medical University School of Medicine, Morioka, Japan
| | - Mitsugu Kanehira
- Department of Urology, Iwate Medical University School of Medicine, Morioka, Japan
| | - Ryo Takata
- Department of Urology, Iwate Medical University School of Medicine, Morioka, Japan
| | - Hiromitsu Mimata
- Department of Urology, Oita University Faculty of Medicine, Oita, Japan
| | - Tamotsu Sugai
- Department of Molecular Diagnostic Pathology, Iwate Medical University School of Medicine, Morioka, Japan
| | - Yusuke Nakamura
- Department of Medicine and Surgery, University of Chicago, Chicago, Illinois, USA
| | - Tomoaki Fujioka
- Department of Urology, Iwate Medical University School of Medicine, Morioka, Japan
| |
Collapse
|
8
|
Thang PM, Takano A, Yoshitake Y, Shinohara M, Murakami Y, Daigo Y. Cell division cycle associated 1 as a novel prognostic biomarker and therapeutic target for oral cancer. Int J Oncol 2016; 49:1385-93. [PMID: 27499128 DOI: 10.3892/ijo.2016.3649] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 07/25/2016] [Indexed: 11/06/2022] Open
Abstract
Oral cavity carcinoma (OCC) is one of the most common causes of cancer-related death worldwide and has poor clinical outcome after standard therapies. Therefore, new prognostic biomarkers and therapeutic targets for OCC are urgently needed. We selected cell division cycle associated 1 (CDCA1) as a candidate OCC biomarker. Immunohistochemical analysis confirmed that CDCA1 protein was expressed in 67 of 99 OCC tissues (67.7%), but not in healthy oral epithelia. CDCA1 expression was significantly associated with poor prognosis in OCC patients (P=0.0244). Knockdown of CDCA1 by siRNAs significantly increased apoptosis of tumor cells. These data suggest that CDCA1 represents a novel prognostic biomarker and therapeutic target for OCC.
Collapse
Affiliation(s)
- Phung Manh Thang
- Center for Antibody and Vaccine Therapy, Research Hospital, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Atsushi Takano
- Center for Antibody and Vaccine Therapy, Research Hospital, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yoshihiro Yoshitake
- Department of Oral and Maxillofacial Surgery, Kumamoto University, Kumamoto, Japan
| | - Masanori Shinohara
- Department of Oral and Maxillofacial Surgery, Kumamoto University, Kumamoto, Japan
| | - Yoshinori Murakami
- Division of Molecular Pathology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yataro Daigo
- Center for Antibody and Vaccine Therapy, Research Hospital, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
9
|
Hirayama M, Nishimura Y. The present status and future prospects of peptide-based cancer vaccines. Int Immunol 2016; 28:319-28. [PMID: 27235694 DOI: 10.1093/intimm/dxw027] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 05/20/2016] [Indexed: 12/22/2022] Open
Abstract
Tumor cells commonly express several antigens, such as tumor-associated antigens (TAAs) or mutation-derived antigens (neoantigens), that can be regarded as foreign antigens and elicit anti-tumor immune responses in cancer patients. Various TAAs or neoantigens expressed in cancer cells have been identified and utilized as targets for cancer vaccines. One approach to elicit tumor-specific immune responses is termed peptide-based cancer vaccination; it involves administrating TAAs or neoantigen-derived peptide for treatment of cancers. There have been several forms of peptide-based cancer vaccines depending on which effector cells, such as CTLs or CD4(+) T-helper cells, are targeted to be activated. Many phase I and II clinical trials of peptide-based cancer vaccines using TAA-derived CTL epitopes, T-helper cell epitopes or dendritic cells loaded with TAA-derived peptides for various malignant tumors have been conducted and provide clinical benefits in a small fraction of patients. Nowadays, to improve the efficiency of peptide-based cancer vaccines, combination immunotherapy of peptide-based cancer vaccines with the immune-checkpoint blockade therapies using mAbs specific for CTLA-4, programmed cell death 1 (PD-1), or PD-1 ligand 1 (PD-L1) have been developed for clinical application. Furthermore, along with the recent technological progress in genetic and bioinformatic analysis, it has become easier to identify neoantigens from individual cancer patients. It is expected that peptide-based cancer vaccines targeting neoantigens as a personalized cancer immunotherapy will be developed.
Collapse
Affiliation(s)
- Masatoshi Hirayama
- Department of Immunogenetics and Department of Oral and Maxillofacial Surgery, Graduate School of Medical Sciences, Kumamoto University, Honjo 1-1-1, Chuo-ku, Kumamoto 860-8556, Japan
| | | |
Collapse
|
10
|
Generation of Large Numbers of Antigen-Expressing Human Dendritic Cells Using CD14-ML Technology. PLoS One 2016; 11:e0152384. [PMID: 27050553 PMCID: PMC4822879 DOI: 10.1371/journal.pone.0152384] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 03/14/2016] [Indexed: 11/19/2022] Open
Abstract
We previously reported a method to expand human monocytes through lentivirus-mediated introduction of cMYC and BMI1, and we named the monocyte-derived proliferating cells, CD14-ML. CD14-ML differentiated into functional DC (CD14-ML-DC) upon addition of IL-4, resulting in the generation of a large number of DC. One drawback of this method was the extensive donor-dependent variation in proliferation efficiency. In the current study, we found that introduction of BCL2 or LYL1 along with cMYC and BMI1 was beneficial. Using the improved method, we obtained CD14-ML from all samples, regardless of whether the donors were healthy individuals or cancer patients. In vitro stimulation of peripheral blood T cells with CD14-ML-DC that were loaded with cancer antigen-derived peptides led to the establishment of CD4+ and CD8+ T cell lines that recognized the peptides. Since CD14-ML was propagated for more than 1 month, we could readily conduct genetic modification experiments. To generate CD14-ML-DC that expressed antigenic proteins, we introduced lentiviral antigen-expression vectors and subjected the cells to 2 weeks of culture for drug-selection and expansion. The resulting antigen-expressing CD14-ML-DC successfully induced CD8+ T cell lines that were reactive to CMVpp65 or MART1/MelanA, suggesting an application in vaccination therapy. Thus, this improved method enables the generation of a sufficient number of DC for vaccination therapy from a small amount of peripheral blood from cancer patients. Information on T cell epitopes is not necessary in vaccination with cancer antigen-expressing CD14-ML-DC; therefore, all patients, irrespective of HLA type, will benefit from anti-cancer therapy based on this technology.
