1
|
Kanai Y. Molecular pathological approach to cancer epigenomics and its clinical application. Pathol Int 2024; 74:167-186. [PMID: 38482965 PMCID: PMC11551818 DOI: 10.1111/pin.13418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/15/2024] [Accepted: 02/26/2024] [Indexed: 04/11/2024]
Abstract
Careful microscopic observation of histopathological specimens, accumulation of large numbers of high-quality tissue specimens, and analysis of molecular pathology in relation to morphological features are considered to yield realistic data on the nature of multistage carcinogenesis. Since the morphological hallmark of cancer is disruption of the normal histological structure maintained through cell-cell adhesiveness and cellular polarity, attempts have been made to investigate abnormalities of the cadherin-catenin cell adhesion system in human cancer cells. It has been shown that the CDH1 tumor suppressor gene encoding E-cadherin is silenced by DNA methylation, suggesting that a "double hit" involving DNA methylation and loss of heterozygosity leads to carcinogenesis. Therefore, in the 1990s, we focused on epigenomic mechanisms, which until then had not received much attention. In chronic hepatitis and liver cirrhosis associated with hepatitis virus infection, DNA methylation abnormalities were found to occur frequently, being one of the earliest indications that such abnormalities are present even in precancerous tissue. Aberrant expression and splicing of DNA methyltransferases, such as DNMT1 and DNMT3B, was found to underlie the mechanism of DNA methylation alterations in various organs. The CpG island methylator phenotype in renal cell carcinoma was identified for the first time, and its therapeutic targets were identified by multilayer omics analysis. Furthermore, the DNA methylation profile of nonalcoholic steatohepatitis (NASH)-related hepatocellular carcinoma was clarified in groundbreaking studies. Since then, we have developed diagnostic markers for carcinogenesis risk in NASH patients and noninvasive diagnostic markers for upper urinary tract cancer, as well as developing a new high-performance liquid chromatography-based diagnostic system for DNA methylation diagnosis. Research on the cancer epigenome has revealed that DNA methylation alterations occur from the precancerous stage as a result of exposure to carcinogenic factors such as inflammation, smoking, and viral infections, and continuously contribute to multistage carcinogenesis through aberrant expression of cancer-related genes and genomic instability. DNA methylation alterations at the precancerous stages are inherited by or strengthened in cancers themselves and determine the clinicopathological aggressiveness of cancers as well as patient outcome. DNA methylation alterations have applications as biomarkers, and are expected to contribute to diagnosis, as well as preventive and preemptive medicine.
Collapse
Affiliation(s)
- Yae Kanai
- Department of PathologyKeio University School of MedicineTokyoJapan
| |
Collapse
|
2
|
Zhang S, Ma B, Liu Y, Shen Y, Li D, Liu S, Song F. Predicting locus-specific DNA methylation levels in cancer and paracancer tissues. Epigenomics 2024; 16:549-570. [PMID: 38477028 PMCID: PMC11158003 DOI: 10.2217/epi-2023-0114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Aim: To predict base-resolution DNA methylation in cancerous and paracancerous tissues. Material & methods: We collected six cancer DNA methylation datasets from The Cancer Genome Atlas and five cancer datasets from Gene Expression Omnibus and established machine learning models using paired cancerous and paracancerous tissues. Tenfold cross-validation and independent validation were performed to demonstrate the effectiveness of the proposed method. Results: The developed cross-tissue prediction models can substantially increase the accuracy at more than 68% of CpG sites and contribute to enhancing the statistical power of differential methylation analyses. An XGBoost model leveraging multiple correlating CpGs may elevate the prediction accuracy. Conclusion: This study provides a powerful tool for DNA methylation analysis and has the potential to gain new insights into cancer research from epigenetics.
Collapse
Affiliation(s)
- Shuzheng Zhang
- School of Information Science & Technology, Dalian Maritime University, Dalian, 116026, China
| | - Baoshan Ma
- School of Information Science & Technology, Dalian Maritime University, Dalian, 116026, China
| | - Yu Liu
- School of Information Science & Technology, Dalian Maritime University, Dalian, 116026, China
| | - Yiwen Shen
- School of Information Science & Technology, Dalian Maritime University, Dalian, 116026, China
| | - Di Li
- Department of Neuro Intervention, Dalian Medical University affiliated Dalian Municipal Central Hospital, Dalian, 116033, China
| | - Shuxin Liu
- Department of Nephrology, Dalian Medical University affiliated Dalian Municipal Central Hospital, Dalian, 116033, China
| | - Fengju Song
- Department of Epidemiology & Biostatistics, Key Laboratory of Molecular Cancer Epidemiology, Tianjin, National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin, 300060, China
| |
Collapse
|
3
|
Xu Q, Zhou W, Zhou Y, Zhang X, Jiang R, Ai Z, Chen J, Ma L. IRX2 regulates endometrial carcinoma oncogenesis by transcriptional repressing RUVBL1. Exp Cell Res 2024; 434:113866. [PMID: 38042247 DOI: 10.1016/j.yexcr.2023.113866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/24/2023] [Accepted: 11/25/2023] [Indexed: 12/04/2023]
Abstract
Endometrial carcinoma (EC) is a rising concern among gynecological malignancies. Iroquois Homeobox 2 (IRX2), a member of the Iroquois homeobox gene family, demonstrates variable effects in different cancer types, emphasizing the need for extensive exploration of its involvement in EC progression. Utilizing TCGA and GEO databases, as well as performing immunohistochemistry (IHC) analysis on clinical samples, we assessed the expression levels of IRX2 and its promoter methylation in EC. To understand the functional roles of IRX2, we conducted various assays including in vitro CCK-8 assays, colony formation assays, cell invasion assays, and cell apoptosis assays. Moreover, we utilized in vivo subcutaneous xenograft mouse models. Additionally, we performed KEGG pathway and gene set enrichment analyses to gain insights into the underlying mechanisms. To validate the regulatory relationship between IRX2 and RUVBL1, we employed chromatin immunoprecipitation and luciferase reporter assays. Our results indicate significantly reduced levels of IRX2 expression in EC, correlating with higher histological grades, advanced clinical stages, and diminished overall survival. We observed that DNA methylation of the IRX2 promoter suppresses its expression in EC, with cg26333652 and cg11793269 playing critical roles as methylated sites. In contrast, ectopic overexpression of IRX2 substantially inhibits cell proliferation and invasion, and promotes cell apoptosis. Additionally, we discovered that IRX2 exerts negative regulation on the expression of RUVBL1, which is upregulated in EC and associated with a poorer prognosis. In conclusion, our findings indicate that decreased expression of IRX2 facilitates EC cell growth through the regulation of RUVBL1 expression, thereby contributing to the development of EC. Hence, targeting the IRX2-RUVBL1 axis holds promise as a potential therapeutic strategy for EC treatment.
Collapse
Affiliation(s)
- Qinyang Xu
- Department of Gynecology and Obstetrics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wanzhen Zhou
- Department of Gynecology and Obstetrics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuedi Zhou
- Department of Gynecology and Obstetrics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xueying Zhang
- Department of Gynecology and Obstetrics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rongzhen Jiang
- Department of Gynecology and Obstetrics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhihong Ai
- Department of Gynecology and Obstetrics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Chen
- Department of Gynecology and Obstetrics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Li Ma
- Department of Gynecology and Obstetrics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
4
|
Tsuda N, Tian Y, Fujimoto M, Kuramoto J, Makiuchi S, Ojima H, Gotoh M, Hiraoka N, Yoshida T, Kanai Y, Arai E. DNA methylation status of the SPHK1 and LTB genes underlies the clinicopathological diversity of non-alcoholic steatohepatitis-related hepatocellular carcinomas. J Cancer Res Clin Oncol 2023; 149:5109-5125. [PMID: 36348017 PMCID: PMC10349775 DOI: 10.1007/s00432-022-04445-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/19/2022] [Indexed: 11/09/2022]
Abstract
PURPOSE This study was performed to identify the DNA methylation profiles underlying the clinicopathological diversity of non-alcoholic steatohepatitis (NASH)-related hepatocellular carcinomas (HCCs). METHODS: Genome-wide DNA methylation analysis of 88 liver tissue samples was performed using the Infinium assay. RESULTS Principal component analysis revealed that distinct DNA methylation profiles differing from such profiles in normal control liver tissue had already been established in non-cancerous liver tissue showing NASH, which is considered to be a precancerous condition. Hierarchical clustering separated 26 NASH-related HCCs into Cluster I (n = 8) and Cluster II (n = 18). Such epigenetic clustering was significantly correlated with histopathological diversity, i.e. poorer tumor differentiation, tumor steatosis and development of a scirrhous HCC component. Significant differences in DNA methylation levels between the two clusters were accumulated in molecular pathways participating in cell adhesion and cytoskeletal remodeling, as well as cell proliferation and apoptosis. Among tumor-related genes characterizing Clusters I and II, differences in the levels of DNA methylation and mRNA expression for the SPHK1, INHBA, LTB and PDE3B genes were correlated with poorer tumor differentiation. 5-Aza-2'-deoxycytidine treatment of HCC cells revealed epigenetic regulation of the SPHK1 and LTB genes. Knockdown experiments showed that SPHK1 promotes cell proliferation, represses apoptosis and enhances migration, whereas LTB enhances migration of HCC cells. DNA hypomethylation resulting in increased expression of SPHK1 and LTB in poorly differentiated HCCs may underlie the aggressive phenotype of such HCCs. CONCLUSION These data indicate that DNA methylation profiles may determine the clinicopathological heterogeneity of NASH-related HCCs via alterations of tumor-related gene expression.
Collapse
Affiliation(s)
- Noboru Tsuda
- Department of Pathology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Ying Tian
- Department of Pathology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Mao Fujimoto
- Department of Pathology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Junko Kuramoto
- Department of Pathology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Satomi Makiuchi
- Department of Pathology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Hidenori Ojima
- Department of Pathology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Masahiro Gotoh
- Fundamental Innovative Oncology Core Center, National Cancer Center Research Institute, Tokyo, 104-0045, Japan
| | - Nobuyoshi Hiraoka
- Department of Diagnostic Pathology, National Cancer Center Hospital, Tokyo, 104-0045, Japan
| | - Teruhiko Yoshida
- Fundamental Innovative Oncology Core Center, National Cancer Center Research Institute, Tokyo, 104-0045, Japan
| | - Yae Kanai
- Department of Pathology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan.
| | - Eri Arai
- Department of Pathology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan.
| |
Collapse
|
5
|
Non-Invasive Biomarkers for Early Lung Cancer Detection. Cancers (Basel) 2022; 14:cancers14235782. [PMID: 36497263 PMCID: PMC9739091 DOI: 10.3390/cancers14235782] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 11/27/2022] Open
Abstract
Worldwide, lung cancer (LC) is the most common cause of cancer death, and any delay in the detection of new and relapsed disease serves as a major factor for a significant proportion of LC morbidity and mortality. Though invasive methods such as tissue biopsy are considered the gold standard for diagnosis and disease monitoring, they have several limitations. Therefore, there is an urgent need to identify and validate non-invasive biomarkers for the early diagnosis, prognosis, and treatment of lung cancer for improved patient management. Despite recent progress in the identification of non-invasive biomarkers, currently, there is a shortage of reliable and accessible biomarkers demonstrating high sensitivity and specificity for LC detection. In this review, we aim to cover the latest developments in the field, including the utility of biomarkers that are currently used in LC screening and diagnosis. We comment on their limitations and summarise the findings and developmental stages of potential molecular contenders such as microRNAs, circulating tumour DNA, and methylation markers. Furthermore, we summarise research challenges in the development of biomarkers used for screening purposes and the potential clinical applications of newly discovered biomarkers.
Collapse
|
6
|
Chen B, Zhang J, Wang T, Shao C, Miao L, Zhang S, Shang X. Investigating the evolution process of lung adenocarcinoma via random walk and dynamic network analysis. Front Genet 2022; 13:953801. [PMID: 36246662 PMCID: PMC9559577 DOI: 10.3389/fgene.2022.953801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 09/05/2022] [Indexed: 11/30/2022] Open
Abstract
Lung adenocarcinoma (LUAD) is a typical disease regarded as having multi-stage progression. However, many existing methods often ignore the critical differences among these stages, thereby limiting their effectiveness for discovering key biological molecules and biological functions as signals at each stage. In this study, we propose a method to discover the evolution between biological molecules and biological functions by investigating the multi-stage biological molecules of LUAD. The method is based on the random walk algorithm and the Monte Carlo method to generate clusters as the modules, which were used as subgraphs of the differentiated biological molecules network in each stage. The connection between modules of adjacent stages is based on the measurement of the Jaccard coefficient. The online gene set enrichment analysis tool (DAVID) was used to obtain biological functions corresponding to the individual important modules. The core evolution network was constructed by combining the aforementioned two networks. Since the networks here are all dynamic, we also propose a strategy to visualize the dynamic information together in one network. Eventually, 12 core modules and 11 core biological functions were found through such evolutionary analyses. Among the core biological functions that we obtained, six functions are related to the disease, the biological function of neutrophil chemotaxis is not directly associated with LUAD but can serve as a predictor, two functions may serve as a predictive signal, and two functions need to be verified through more biological evidence. Compared with two alternative design methods, the method proposed in this study performed more efficiently.