Collapse
|
11
|
Hirayama M, Tomita Y, Yuno A, Tsukamoto H, Senju S, Imamura Y, Sayem MA, Irie A, Yoshitake Y, Fukuma D, Shinohara M, Hamada A, Jono H, Yuba E, Kono K, Yoshida K, Tsunoda T, Nakayama H, Nishimura Y. An oncofetal antigen, IMP-3-derived long peptides induce immune responses of both helper T cells and CTLs. Oncoimmunology 2016; 5:e1123368. [PMID: 27471607 PMCID: PMC4938377 DOI: 10.1080/2162402x.2015.1123368] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 11/17/2015] [Accepted: 11/17/2015] [Indexed: 12/22/2022] Open
Abstract
Insulin-like growth factor II mRNA-binding protein 3 (IMP-3), an oncofetal antigen identified using genome-wide cDNA microarray analyses, is overexpressed in several malignancies. IMP-3-derived cytotoxic T lymphocyte (CTL) epitopes have been used for peptide-based immunotherapies against various cancers. In addition to CTLs, induction of tumor-associated antigen (TAA)-specific helper T (Th) cells is crucial for establishment of effective antitumor immunity. In this study, we aimed to identify IMP-3-derived long peptides (IMP-3-LPs) carrying CTL and promiscuous Th-cell epitopes for use in cancer immunotherapy. IMP-3-derived Th-cell epitopes that bind to multiple HLA-class II molecules were predicted by in silico analysis, and their immunogenicity was determined by utilizing human T cells. We identified two highly immunogenic IMP-3-LPs presented by multiple HLA-class II molecules. One of the IMP-3-LPs encompassed two CTL epitopes that have been used for peptide-vaccine immunotherapy in ongoing clinical trials. IMP-3-LPs-specific Th cells responded to autologous dendritic cells (DCs) loaded with the recombinant IMP-3 proteins, suggesting that these s (LPs) can be naturally processed and presented. The IMP-3-LPs and specific Th cells augmented the expansion of IMP-3-specific CTLs, which was further enhanced by programmed cell death-1 (PD-1) blockade. In addition, IMP-3-LP encapsulated in liposomes was efficiently cross-presented in vitro, and this LP successfully cross-primed CTLs in HLA-A2 transgenic mice (Tgm) in vivo. Furthermore, one of the IMP-3-LPs induced IMP-3-specific Th cells from peripheral blood mononuclear cells (PBMCs) of head-and-neck malignant tumor (HNMT) patients. These findings suggest the potential usefulness of IMP-3-LPs in propagating both Th cells and CTLs and may have implications for IMP-3-LPs-based cancer immunotherapy.
Collapse
Affiliation(s)
- Masatoshi Hirayama
- Department of Immunogenetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan; Department of Oral and Maxillofacial Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yusuke Tomita
- Department of Immunogenetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan; Department of Respiratory Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Akira Yuno
- Department of Immunogenetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan; Department of Oral and Maxillofacial Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hirotake Tsukamoto
- Department of Immunogenetics, Graduate School of Medical Sciences, Kumamoto University , Kumamoto, Japan
| | - Satoru Senju
- Department of Immunogenetics, Graduate School of Medical Sciences, Kumamoto University , Kumamoto, Japan
| | - Yuya Imamura
- Department of Immunogenetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan; Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Mohammad Abu Sayem
- Department of Immunogenetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan; Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
| | - Atsushi Irie
- Department of Immunogenetics, Graduate School of Medical Sciences, Kumamoto University , Kumamoto, Japan
| | - Yoshihiro Yoshitake
- Department of Oral and Maxillofacial Surgery, Graduate School of Medical Sciences, Kumamoto University , Kumamoto, Japan
| | - Daiki Fukuma
- Department of Oral and Maxillofacial Surgery, Graduate School of Medical Sciences, Kumamoto University , Kumamoto, Japan
| | - Masanori Shinohara
- Department of Oral and Maxillofacial Surgery, Graduate School of Medical Sciences, Kumamoto University , Kumamoto, Japan
| | - Akinobu Hamada
- Department of Pharmacy, Kumamoto University Hospital, Kumamoto, Japan; Department of Clinical Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hirofumi Jono
- Department of Pharmacy, Kumamoto University Hospital, Kumamoto, Japan; Department of Clinical Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Eiji Yuba
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University , Sakai, Japan
| | - Kenji Kono
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University , Sakai, Japan
| | - Koji Yoshida
- OncoTherapy Science Incorporation, Research and Development Division, Kawasaki, Japan; Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, the University of Tokyo, Tokyo, Japan; AstraZeneca K.K., Oncology, Medical, Tokyo, Japan
| | - Takuya Tsunoda
- OncoTherapy Science Incorporation, Research and Development Division, Kawasaki, Japan; Merck-Living Innovation, Tokyo, Japan
| | - Hideki Nakayama
- Department of Oral and Maxillofacial Surgery, Graduate School of Medical Sciences, Kumamoto University , Kumamoto, Japan
| | - Yasuharu Nishimura
- Department of Immunogenetics, Graduate School of Medical Sciences, Kumamoto University , Kumamoto, Japan
| |
Collapse
|
12
|
Tagliamonte M, Petrizzo A, Tornesello ML, Buonaguro FM, Buonaguro L. Antigen-specific vaccines for cancer treatment. Hum Vaccin Immunother 2015; 10:3332-46. [PMID: 25483639 DOI: 10.4161/21645515.2014.973317] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Vaccines targeting pathogens are generally effective and protective because based on foreign non-self antigens which are extremely potent in eliciting an immune response. On the contrary, efficacy of therapeutic cancer vaccines is still disappointing. One of the major reasons for such poor outcome, among others, is the difficulty of identifying tumor-specific target antigens which should be unique to the tumors or, at least, overexpressed on the tumors as compared to normal cells. Indeed, this is the only option to overcome the peripheral immune tolerance and elicit a non toxic immune response. New and more potent strategies are now available to identify specific tumor-associated antigens for development of cancer vaccine approaches aiming at eliciting targeted anti-tumor cellular responses. In the last years this aspect has been addressed and many therapeutic vaccination strategies based on either whole tumor cells or specific antigens have been and are being currently evaluated in clinical trials. This review summarizes the current state of cancer vaccines, mainly focusing on antigen-specific approaches.