Collapse
Affiliation(s)
- Bolin Chen
- School of Computer Science, Northwestern Polytechnical University, Xi’an, China
| | - Jinlei Zhang
- School of Computer Science, Northwestern Polytechnical University, Xi’an, China
| | - Teng Wang
- School of Computer Science, Northwestern Polytechnical University, Xi’an, China
| | - Ci Shao
- School of Computer Science, Northwestern Polytechnical University, Xi’an, China
| | - Lijun Miao
- School of Computer Science, Northwestern Polytechnical University, Xi’an, China
| | - Shengli Zhang
- School of Information Technology, Minzu Normal University of Xingyi, Xingyi, China
| | - Xuequn Shang
- School of Computer Science, Northwestern Polytechnical University, Xi’an, China
- *Correspondence: Xuequn Shang,
| |
Collapse
|
7
|
Comparison of tumor and two types of paratumoral tissues highlighted epigenetic regulation of transcription during field cancerization in non-small cell lung cancer. BMC Med Genomics 2022; 15:66. [PMID: 35313869 PMCID: PMC8939144 DOI: 10.1186/s12920-022-01192-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 02/18/2022] [Indexed: 11/17/2022] Open
Abstract
Background Field cancerization is the process in which a population of normal or pre-malignant cells is affected by oncogenic alterations leading to progressive molecular changes that drive malignant transformation. Aberrant DNA methylation has been implicated in early cancer development in non-small cell lung cancer (NSCLC); however, studies on its role in field cancerization (FC) are limited. This study aims to identify FC-specific methylation patterns that could distinguish between pre-malignant lesions and tumor tissues in NSCLC. Methods We enrolled 52 patients with resectable NSCLC and collected resected tumor (TUM), tumor-adjacent (ADJ) and tumor-distant normal (DIS) tissue samples, among whom 36 qualified for subsequent analyses. Methylation levels were profiled by bisulfite sequencing using a custom lung-cancer methylation panel. Results ADJ and DIS samples demonstrated similar methylation profiles, which were distinct from distinct from that of TUM. Comparison of TUM and DIS profiles led to identification of 1740 tumor-specific differential methylated regions (DMRs), including 1675 hypermethylated and 65 hypomethylated (adjusted P < 0.05). Six of the top 10 tumor-specific hypermethylated regions were associated with cancer development. We then compared the TUM, ADJ, and DIS to further identify the progressively aggravating aberrant methylations during cancer initiation and early development. A total of 332 DMRs were identified, including a predominant proportion of 312 regions showing stepwise increase in methylation levels as the sample drew nearer to the tumor (i.e. DIS < ADJ < TUM) and 20 regions showing a stepwise decrease pattern. Gene set enrichment analysis (GSEA) for KEGG and GO terms consistently suggested enrichment of DMRs located in transcription factor genes, suggesting a central role of epigenetic regulation of transcription factors in FC and tumorigenesis. Conclusion We revealed distinct methylation patterns between pre-malignant lesions and malignant tumors, suggesting the essential role of DNA methylation as an early step in pre-malignant field defects. Moreover, our study also identified differentially methylated genes, especially transcription factors, that could potentially be used as markers for lung cancer screening and for mechanistic studies of FC and early cancer development. Supplementary Information The online version contains supplementary material available at 10.1186/s12920-022-01192-1.
Collapse
|
8
|
HOXD8 hypermethylation as a fully sensitive and specific biomarker for biliary tract cancer detectable in tissue and bile samples. Br J Cancer 2022; 126:1783-1794. [PMID: 35177798 PMCID: PMC9174245 DOI: 10.1038/s41416-022-01738-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 01/21/2022] [Accepted: 02/02/2022] [Indexed: 12/13/2022] Open
Abstract
Background Biliary tract cancers (BTC) are rare but highly aggressive tumours with poor prognosis, usually detected at advanced stages. Herein, we aimed at identifying BTC-specific DNA methylation alterations. Methods Study design included statistical power and sample size estimation. A genome-wide methylation study of an explorative cohort (50 BTC and ten matched non-tumoral tissue samples) has been performed. BTC-specific altered CpG islands were validated in over 180 samples (174 BTCs and 13 non-tumoral controls). The final biomarkers, selected by a machine-learning approach, were validated in independent tissue (18 BTCs, 14 matched non-tumoral samples) and bile (24 BTCs, five non-tumoral samples) replication series, using droplet digital PCR. Results We identified and successfully validated BTC-specific DNA methylation alterations in over 200 BTC samples. The two-biomarker panel, selected by an in-house algorithm, showed an AUC > 0.97. The best-performing biomarker (chr2:176993479-176995557), associated with HOXD8, a pivotal gene in cancer-related pathways, achieved 100% sensitivity and specificity in a new series of tissue and bile samples. Conclusions We identified a novel fully efficient BTC biomarker, associated with HOXD8 gene, detectable both in tissue and bile by a standardised assay ready-to-use in clinical trials also including samples from non-invasive matrices.
Collapse
|
9
|
Identification of key regulators in Sarcoidosis through multidimensional systems biological approach. Sci Rep 2022; 12:1236. [PMID: 35075176 PMCID: PMC8786862 DOI: 10.1038/s41598-022-05129-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 12/30/2021] [Indexed: 01/13/2023] Open
Abstract
Sarcoidosis is a multi-organ disorder where immunology, genetic and environmental factors play a key role in causing Sarcoidosis, but its molecular mechanism remains unclear. Identification of its genetics profiling that regulates the Sarcoidosis network will be one of the main challenges to understand its aetiology. We have identified differentially expressed genes (DEGs) by analyzing the gene expression profiling of Sarcoidosis and compared it with healthy control. Gene set enrichment analysis showed that these DEGs were mainly enriched in the inflammatory response, immune system, and pathways in cancer. Sarcoidosis protein interaction network was constructed by a total of 877 DEGs (up-down) and calculated its network topological properties, which follow hierarchical scale-free fractal nature up to six levels of the organization. We identified a large number of leading hubs that contain six key regulators (KRs) including ICOS, CTLA4, FLT3LG, CD33, GPR29 and ITGA4 are deeply rooted in the network from top to bottom, considering a backbone of the network. We identified the transcriptional factors (TFs) which are closely interacted with KRs. These genes and their TFs regulating the Sarcoidosis network are expected to be the main target for the therapeutic approaches and potential biomarkers. However, experimental validations of KRs needed to confirm their efficacy.
Collapse
|
10
|
Hamada K, Tian Y, Fujimoto M, Takahashi Y, Kohno T, Tsuta K, Watanabe SI, Yoshida T, Asamura H, Kanai Y, Arai E. DNA hypermethylation of the ZNF132 gene participates in the clinicopathological aggressiveness of 'pan-negative'-type lung adenocarcinomas. Carcinogenesis 2021; 42:169-179. [PMID: 33152763 PMCID: PMC7905838 DOI: 10.1093/carcin/bgaa115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 10/12/2020] [Accepted: 10/29/2020] [Indexed: 11/26/2022] Open
Abstract
Although some previous studies have examined epigenomic alterations in lung adenocarcinomas, correlations between epigenomic events and genomic driver mutations have not been fully elucidated. Single-CpG resolution genome-wide DNA methylation analysis with the Infinium HumanMethylation27 BeadChip was performed using 162 paired samples of adjacent normal lung tissue (N) and the corresponding tumorous tissue (T) from patients with lung adenocarcinomas. Correlations between DNA methylation data on the one hand and clinicopathological parameters and genomic driver mutations, i.e. mutations of EGFR, KRAS, BRAF and HER2 and fusions involving ALK, RET and ROS1, were examined. DNA methylation levels in 12 629 probes from N samples were significantly correlated with recurrence-free survival. Principal component analysis revealed that distinct DNA methylation profiles at the precancerous N stage tended not to induce specific genomic driver aberrations. Most of the genes showing significant DNA methylation alterations during transition from N to T were shared by two or more driver aberration groups. After small interfering RNA knockdown of ZNF132, which showed DNA hypermethylation only in the pan-negative group and was correlated with vascular invasion, the proliferation, apoptosis and migration of cancer cell lines were examined. ZNF132 knockdown led to increased cell migration ability, rather than increased cell growth or reduced apoptosis. We concluded that DNA hypermethylation of the ZNF132 gene participates in the clinicopathological aggressiveness of ‘pan-negative’ lung adenocarcinomas. In addition, DNA methylation alterations at the precancerous stage may determine tumor aggressiveness, and such alterations that accumulate after driver mutation may additionally modify clinicopathological features through alterations of gene expression.
Collapse
Affiliation(s)
- Kenichi Hamada
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
- Division of Thoracic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Ying Tian
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Mao Fujimoto
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Yoriko Takahashi
- Bioscience Department, Solution Knowledge Center, Mitsui Knowledge Industry Co., Ltd., Tokyo, Japan
| | - Takashi Kohno
- Division of Genome Biology, National Cancer Center Research Institute, Tokyo, Japan
| | - Koji Tsuta
- Department of Pathology & Laboratory Medicine, Kansai Medical University, Osaka, Japan
| | - Shun-ichi Watanabe
- Department of Thoracic Surgery, National Cancer Center Hospital, Tokyo, Japan
| | - Teruhiko Yoshida
- Fundamental Innovative Oncology Core Center, National Cancer Center Research Institute, Tokyo, Japan
| | - Hisao Asamura
- Division of Thoracic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Yae Kanai
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Eri Arai
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
- To whom correspondence should be addressed. Tel: +81 3 3353 1211; Fax: +81 3 3353 3290;
| |
Collapse
|
11
|
Yang M, Arai E, Takahashi Y, Totsuka H, Chiku S, Taniguchi H, Katai H, Sakamoto H, Yoshida T, Kanai Y. Cooperative participation of epigenomic and genomic alterations in the clinicopathological diversity of gastric adenocarcinomas: significance of cell adhesion and epithelial-mesenchymal transition-related signaling pathways. Carcinogenesis 2021; 41:1473-1484. [PMID: 32710740 PMCID: PMC7665242 DOI: 10.1093/carcin/bgaa079] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/27/2020] [Accepted: 07/21/2020] [Indexed: 02/06/2023] Open
Abstract
The present study was conducted to clarify the cooperative significance of epigenomic and genomic abnormalities during gastric carcinogenesis. Using 21 samples of normal control gastric mucosa (C), 109 samples of non-cancerous gastric mucosa (N) and 105 samples of cancerous tissue (T) from 109 patients with primary gastric adenocarcinomas, genome-wide DNA methylation analysis was performed using Infinium assay. Among these samples, 66 paired N and corresponding T samples were subjected to whole-exome and single nucleotide polymorphism array analyses. As had been shown in our previous study, 109 patients were clustered clinicopathologically into least aggressive Cluster A (n = 20), most aggressive Cluster B1 (n = 20) and Cluster B2 (n = 69). Most DNA methylation alterations in each cluster had already occurred even in N samples compared with C samples, and DNA methylation alterations at the precancerous N stage were inherited by the established cancers themselves. Recurrent single nucleotide variants and insertions/deletions resulting in functional disruption of the proteins encoded by the ABCA10, BNC2, CDH1, CTNNB1, SMAD4 and VAV2 genes were specific to Cluster B1, whereas those of the APC, EGFR, ERBB2, ERBB3, MLH1 and MUC6 genes were specific to Cluster A. MetaCore pathway analysis revealed that the epigenomically affected TWIST1 gene and genomically affected CDH1, CTNNB1, MMP9, TLN2, ROCK1 and SMAD4 genes were accumulated in signaling pathways related to cell adhesion, cytoskeleton remodeling and epithelial–mesenchymal transition in Cluster B1. These data indicate that epigenomic alterations at the precancerous stage are important in gastric carcinogenesis and that epigenomic and genomic alterations cooperatively underlie the aggressiveness of gastric adenocarcinomas.