Collapse
Key Words
- APCs, antigen-presenting cell
- BCG, Bacille Calmette-Guerin
- BCR, B-cell receptor
- CDCA1, cell division cycle associated 1
- CRC, colorectal cancer
- CT, Cancer-testis
- CTL, cytotoxic T-lympocites
- DCs, dendritic cells
- EGT, electro-gene-transfer
- FDA, Food & drug administration
- GB, glioblastoma
- GM-CSF, granulocyte macrophage-colony stimulating factor
- HER2, human epidermal growth factor receptor 2
- HLA, human leukocyte antigen
- HPV, human papillomavirus
- HSPs, stress/heat shock proteins
- IFNg, interferon gamma
- Ig Id, immunoglobulin idiotype
- LPs, long peptides
- MAGE-A1, Melanoma-associated antigen 1
- MHC, major histocompatibility complex
- MS, mass spectrometry
- MVA, modified vaccinia strain Ankara
- NSCLC, non-small-cell lung carcinoma
- PAP, prostatic acid phosphatase
- PRRs, Pattern Recognition Receptors
- PSA, Prostate-specific antigen
- RCR, renal cell cancer
- SSX-2, Synovial sarcoma X breakpoint 2
- TAAs, tumor-associated antigens
- TACAs, Tumor-associated carbohydrate antigens
- TARP, T-cell receptor gamma alternate reading frame protein
- TLRs, Toll-Like Receptors
- TPA, transporter associated with antigen processing
- WES, whole exome sequencing
- WGS, whole genome sequencing
- cancer vaccine
- clinical trials
- epitopes
- hTERT, human Telomerase reverse transcriptase
- immunotherapeutics
- mCRPC, metastatic castrate-resistant prostate cancer
- tumor-associated antigens
Collapse
Affiliation(s)
- Maria Tagliamonte
- a Laboratory of Molecular Biology and Viral Oncology; Department of Experimental Oncology; Istituto Nazionale per lo Studio e la Cura dei Tumori; "Fondazione Pascale" - IRCCS ; Naples , Italy
| | | | | | | | | |
Collapse
|
13
|
Matsueda S, Shichijo S, Nagata S, Seki C, Yamada A, Noguchi M, Itoh K. Identification of novel Lck-derived T helper epitope long peptides applicable for HLA-A2(+) cancer patients as cancer vaccine. Cancer Sci 2015; 106:1493-8. [PMID: 26331453 PMCID: PMC4714684 DOI: 10.1111/cas.12805] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 08/20/2015] [Accepted: 08/27/2015] [Indexed: 01/04/2023] Open
Abstract
The present study attempted to identify T helper epitope long peptides capable of inducing cytotoxic T lymphocytes (CTL) from Lck antigen (p56(Lck) ), the src family tyrosine kinase, which is known to be aberrantly expressed in metastatic cancers cells, in order to develop a long peptide-based cancer vaccine for HLA-A2(+) cancer patients. Based on the biding motif to the HLA-DR and HLA-A2 alleles, 94 peptides were prepared from the Lck antigen. These peptides were screened for their reactivity to immunoglobulin G (IgG) from plasma of cancer patients, followed by testing of their ability to induce both CD4(+) and CD8(+) T lymphocytes showing not only peptide-specific IFN-γ production but cytotoxicity against HLA-A2(+) cancer cells from peripheral blood mononuclear cells (PBMC) of HLA-A2(+) cancer patients. Among 94 peptides tested, the three T helper epitope long peptides and their inner CTL epitope short peptides with HLA-A2 binding motifs were frequently recognized by IgG of cancer patients, and efficiently induced both CD4(+) IFN-γ(+) and CD8(+) IFN-γ(+) T lymphocytes. Patients' PBMC stimulated with these long peptides showed cytotoxicity against HLA-A2(+) Lck(+) cancer cells in HLA-class I and HLA-class II dependent manners. These three peptides might be useful for long peptide-based vaccines for HLA-A2(+) cancer patients with Lck(+) tumor cells.