Collapse
Affiliation(s)
- Menghan Yang
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Eri Arai
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Yoriko Takahashi
- Biomedical Department, Cloud Service Division, IT Infrastructure Services Unit, Mitsui Knowledge Industry Co., Ltd., Tokyo, Japan
| | - Hirohiko Totsuka
- Bioinformatics Group, Research and Development Center, Solution Division 4, Hitachi Government and Public Corporation System Engineering Ltd., Tokyo, Japan
| | - Suenori Chiku
- Information and Communication Research Division, Mizuho Information and Research Institute, Inc., Tokyo, Japan
| | - Hirokazu Taniguchi
- Department of Clinical Laboratories, JR Tokyo General Hospital, Tokyo, Japan
| | - Hitoshi Katai
- Department of Gastric Surgery, National Cancer Center Hospital, Tokyo, Japan
| | - Hiromi Sakamoto
- Fundamental Innovative Oncology Core Center, National Cancer Center Research Institute, Tokyo, Japan
| | - Teruhiko Yoshida
- Department of Genetic Medicine and Services, National Cancer Center Hospital, Tokyo, Japan
| | - Yae Kanai
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
12
|
Endo Y, Fujimoto M, Ito N, Takahashi Y, Kitago M, Gotoh M, Hiraoka N, Yoshida T, Kitagawa Y, Kanai Y, Arai E. Clinicopathological impacts of DNA methylation alterations on pancreatic ductal adenocarcinoma: prediction of early recurrence based on genome-wide DNA methylation profiling. J Cancer Res Clin Oncol 2021; 147:1341-1354. [PMID: 33635431 PMCID: PMC8021514 DOI: 10.1007/s00432-021-03541-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 01/19/2021] [Indexed: 12/21/2022]
Abstract
PURPOSE The present study was conducted to clarify the clinicopathological impacts of DNA methylation alterations on pancreatic ductal adenocarcinoma (PDAC). METHODS Genome-wide DNA methylation screening was performed using the Infinium HumanMethylation450 BeadChip, and DNA methylation quantification was verified using pyrosequencing. We analyzed fresh-frozen tissues from an initial cohort (17 samples of normal control pancreatic tissue [C] from 17 patients without PDAC, and 34 samples of non-cancerous pancreatic tissue [N] and 82 samples of cancerous tissue [T] both obtained from 82 PDAC patients) and formalin-fixed paraffin-embedded T samples from 34 patients in a validation cohort. RESULTS The DNA methylation profiles of N samples tended to differ from those of C samples, and 91,907 probes showed significant differences in DNA methylation levels between C and T samples. Epigenetic clustering of T samples was significantly correlated with a larger tumor diameter and early recurrence (ER), defined as relapse within 6 months after surgery. Three marker CpG sites, applicable to formalin-fixed paraffin-embedded surgically resected materials regardless of their tumor cell content, were identified for prediction of ER. The sensitivity and specificity for detection of patients belonging to the ER group using a panel combining these three marker CpG sites, including a CpG site in the CDK14 gene, were 81.8% and 71.7% and 88.9% and 70.4% in the initial and validation cohorts, respectively. CONCLUSION These findings indicate that DNA methylation alterations may have a clinicopathological impact on PDAC. Application of our criteria will ultimately allow prediction of ER after surgery to improve the outcome of PDAC patients.
Collapse
Affiliation(s)
- Yutaka Endo
- Department of Pathology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
- Department of Surgery, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Mao Fujimoto
- Department of Pathology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Nanako Ito
- Department of Pathology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Yoriko Takahashi
- Bioscience Department, Solution Knowledge Center, Mitsui Knowledge Industry Co., Ltd., Tokyo, 105-6215, Japan
| | - Minoru Kitago
- Department of Surgery, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Masahiro Gotoh
- Fundamental Innovative Oncology Core Center, National Cancer Center Research Institute, Tokyo, 104-0045, Japan
| | - Nobuyoshi Hiraoka
- Department of Pathology and Clinical Laboratory, National Cancer Center Hospital, Tokyo, 104-0045, Japan
| | - Teruhiko Yoshida
- Fundamental Innovative Oncology Core Center, National Cancer Center Research Institute, Tokyo, 104-0045, Japan
| | - Yuko Kitagawa
- Department of Surgery, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Yae Kanai
- Department of Pathology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Eri Arai
- Department of Pathology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| |
Collapse
|
13
|
Cheng H, Zou Y, Shah CD, Fan N, Bhagat TD, Gucalp R, Kim M, Verma A, Piperdi B, Spivack SD, Halmos B, Perez-Soler R. First-in-human study of inhaled Azacitidine in patients with advanced non-small cell lung cancer. Lung Cancer 2021; 154:99-104. [PMID: 33636454 DOI: 10.1016/j.lungcan.2021.02.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/02/2021] [Accepted: 02/12/2021] [Indexed: 01/19/2023]
Abstract
BACKGROUND Aerosolized Azacitidine has been shown to inhibit orthotopic lung cancer growth and induce re-expression of methylated tumor suppressor genes in murine models. We hypothesized that inhaled Azacitidine is safe and effective in reversing epigenetic changes in the bronchial epithelium secondary to chronic smoking. PATIENTS AND METHODS We report the first in human study of inhaled Azacitidine. Azacitidine in aqueous solution was used to generate an aerosol suspension of 0.25-5 μm particle size. Main inclusion criteria: Stage IV or recurrent NSCLC with predominantly lung involvement, ≥1 prior systemic therapy, ECOG PS 0-1, and adequate pulmonary function. Patients received inhaled Azacitidine daily on days 1-5 and 15-19 of 28-day cycles, at 3 escalating doses (15, 30 and 45 mg/m2 daily). The primary objective was to determine the feasibility and tolerability of this new therapeutic modality. The key secondary objectives included pharmacokinetics, methylation profiles and efficacy. RESULTS From 3/2015 to 2/2018, eight patients received a median number of 2 (IQR = 1) cycles of inhaled Azacitidine. No clinically significant adverse events were observed, except one patient treated at the highest dose developed an asymptomatic grade 2 decreased DLCO which resolved spontaneously. One patient receiving 12 cycles of therapy had an objective and durable partial response, and two patients had stable disease. Plasma Azacitidine was only briefly detectable in patients treated at the higher doses. Moreover, in 2 of 3 participants who agreed and underwent pre- and post-treatment bronchoscopy, the global DNA methylation in the bronchial epithelium decreased by 24 % and 79 % post-therapy, respectively. The interval between last inhaled treatment and bronchoscopy was 3 days. CONCLUSIONS Inhaled Azacitidine resulted in negligible plasma levels compared to the previously reported subcutaneous administration and was well-tolerated. The results justify the continued development of inhaled Azacitidine at non-cytotoxic doses for patients with lung-confined malignant and/or premalignant lesions.
Collapse
Affiliation(s)
- Haiying Cheng
- Department of Oncology, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY10461, USA.
| | - Yiyu Zou
- Department of Oncology, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY10461, USA
| | - Chirag D Shah
- Division of Pulmonary Medicine, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY10461, USA
| | - Ni Fan
- Department of Oncology, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY10461, USA
| | - Tushar D Bhagat
- Department of Oncology, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY10461, USA
| | - Rasim Gucalp
- Department of Oncology, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY10461, USA
| | - Mimi Kim
- Department of Epidemiology & Population Health, Albert Einstein College of Medicine, Bronx, NY10461, USA
| | - Amit Verma
- Department of Oncology, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY10461, USA
| | | | - Simon D Spivack
- Division of Pulmonary Medicine, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY10461, USA
| | - Balazs Halmos
- Department of Oncology, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY10461, USA
| | - Roman Perez-Soler
- Department of Oncology, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY10461, USA.
| |
Collapse
|
14
|
Farooq M, Herman JG. Noninvasive Diagnostics for Early Detection of Lung Cancer: Challenges and Potential with a Focus on Changes in DNA Methylation. Cancer Epidemiol Biomarkers Prev 2020; 29:2416-2422. [PMID: 33148791 PMCID: PMC11559093 DOI: 10.1158/1055-9965.epi-20-0704] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/20/2020] [Accepted: 10/13/2020] [Indexed: 11/16/2022] Open
Abstract
Lung cancer remains the leading cause of cancer deaths in the United States and the world. Early detection of this disease can reduce mortality, as demonstrated for low-dose computed tomography (LDCT) screening. However, there remains a need for improvements in lung cancer detection to complement LDCT screening and to increase adoption of screening. Molecular changes in the tumor, and the patient's response to the presence of the tumor, have been examined as potential biomarkers for diagnosing lung cancer. There are significant challenges to developing an effective biomarker with sufficient sensitivity and specificity for the early detection of lung cancer, particularly the detection of circulating tumor DNA, which is present in very small quantities. We will review approaches to develop biomarkers for the early detection of lung cancer, with special consideration to detection of rare tumor events, focus on the use of DNA methylation-based detection in plasma and sputum, and discuss the promise and challenges of lung cancer early detection. Plasma-based detection of lung cancer DNA methylation may provide a simple cost-effective method for the early detection of lung cancer.See all articles in this CEBP Focus section, "NCI Early Detection Research Network: Making Cancer Detection Possible."
Collapse
Affiliation(s)
- Maria Farooq
- Department of Medicine, The University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - James G Herman
- Department of Medicine, The University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
- UPMC Hillman Comprehensive Cancer Center, Pittsburgh, Pennsylvania
| |
Collapse
|
15
|
Mollica M, Aronne L, Paoli G, Flora M, Mazzeo G, Tartaglione S, Polito R, Tranfa C, Ceparano M, Komici K, Mazzarella G, Iadevaia C. Elderly with COPD: comoborbitidies and systemic consequences. JOURNAL OF GERONTOLOGY AND GERIATRICS 2020. [DOI: 10.36150/2499-6564-434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
16
|
Zhao M, Di X, Jin X, Tian C, Cong S, Liu J, Wang K. Identification of Biomarkers for Sarcoidosis and Tuberculosis of the Lung Using Systematic and Integrated Analysis. Med Sci Monit 2020; 26:e925438. [PMID: 32701935 PMCID: PMC7397754 DOI: 10.12659/msm.925438] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background Sarcoidosis (SARC) is a multisystem inflammatory disease of unknown etiology and pulmonary tuberculosis (PTB) is caused by Mycobacterium tuberculosis. Both of these diseases affect lungs and lymph nodes and share similar clinical manifestations. However, the underlying mechanisms for the similarities and differences in genetic characteristics of SARC and PTB remain unclear. Material/Methods Three datasets (GSE16538, GSE20050, and GSE19314) were retrieved from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) in SARC and PTB were identified using GEO2R online analyzer and Venn diagram software. Functional enrichment analysis was performed using Database for Annotation, Visualization and Integrated Discovery (DAVID) and R packages. Two protein–protein interaction (PPI) networks were constructed using Search Tool for the Retrieval of Interacting Genes database, and module analysis was performed using Cytoscape. Hub genes were identified using area under the receiver operating characteristic curve analysis. Results We identified 228 DEGs, including 56 common SARC-PTB DEGs (enriched in interferon-gamma-mediated signaling, response to gamma radiation, and immune response) and 172 SARC-only DEGs (enriched in immune response, cellular calcium ion homeostasis, and dendritic cell chemotaxis). Potential biomarkers for SARC included CBX5, BCL11B, and GPR18. Conclusions We identified potential biomarkers that can be used as candidates for diagnosis and/or treatment of patients with SARC.
Collapse
Affiliation(s)
- Min Zhao
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China (mainland)
| | - Xin Di
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China (mainland)
| | - Xin Jin
- Department of Oncology and Hematology, The Second Hospital of Jilin University, Changchun, Jilin, China (mainland)
| | - Chang Tian
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China (mainland)
| | - Shan Cong
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China (mainland)
| | - Jiaying Liu
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China (mainland)
| | - Ke Wang
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China (mainland)
| |
Collapse
|
17
|
Paço A, de Bessa Garcia SA, Freitas R. Methylation in HOX Clusters and Its Applications in Cancer Therapy. Cells 2020; 9:cells9071613. [PMID: 32635388 PMCID: PMC7408435 DOI: 10.3390/cells9071613] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/26/2020] [Accepted: 06/29/2020] [Indexed: 02/08/2023] Open
Abstract
HOX genes are commonly known for their role in embryonic development, defining the positional identity of most structures along the anterior–posterior axis. In postembryonic life, HOX gene aberrant expression can affect several processes involved in tumorigenesis such as proliferation, apoptosis, migration and invasion. Epigenetic modifications are implicated in gene expression deregulation, and it is accepted that methylation events affecting HOX gene expression play crucial roles in tumorigenesis. In fact, specific methylation profiles in the HOX gene sequence or in HOX-associated histones are recognized as potential biomarkers in several cancers, helping in the prediction of disease outcomes and adding information for decisions regarding the patient’s treatment. The methylation of some HOX genes can be associated with chemotherapy resistance, and its identification may suggest the use of other treatment options. The use of epigenetic drugs affecting generalized or specific DNA methylation profiles, an approach that now deserves much attention, seems likely to be a promising weapon in cancer therapy in the near future. In this review, we summarize these topics, focusing particularly on how the regulation of epigenetic processes may be used in cancer therapy.