Collapse
Affiliation(s)
| | | | - Sayaka Nagata
- Cancer Vaccine Center, Kurume University, Kurume, Japan
| | - Chieko Seki
- Cancer Vaccine Center, Kurume University, Kurume, Japan
| | - Akira Yamada
- Cancer Vaccine Development Division, Research Center for Innovative Cancer Therapy, Kurume University, Kurume, Japan
| | - Masanori Noguchi
- Cancer Vaccine Center, Kurume University, Kurume, Japan.,Clinical Research Division, Research Center for Innovative Cancer Therapy, Kurume University, Kurume, Japan
| | - Kyogo Itoh
- Cancer Vaccine Center, Kurume University, Kurume, Japan
| |
Collapse
|
14
|
Sayem MA, Tomita Y, Yuno A, Hirayama M, Irie A, Tsukamoto H, Senju S, Yuba E, Yoshikawa T, Kono K, Nakatsura T, Nishimura Y. Identification of glypican-3-derived long peptides activating both CD8 + and CD4 + T cells; prolonged overall survival in cancer patients with Th cell response. Oncoimmunology 2015; 5:e1062209. [PMID: 26942076 PMCID: PMC4760284 DOI: 10.1080/2162402x.2015.1062209] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 06/01/2015] [Accepted: 06/10/2015] [Indexed: 12/26/2022] Open
Abstract
In a recent phase I clinical trial, a vaccine consisting of glypican-3 (GPC3)-derived CTL epitopes was found to be safe and induced measurable immune and clinical responses in patients with hepatocellular carcinoma (HCC). The aim of this study was to identify GPC3-derived long peptides (GPC3-LPs) carrying promiscuous HLA class II-restricted T helper (Th) cell epitopes. Using a computer algorithm, we predicted GPC3-LPs that can bind to promiscuous HLA class II molecules. Their antigenicity for induction of specific CD4+ T cells in healthy donors or patients with HCC, before and after vaccination with GPC3-SPs, was proven by IFNγ enzyme-linked immunospot assays. Natural processing of these epitopes was confirmed by the immune response of helper T cells to dendritic cells (DCs) loaded with GPC3 proteins. Cross-presentation capacity was assessed in vitro using human DCs and LPs encapsulated in liposomes and in vivo in HLA-A2 transgenic mice (Tgm). All five LPs could induce Th1 cells and were presented by several frequently occurring HLA class II molecules in vitro. Four of them were likely to be naturally processed. One of the LPs encapsulated in liposomes was well cross-presented in vitro; it cross-primed CTLs in HLA-A2 Tgm. LP-specific and HLA class II-restricted CD4+ T-cell responses were observed in 14 of 20 HCC patients vaccinated with GPC3-SPs. Repeated vaccinations enhanced GPC3-LP-specific responses in 8 of 13 patients with HCC. Moreover, the presence of the specific Th cell was correlated with prolonged overall survival (OS). GPC3-LPs can be useful for cancer immunotherapy.
Collapse
Affiliation(s)
- Mohammad A Sayem
- Department of Immunogenetics; Graduate School of Medical Sciences; Kumamoto University; Kumamoto, Japan; Department of Biotechnology and Genetic Engineering; Mawlana Bhashani Science and Technology University; Tangail, Bangladesh
| | - Yusuke Tomita
- Department of Immunogenetics; Graduate School of Medical Sciences; Kumamoto University; Kumamoto, Japan; Department of Respiratory Medicine; Graduate School of Medical Sciences; Kumamoto University; Kumamoto, Japan
| | - Akira Yuno
- Department of Immunogenetics; Graduate School of Medical Sciences; Kumamoto University; Kumamoto, Japan; Department of Oral and Maxillofacial Surgery; Graduate School of Medical Sciences; Kumamoto University; Kumamoto, Japan
| | - Masatoshi Hirayama
- Department of Immunogenetics; Graduate School of Medical Sciences; Kumamoto University; Kumamoto, Japan; Department of Oral and Maxillofacial Surgery; Graduate School of Medical Sciences; Kumamoto University; Kumamoto, Japan
| | - Atsushi Irie
- Department of Immunogenetics; Graduate School of Medical Sciences; Kumamoto University ; Kumamoto, Japan
| | - Hirotake Tsukamoto
- Department of Immunogenetics; Graduate School of Medical Sciences; Kumamoto University ; Kumamoto, Japan
| | - Satoru Senju
- Department of Immunogenetics; Graduate School of Medical Sciences; Kumamoto University ; Kumamoto, Japan
| | - Eiji Yuba
- Department of Applied Chemistry; Graduate School of Engineering; Osaka Prefecture University ; Sakai, Japan
| | - Toshiaki Yoshikawa
- Division of Cancer Immunotherapy; Exploratory Oncology Research and Clinical Trial Center; National Cancer Center ; Kashiwa, Japan
| | - Kenji Kono
- Department of Applied Chemistry; Graduate School of Engineering; Osaka Prefecture University ; Sakai, Japan
| | - Tetsuya Nakatsura
- Division of Cancer Immunotherapy; Exploratory Oncology Research and Clinical Trial Center; National Cancer Center ; Kashiwa, Japan
| | - Yasuharu Nishimura
- Department of Immunogenetics; Graduate School of Medical Sciences; Kumamoto University ; Kumamoto, Japan
| |
Collapse
|
15
|
Nishimura Y, Tomita Y, Yuno A, Yoshitake Y, Shinohara M. Cancer immunotherapy using novel tumor-associated antigenic peptides identified by genome-wide cDNA microarray analyses. Cancer Sci 2015; 106:505-11. [PMID: 25726868 PMCID: PMC4452150 DOI: 10.1111/cas.12650] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 02/21/2015] [Accepted: 02/22/2015] [Indexed: 02/03/2023] Open
Abstract
Recent genome-wide cDNA microarray analysis of gene expression profiles in comprehensive tumor types coupled with isolation of cancer tissues by laser-microbeam microdissection have revealed ideal tumor-associated antigens (TAAs) that are frequently overexpressed in various cancers including head and neck squamous cell cancer (HNSCC) and lung cancer, but not in most normal tissues except for testis, placenta, and fetal organs. Preclinical studies using HLA-transgenic mice and human T cells in vitro showed that TAA-derived CTL-epitope short peptides (SPs) are highly immunogenic and induce HLA-A2 or -A24-restricted CTLs. Based on the accumulated evidence, we carried out a phase II clinical trial of the TAA-SP vaccine in advanced 37 HNSCC patients. This study showed a significant induction of TAA-specific CTLs in the majority of patients without serious adverse effects. Importantly, clinical responses including a complete response were observed in this study. Another phase II clinical trial of therapeutic TAA-SP vaccine, designed to evaluate the ability of prevention of recurrence, is ongoing in HNSCC patients who have received curative operations. Further studies in human preclinical studies and in vivo studies using HLA class I transgenic mice showed TAA-derived long peptides (TAA-LPs) have the capacity to induce not only promiscuous HLA class II-restricted CD4+ T helper type 1 cells but also tumor-specific CTLs through a cross-presentation mechanism. Moreover, we observed an augmentation of TAA-LP-specific T helper type 1 cell responses and tumor antigen-spreading in HNSCC patients vaccinated with TAA-SPs. This accumulated evidence suggests that therapeutic TAA-SPs and LPs vaccines may provide a promising cancer immunotherapy.
Collapse
Affiliation(s)
- Yasuharu Nishimura
- Department of Immunogenetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yusuke Tomita
- Department of Immunogenetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.,Department of Respiratory Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Akira Yuno
- Department of Immunogenetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.,Department of Oral and Maxillofacial Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yoshihiro Yoshitake
- Department of Oral and Maxillofacial Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.,Itoh Maxillofacial Hospital, Kumamoto, Japan
| | - Masanori Shinohara
- Department of Oral and Maxillofacial Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.,Itoh Maxillofacial Hospital, Kumamoto, Japan
| |
Collapse
|
16
|
Yoshitake Y, Nishimura Y, Nakamura Y, Shinohara M. A clinical trial of multiple peptides vaccination for advanced head and neck cancer patients induced immune responses and prolonged OS. Oncoimmunology 2015; 4:e1022307. [PMID: 26405579 DOI: 10.1080/2162402x.2015.1022307] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 02/17/2015] [Indexed: 10/23/2022] Open
Abstract
A phase II clinical trial for head and neck squamous cell cancer (HNSCC) patients using multiple peptides vaccine derived from tumor-associated antigens (TAAs) was performed. The therapy was well tolerated and overall survival was statistically significantly longer in vaccinated patients, and the patients exhibiting cytotoxic T lymphocytes (CTL) responses to multiple peptides exhibited better prognosis.
Collapse
Affiliation(s)
- Yoshihiro Yoshitake
- Department of Oral and Maxillofacial Surgery; Graduate School of Medical Sciences; Kumamoto University ; Kumamoto, Japan ; Itoh Dent-Maxillofacial Hospital ; Kumamoto, Japan
| | - Yasuharu Nishimura
- Department of Immunogenetics; Graduate School of Medical Sciences; Kumamoto University ; Kumamoto, Japan
| | - Yusuke Nakamura
- Laboratory of Molecular Medicine; Human Genome Center; Institute of Medical Science; University of Tokyo ; Tokyo, Japan ; Department of Medicine; University of Chicago ; Chicago, IL USA
| | - Masanori Shinohara
- Department of Oral and Maxillofacial Surgery; Graduate School of Medical Sciences; Kumamoto University ; Kumamoto, Japan ; Itoh Dent-Maxillofacial Hospital ; Kumamoto, Japan
| |
Collapse
|
17
|
Abstract
Despite the growing number of preclinical and clinical trials focused on immunotherapy for the treatment of malignant gliomas, the prognosis for this disease remains grim. Cancer immunotherapy seeks to recruit an effective immune response to eliminate tumor cells. To date, cancer vaccines have shown only limited effectiveness because of our incomplete understanding of the necessary effector cells and mechanisms that yield efficient tumor clearance. CD8+ T cell cytotoxic activity has long been proposed as the primary effector function necessary for tumor regression. However, there is increasing evidence that indicates that components of the immune system other than CD8+ T cells play important roles in tumor eradication and control. The following review should provide an understanding of the mechanisms involved in an effective antitumor response to guide future therapeutic designs. The information provided suggests an alternate means of effective tumor clearance in malignant glioma to the canonical CD8+ cytotoxic T cell mechanism.