Collapse
Affiliation(s)
- Ana Paço
- Centre Bio: Bioindustries, Biorefineries and Bioproducts, BLC3 Association—Technology and Innovation Campus, 3405-169 Oliveira do Hospital, Portugal;
| | | | - Renata Freitas
- I3S—Institute for Innovation & Health Research, University of Porto, 4200-135 Porto, Portugal;
- ICBAS—Institute of Biomedical Sciences Abel Salazar, University of Porto, 4050-313 Porto, Portugal
- Correspondence:
| |
Collapse
|
18
|
Potential Prognostic Role of SPARC Methylation in Non-Small-Cell Lung Cancer. Cells 2020; 9:cells9061523. [PMID: 32580473 PMCID: PMC7349117 DOI: 10.3390/cells9061523] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 06/14/2020] [Accepted: 06/17/2020] [Indexed: 12/29/2022] Open
Abstract
The silencing of SPARC (secreted protein acid and rich in cysteine) gene through methylation of its promoter region represents a common event in many solid tumors and it is frequently associated with tumor progression and an aggressive clinical outcome. Anyhow, the data concerning the epigenetic mechanism of SPARC deregulation and its prognostic value in lung cancer are still incomplete. We explored the aberrant methylation of SPARC and its effects in 4 non-small cell lung cancer (NSCLC) cell lines and 59 NSCLC tissues and correlated the methylation levels with clinical-pathological features and disease outcome of patients. In 3 out of 4 tumor cell lines high SPARC methylation levels were observed. An inverse correlation between the epigenetic silencing and SPARC expression was confirmed by 5-Aza-2′-deoxycytidine ((5-Aza-CdR) treatment that also significantly induced a reduction in cell viability, proliferation and tumor cell migration. In tissues, the DNA methylation levels of the SPARC gene were significantly lower in paired non-neoplastic lungs (NLs) and normal lungs distant from tumor (NLDTs) than in NSCLCs (p = 0.002 and p = 0.0034 respectively). A promoter hypermethylation was detected in 68% of squamous cell carcinoma (SqCCs, 17/25) and 56% of adenocarcinoma (ADCs, 19/34), with SqCC showing the highest levels of methylation. Higher SPARC methylation levels were significantly associated with higher mortality risk both in all NSCLCs early stage patients (Hazard Ratio, HR = 1.97; 95% Confidence Interval, CI: 1.32–2.93; p = 0.001) and in those with SqCC (HR = 2.96; 95% CI: 1.43–6.12; p = 0.003). Promoter methylation of SPARC gene should represent an interesting prognostic biomarker in NSCLC, with potential application in the squamous early-stage context. Further research in this setting on larger independent cohorts of lung patients with different histologies and stages of disease are warranted.
Collapse
|
19
|
Hurkmans DP, Tamminga M, van Es B, Peters T, Karman W, van Wijck RTA, van der Spek PJ, Tauber T, Los M, van Schetsen A, Vu T, Hiltermann TJN, Schuuring E, Aerts JGJV, Chen S, Groen HJM. Molecular data show conserved DNA locations distinguishing lung cancer subtypes and regulation of immune genes. Lung Cancer 2020; 146:341-349. [PMID: 32645666 DOI: 10.1016/j.lungcan.2020.06.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 06/03/2020] [Accepted: 06/09/2020] [Indexed: 01/22/2023]
Abstract
INTRODUCTION Non-small-cell lung cancer exhibits a range of transcriptional and epigenetic patterns that not only define distinct phenotypes, but may also govern immune related genes, which have a major impact on survival. METHODS We used open-source RNA expression and DNA methylation data of the Cancer Genome Atlas with matched non-cancerous tissue to evaluate whether these pretreatment molecular patterns also influenced genes related to the immune system and overall survival. RESULTS The distinction between lung adenocarcinoma and squamous cell carcinoma are determined by 1083 conserved methylation loci and RNA expression of 203 genes which differ for >80 % of patients between the two subtypes. Using the RNA expression profiles of 6 genes, more than 95 % of patients could be correctly classified as having either adeno or squamous cell lung cancer. Comparing tumor tissue with matched normal tissue, no differences in RNA expression were found for costimulatory and co-inhibitory genes, nor genes involved in cytokine release. However, genes involved in antigen presentation had a lower expression and a wider distribution in tumor tissue. DISCUSSION Only a small number of genes, influenced by DNA methylation, determine the lung cancer subtype. The antigen presentation of cancer cells is dysfunctional, while other T cell immune functions appear to remain intact.
Collapse
Affiliation(s)
- Daan P Hurkmans
- Erasmus University Medical Center, Departments of Pulmonary Diseases, Internal Medicine and Pathology, Bioinformatic Unit, Dr. Molewaterplein 40, 3015 GD, the Netherlands.
| | - Menno Tamminga
- University of Groningen and University Medical Center Groningen, Departments of Pulmonary Diseases and Pathology and Medical Biology, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands.
| | - Bram van Es
- Otravo B.V., Suikersilo-West 41, 1165 MP, Amsterdam-Halfweg, the Netherlands.
| | - Tom Peters
- PricewaterhouseCoopers Advisory NV, Thomas R. Malthusstraat 5, 1066 JR, Amsterdam, the Netherlands.
| | - Wouter Karman
- PricewaterhouseCoopers Advisory NV, Thomas R. Malthusstraat 5, 1066 JR, Amsterdam, the Netherlands.
| | - Rogier T A van Wijck
- Erasmus University Medical Center, Departments of Pulmonary Diseases, Internal Medicine and Pathology, Bioinformatic Unit, Dr. Molewaterplein 40, 3015 GD, the Netherlands.
| | - Peter J van der Spek
- Erasmus University Medical Center, Departments of Pulmonary Diseases, Internal Medicine and Pathology, Bioinformatic Unit, Dr. Molewaterplein 40, 3015 GD, the Netherlands.
| | - Tjebbe Tauber
- ABN-AMRO, Foppingadreef 22, 1102 BS Amsterdam, the Netherlands.
| | - Maureen Los
- PricewaterhouseCoopers Advisory NV, Thomas R. Malthusstraat 5, 1066 JR, Amsterdam, the Netherlands.
| | - Anouk van Schetsen
- PricewaterhouseCoopers Advisory NV, Thomas R. Malthusstraat 5, 1066 JR, Amsterdam, the Netherlands.
| | - Thu Vu
- PricewaterhouseCoopers Advisory NV, Thomas R. Malthusstraat 5, 1066 JR, Amsterdam, the Netherlands.
| | - T Jeroen N Hiltermann
- University of Groningen and University Medical Center Groningen, Departments of Pulmonary Diseases and Pathology and Medical Biology, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands.
| | - Ed Schuuring
- University of Groningen and University Medical Center Groningen, Departments of Pulmonary Diseases and Pathology and Medical Biology, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands.
| | - Joachim G J V Aerts
- Erasmus University Medical Center, Departments of Pulmonary Diseases, Internal Medicine and Pathology, Bioinformatic Unit, Dr. Molewaterplein 40, 3015 GD, the Netherlands.
| | - Sissy Chen
- PricewaterhouseCoopers Advisory NV, Thomas R. Malthusstraat 5, 1066 JR, Amsterdam, the Netherlands.
| | - Harry J M Groen
- University of Groningen and University Medical Center Groningen, Departments of Pulmonary Diseases and Pathology and Medical Biology, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands.