Collapse
Affiliation(s)
- G. Elizabeth Pluhar
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN. 55108
| | - Christopher A. Pennell
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN. 55445
| | - Michael R. Olin
- Department of Pediatrics, School of Medicine, University of Minnesota, Minneapolis, MN. 55445
| |
Collapse
|
18
|
Yoshitake Y, Fukuma D, Yuno A, Hirayama M, Nakayama H, Tanaka T, Nagata M, Takamune Y, Kawahara K, Nakagawa Y, Yoshida R, Hirosue A, Ogi H, Hiraki A, Jono H, Hamada A, Yoshida K, Nishimura Y, Nakamura Y, Shinohara M. Phase II clinical trial of multiple peptide vaccination for advanced head and neck cancer patients revealed induction of immune responses and improved OS. Clin Cancer Res 2014; 21:312-21. [PMID: 25391695 DOI: 10.1158/1078-0432.ccr-14-0202] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The peptides derived from ideal cancer-testis antigens, including LY6K, CDCA1, and IMP3 (identified using genome-wide cDNA microarray analyses), were used in immunotherapy for head and neck squamous cell cancer (HNSCC). In this trial, we analyzed the immune response to and safety and efficacy of vaccine therapy. EXPERIMENTAL DESIGN A total of 37 patients with advanced HNSCC were enrolled in this trial of peptide vaccine therapy, and the OS, PFS, and immunologic response were evaluated using enzyme-linked ImmunoSpot (ELISPOT) and pentamer assays. The peptides were subcutaneously administered weekly with IFA. The primary endpoints were evaluated on the basis of differences between HLA-A*2402-positive [A24(+)] patients treated with peptide vaccine therapy and -negative [A24(-)] patients treated without peptide vaccine therapy among those with advanced HNSCC. RESULTS Our cancer vaccine therapy was well tolerated. The OS of the A24(+) vaccinated group (n = 37) was statistically significantly longer than that of the A24(-) group (n = 18) and median survival time (MST) was 4.9 versus 3.5 months, respectively; P < 0.05. One of the patients exhibited a complete response. In the A24(+) vaccinated group, the ELISPOT assay identified LY6K-, CDCA1-, and IMP3-specific CTL responses in 85.7%, 64.3%, and 42.9% of the patients, respectively. The patients showing LY6K- and CDCA1-specific CTL responses demonstrated a longer OS than those without CTL induction. Moreover, the patients exhibiting CTL induction for multiple peptides demonstrated better clinical responses. CONCLUSIONS The immune response induced by this vaccine may improve the prognosis of patients with advanced HNSCC.
Collapse
Affiliation(s)
- Yoshihiro Yoshitake
- Department of Oral and Maxillofacial Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan. Itoh Dento-Maxillofacial Hospital, Kumamoto, Japan.
| | - Daiki Fukuma
- Department of Oral and Maxillofacial Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Akira Yuno
- Department of Oral and Maxillofacial Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan. Department of Immunogenetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Masatoshi Hirayama
- Department of Oral and Maxillofacial Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan. Department of Immunogenetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hideki Nakayama
- Department of Oral and Maxillofacial Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Takuya Tanaka
- Department of Oral and Maxillofacial Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Masashi Nagata
- Department of Oral and Maxillofacial Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan. Minamata City General Hospital and Medical Center, Minamata, Japan
| | - Yasuo Takamune
- Department of Oral and Maxillofacial Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kenta Kawahara
- Department of Oral and Maxillofacial Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yoshihiro Nakagawa
- Department of Oral and Maxillofacial Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Ryoji Yoshida
- Department of Oral and Maxillofacial Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Akiyuki Hirosue
- Department of Oral and Maxillofacial Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hidenao Ogi
- Department of Oral and Maxillofacial Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Akimitsu Hiraki
- Department of Oral and Maxillofacial Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hirofumi Jono
- Department of Pharmacy, Kumamoto University Hospital and Department of Clinical Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Akinobu Hamada
- Department of Pharmacy, Kumamoto University Hospital and Department of Clinical Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan. Department of Clinical Pharmacology Group for Translational Research Support Core National Cancer Center Research Institute, Tokyo, Japan
| | - Koji Yoshida
- Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, University of Tokyo, Tokyo, Japan. OncoTherapy Science Incorporation, Research and Development Division, Kanagawa, Japan
| | - Yasuharu Nishimura
- Department of Immunogenetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yusuke Nakamura
- Department of Medicine, University of Chicago, Chicago, Illinois
| | - Masanori Shinohara
- Department of Oral and Maxillofacial Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
19
|
Diken M, Boegel S, Grunwitz C, Kranz LM, Reuter K, van de Roemer N, Vascotto F, Vormehr M, Kreiter S. CIMT 2014: Next waves in cancer immunotherapy - Report on the 12th annual meeting of the Association for Cancer Immunotherapy. Hum Vaccin Immunother 2014; 10:3090-100. [PMID: 25483671 PMCID: PMC5443098 DOI: 10.4161/hv.29767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Mustafa Diken
- TRON—Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz gGmbH; Mainz, Germany
| | - Sebastian Boegel
- University Medical Center; Johannes Gutenberg University; Mainz, Germany
| | - Christian Grunwitz
- TRON—Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz gGmbH; Mainz, Germany
- University Medical Center; Johannes Gutenberg University; Mainz, Germany
| | - Lena M. Kranz
- TRON—Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz gGmbH; Mainz, Germany
- University Medical Center; Johannes Gutenberg University; Mainz, Germany
| | | | - Niels van de Roemer
- TRON—Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz gGmbH; Mainz, Germany
- University Medical Center; Johannes Gutenberg University; Mainz, Germany
| | - Fulvia Vascotto
- TRON—Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz gGmbH; Mainz, Germany
| | - Mathias Vormehr
- TRON—Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz gGmbH; Mainz, Germany
- University Medical Center; Johannes Gutenberg University; Mainz, Germany
| | - Sebastian Kreiter
- TRON—Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz gGmbH; Mainz, Germany
| |
Collapse
|
20
|
Tomita Y, Yuno A, Tsukamoto H, Senju S, Kuroda Y, Hirayama M, Imamura Y, Yatsuda J, Sayem MA, Irie A, Hamada A, Jono H, Yoshida K, Tsunoda T, Daigo Y, Kohrogi H, Yoshitake Y, Nakamura Y, Shinohara M, Nishimura Y. Identification of immunogenic LY6K long peptide encompassing both CD4 + and CD8 + T-cell epitopes and eliciting CD4 + T-cell immunity in patients with malignant disease. Oncoimmunology 2014; 3:e28100. [PMID: 25340007 PMCID: PMC4203508 DOI: 10.4161/onci.28100] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Revised: 02/01/2014] [Accepted: 02/04/2014] [Indexed: 12/13/2022] Open
Abstract
Identification of peptides that activate both tumor-specific helper T (Th) cells and cytotoxic T lymphocytes (CTLs) are important for the induction of effective antitumor immune responses. We focused on a long peptide (LP) derived from lymphocyte antigen 6 complex locus K (LY6K) encompassing both candidate Th epitopes and a known CTL epitope. Using IFNγ ELISPOT assays as a marker of activated T cells, we studied the immunogenicity and cross-priming potential of LY6K-LP, assaying human immune cell responses in vitro and immunologic activities in HLA-A24 transgenic mice in vivo. We identified LY6K172–191-LP as an effective immunogen spanning naturally processed epitopes recognized by T helper type 1 (Th1) cells and CTLs. LY6K-specific CTLs were induced through cross-presentation of LY6K172–191-LP in vitro and in vivo. In addition, LY6K172–191-LP enhanced induction of LY6K-specific CTLs among the peripheral blood mononuclear cells (PBMCs) of head-and-neck malignant tumor (HNMT) patients. LY6K172–191-LP-specific Th1 immunologic response following 1 week in vitro stimulation of PBMCs with LY6K172–191-LP were detected in 16 of 21 HNMT patients (76%) vaccinated with CTL-epitope peptides and 1 of 11 HNMT patients (9%) prior to vaccination, but not in 9 healthy donors. Our results are the first to demonstrate the presence of LY6K-specific Th1 cell responses in HNMT patients and underscore the possible utility of LY6K172–191-LP for the induction and propagation of both LY6K-specific Th1 cells and CTLs.
Collapse
Affiliation(s)
- Yusuke Tomita
- Department of Immunogenetics; Graduate School of Medical Sciences; Kumamoto University; Kumamoto, Japan ; Department of Respiratory Medicine; Graduate School of Medical Sciences; Kumamoto University; Kumamoto, Japan
| | - Akira Yuno
- Department of Immunogenetics; Graduate School of Medical Sciences; Kumamoto University; Kumamoto, Japan ; Department of Oral and Maxillofacial Surgery; Graduate School of Medical Sciences; Kumamoto University; Kumamoto, Japan
| | - Hirotake Tsukamoto
- Department of Immunogenetics; Graduate School of Medical Sciences; Kumamoto University; Kumamoto, Japan
| | - Satoru Senju
- Department of Immunogenetics; Graduate School of Medical Sciences; Kumamoto University; Kumamoto, Japan
| | - Yasuhiro Kuroda
- Department of Immunogenetics; Graduate School of Medical Sciences; Kumamoto University; Kumamoto, Japan
| | - Masatoshi Hirayama
- Department of Immunogenetics; Graduate School of Medical Sciences; Kumamoto University; Kumamoto, Japan ; Department of Oral and Maxillofacial Surgery; Graduate School of Medical Sciences; Kumamoto University; Kumamoto, Japan
| | - Yuya Imamura
- Department of Immunogenetics; Graduate School of Medical Sciences; Kumamoto University; Kumamoto, Japan
| | - Junji Yatsuda
- Department of Immunogenetics; Graduate School of Medical Sciences; Kumamoto University; Kumamoto, Japan
| | - Mohammad Abu Sayem
- Department of Immunogenetics; Graduate School of Medical Sciences; Kumamoto University; Kumamoto, Japan ; Department of Biotechnology and Genetic Engineering; Mawlana Bhashani Science and Technology University; Tangail, Bangladesh
| | - Atsushi Irie
- Department of Immunogenetics; Graduate School of Medical Sciences; Kumamoto University; Kumamoto, Japan
| | - Akinobu Hamada
- Department of Clinical Pharmaceutical Sciences; Graduate School of Pharmaceutical Sciences; Kumamoto University; Kumamoto, Japan
| | - Hirofumi Jono
- Department of Clinical Pharmaceutical Sciences; Graduate School of Pharmaceutical Sciences; Kumamoto University; Kumamoto, Japan
| | - Koji Yoshida
- Laboratory of Molecular Medicine; Human Genome Center; Institute of Medical Science; The University of Tokyo; Tokyo, Japan ; OncoTherapy Science Incorporation; Research and Development Division; Kanagawa, Japan
| | - Takuya Tsunoda
- Laboratory of Molecular Medicine; Human Genome Center; Institute of Medical Science; The University of Tokyo; Tokyo, Japan ; OncoTherapy Science Incorporation; Research and Development Division; Kanagawa, Japan
| | - Yataro Daigo
- Laboratory of Molecular Medicine; Human Genome Center; Institute of Medical Science; The University of Tokyo; Tokyo, Japan ; Department of Medical Oncology and Cancer Center; Shiga University of Medical Science; Otsu, Japan
| | - Hirotsugu Kohrogi
- Department of Respiratory Medicine; Graduate School of Medical Sciences; Kumamoto University; Kumamoto, Japan
| | - Yoshihiro Yoshitake
- Department of Oral and Maxillofacial Surgery; Graduate School of Medical Sciences; Kumamoto University; Kumamoto, Japan
| | - Yusuke Nakamura
- Department of Clinical Pharmaceutical Sciences; Graduate School of Pharmaceutical Sciences; Kumamoto University; Kumamoto, Japan ; Department of Medicine; University of Chicago; Chicago, IL USA
| | - Masanori Shinohara
- Department of Oral and Maxillofacial Surgery; Graduate School of Medical Sciences; Kumamoto University; Kumamoto, Japan
| | - Yasuharu Nishimura
- Department of Immunogenetics; Graduate School of Medical Sciences; Kumamoto University; Kumamoto, Japan
| |
Collapse
|
21
|
Yatsuda J, Irie A, Harada K, Michibata Y, Tsukamoto H, Senju S, Tomita Y, Yuno A, Hirayama M, Abu Sayem M, Takeda N, Shibuya I, Sogo S, Fujiki F, Sugiyama H, Eto M, Nishimura Y. Establishment of HLA-DR4 transgenic mice for the identification of CD4+ T cell epitopes of tumor-associated antigens. PLoS One 2013; 8:e84908. [PMID: 24386437 PMCID: PMC3875545 DOI: 10.1371/journal.pone.0084908] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 11/28/2013] [Indexed: 11/22/2022] Open
Abstract
Reports have shown that activation of tumor-specific CD4+ helper T (Th) cells is crucial for effective anti-tumor immunity and identification of Th-cell epitopes is critical for peptide vaccine-based cancer immunotherapy. Although computer algorithms are available to predict peptides with high binding affinity to a specific HLA class II molecule, the ability of those peptides to induce Th-cell responses must be evaluated. We have established HLA-DR4 (HLA-DRA*01:01/HLA-DRB1*04:05) transgenic mice (Tgm), since this HLA-DR allele is most frequent (13.6%) in Japanese population, to evaluate HLA-DR4-restricted Th-cell responses to tumor-associated antigen (TAA)-derived peptides predicted to bind to HLA-DR4. To avoid weak binding between mouse CD4 and HLA-DR4, Tgm were designed to express chimeric HLA-DR4/I-Ed, where I-Ed α1 and β1 domains were replaced with those from HLA-DR4. Th cells isolated from Tgm immunized with adjuvant and HLA-DR4-binding cytomegalovirus-derived peptide proliferated when stimulated with peptide-pulsed HLA-DR4-transduced mouse L cells, indicating chimeric HLA-DR4/I-Ed has equivalent antigen presenting capacity to HLA-DR4. Immunization with CDCA155-78 peptide, a computer algorithm-predicted HLA-DR4-binding peptide derived from TAA CDCA1, successfully induced Th-cell responses in Tgm, while immunization of HLA-DR4-binding Wilms' tumor 1 antigen-derived peptide with identical amino acid sequence to mouse ortholog failed. This was overcome by using peptide-pulsed syngeneic bone marrow-derived dendritic cells (BM-DC) followed by immunization with peptide/CFA booster. BM-DC-based immunization of KIF20A494-517 peptide from another TAA KIF20A, with an almost identical HLA-binding core amino acid sequence to mouse ortholog, successfully induced Th-cell responses in Tgm. Notably, both CDCA155-78 and KIF20A494-517 peptides induced human Th-cell responses in PBMCs from HLA-DR4-positive donors. Finally, an HLA-DR4 binding DEPDC1191-213 peptide from a new TAA DEPDC1 overexpressed in bladder cancer induced strong Th-cell responses both in Tgm and in PBMCs from an HLA-DR4-positive donor. Thus, the HLA-DR4 Tgm combined with computer algorithm was useful for preliminary screening of candidate peptides for vaccination.
Collapse
Affiliation(s)
- Junji Yatsuda
- Department of Immunogenetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
- Department of Urology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Atsushi Irie
- Department of Immunogenetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kumiko Harada
- Department of Immunogenetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yayoi Michibata
- Department of Immunogenetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hirotake Tsukamoto
- Department of Immunogenetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Satoru Senju
- Department of Immunogenetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yusuke Tomita
- Department of Immunogenetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Akira Yuno
- Department of Immunogenetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Masatoshi Hirayama
- Department of Immunogenetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Mohammad Abu Sayem
- Department of Immunogenetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
| | - Naoki Takeda
- Division of Transgenic Technology, Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, Japan
| | - Isao Shibuya
- Microbiological Research Institute, Otsuka Pharmaceutical Co., Ltd, Tokushima, Japan
| | - Shinji Sogo
- Microbiological Research Institute, Otsuka Pharmaceutical Co., Ltd, Tokushima, Japan
| | - Fumihiro Fujiki
- Department of Cancer Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Haruo Sugiyama
- Department of Functional Diagnostic Science, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Masatoshi Eto
- Department of Urology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yasuharu Nishimura
- Department of Immunogenetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
- * E-mail:
| |
Collapse
|
22
|
Tomita Y, Nishimura Y. Long peptide-based cancer immunotherapy targeting tumor antigen-specific CD4 + and CD8 + T cells. Oncoimmunology 2013; 2:e25801. [PMID: 24327937 PMCID: PMC3850020 DOI: 10.4161/onci.25801] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 07/18/2013] [Indexed: 11/19/2022] Open
Abstract
CD4+ T cells promote cytotoxic T lymphocyte (CTL)-mediated anticancer immune responses. We have recently identified ideal tumor-associated antigen (TAA)-derived long peptides (LPs) that elicit not only TAA-specific TH1 response, but also CTLs, through cross-presentation. The LP-specific TH1 cell responses were augmented in cancer patients vaccinated with CTL epitopes. Our findings support the clinical application of LP-based immunotherapy.
Collapse
Affiliation(s)
- Yusuke Tomita
- Department of Immunogenetics, Graduate School of Medical Sciences; Kumamoto University; Kumamoto, Japan ; Department of Respiratory Medicine; Graduate School of Medical Sciences; Kumamoto University; Kumamoto, Japan
| | | |
Collapse
|