| |
Collapse
|
20
|
Hsu CH, Hsiao CW, Sun CA, Wu WC, Yang T, Hu JM, Liao YC, Huang CH, Chen CY, Lin FH, Chou YC. Multiple gene promoter methylation and clinical stage in adjacent normal tissues: Effect on prognosis of colorectal cancer in Taiwan. Sci Rep 2020; 10:145. [PMID: 31924802 PMCID: PMC6954240 DOI: 10.1038/s41598-019-56691-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 12/16/2019] [Indexed: 12/16/2022] Open
Abstract
This study provide an insight that the panel genes methylation status in different clinical stage tended to reflect a different prognosis even in matched normal tissues, to clinical recommendation. We enrolled 153 colorectal cancer patients from a medical center in Taiwan and used the candidate gene approach to select five genes involved in carcinogenesis pathways. We analyzed the relationship between DNA methylation with different cancer stages and the prognostic outcome. There were significant trends of increasing risk of 5-year time to progression and event-free survival of subjects with raising number of hypermethylation genes both in normal tissue and tumor tissue. The group with two or more genes with aberrant methylation in the advanced cancer stages (Me/advanced) had lower 5-year event-free survival among patients with colorectal cancer in either normal or tumor tissue. The adjusted hazard ratios in the group with two or more genes with aberrant methylation with advanced cancer stages (Me/advanced) were 8.04 (95% CI, 2.80–23.1; P for trend <0.01) and 8.01 (95% CI, 1.92–33.4; P for trend <0.01) in normal and tumor tissue, respectively. DNA methylation status was significantly associated with poor prognosis outcome. This finding in the matched normal tissues of colorectal cancer patients could be an alternative source of prognostic markers to assist clinical decision making.
Collapse
Affiliation(s)
- Chih-Hsiung Hsu
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan, Republic of China.,Teaching Office, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Cheng-Wen Hsiao
- Division of Colorectal Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Chien-An Sun
- Department of Public Health, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan, Republic of China.,Big Data Research Center, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan, Republic of China
| | - Wen-Chih Wu
- School of Public Health, National Defense Medical Center, Taipei, Taiwan, Republic of China.,Department of Surgery, Suao and Yuanshan branches of Taipei Veterans General Hospital, Yilan County, Taiwan, Republic of China
| | - Tsan Yang
- Department of Health Business Administration, Meiho University, Pingtung County, Taiwan, Republic of China
| | - Je-Ming Hu
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan, Republic of China.,Division of Colorectal Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China.,Adjunct Instructor, School of Medicine, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Yu-Chan Liao
- School of Public Health, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Chi-Hua Huang
- School of Public Health, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Chao-Yang Chen
- Division of Colorectal Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China.,Adjunct Instructor, School of Medicine, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Fu-Huang Lin
- School of Public Health, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Yu-Ching Chou
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan, Republic of China. .,School of Public Health, National Defense Medical Center, Taipei, Taiwan, Republic of China.
| |
Collapse
|
21
|
Scalea S, Maresca C, Catalanotto C, Marino R, Cogoni C, Reale A, Zampieri M, Zardo G. Modifications of H3K4 methylation levels are associated with DNA hypermethylation in acute myeloid leukemia. FEBS J 2019; 287:1155-1175. [PMID: 31599112 DOI: 10.1111/febs.15086] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 08/02/2019] [Accepted: 10/06/2019] [Indexed: 01/07/2023]
Abstract
The 'instructive model' of aberrant DNA methylation in human tumors is based on the observation that CpG islands prone to hypermethylation in cancers are embedded in chromatin enriched in H3K27me3 in human embryonic stem cells (hESC). Recent studies also link methylation of CpG islands to the methylation status of H3K4, where H3K4me3 is inversely correlated with DNA methylation. To provide insight into these conflicting findings, we generated DNA methylation profiles for acute myeloid leukemia samples from patients and leukemic cell lines and integrated them with publicly available ChIp-seq data, containing H3K4me3 and H3K27me3 CpG island occupation in hESC, or hematopoietic stem or progenitor cells (hHSC/MPP). Hypermethylated CpG islands in AML samples displayed H3K27me3 enrichments in hESC and hHSC/MPP; however, ChIp analysis of specific hypermethylated CpG islands revealed a significant reduction in H3K4me3 signal with a concomitant increase in H3K4me0 levels as opposed to a nonsignificant increase in H3K27me3 marks. The integration of AML DNA methylation profiles with the ChIp-seq data in hESC and hHSC/MPP also led to the identification of Iroquois homeobox 2 (IRX2) as a previously unknown factor promoting differentiation of leukemic cells. Our results indicate that in contrast to the 'instructive model', H3K4me3 levels are strongly associated with DNA methylation patterns in AML and have a role in the regulation of critical genes, such as the putative tumor suppressor IRX2.
Collapse
Affiliation(s)
- Stefania Scalea
- Department of Experimental Medicine, University of Rome, Sapienza, Italy
| | - Carmen Maresca
- Oncogenomic and Epigenetic Unit, Regina Elena National Cancer Institute, Rome, Italy
| | | | - Rachele Marino
- Department of Molecular Medicine, University of Rome, Sapienza, Italy
| | - Carlo Cogoni
- Department of Molecular Medicine, University of Rome, Sapienza, Italy
| | - Anna Reale
- Department of Experimental Medicine, University of Rome, Sapienza, Italy
| | - Michele Zampieri
- Department of Experimental Medicine, University of Rome, Sapienza, Italy
| | - Giuseppe Zardo
- Department of Experimental Medicine, University of Rome, Sapienza, Italy
| |
Collapse
|
22
|
Circulating Tumour Cells in Lung Cancer. Recent Results Cancer Res 2019. [PMID: 31605226 DOI: 10.1007/978-3-030-26439-0_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Circulating tumour cells (CTCs) constitute a potential tumour surrogate that could serve as "liquid biopsy" with the advantage to be a minimally invasive approach compared to traditional tissue biopsies. As CTCs are thought to be the source of metastatic lesions, their analysis represents a potential means of tracking cancer cells from the primary tumour en route to distant sites, thus providing valuable insights into the metastatic process. However, several problems, such as their rarity in the peripheral blood, the technical limitations of single-cell downstream analysis and their phenotypic variability, make CTC detection and molecular characterisation very challenging. Nevertheless, in the last decade, there has been an exponential increase of interest in the development of powerful cellular and molecular methodologies applied to CTCs. In this chapter, we focus on the recent advances of functional studies and molecular profiling of CTCs. We will also highlight the clinical relevance of CTC detection and enumeration, and discuss their potential as tumour biomarkers with special focus on lung cancer.
Collapse
|
23
|
Hata A, Nakajima T, Matsusaka K, Fukuyo M, Morimoto J, Yamamoto T, Sakairi Y, Rahmutulla B, Ota S, Wada H, Suzuki H, Matsubara H, Yoshino I, Kaneda A. A low DNA methylation epigenotype in lung squamous cell carcinoma and its association with idiopathic pulmonary fibrosis and poorer prognosis. Int J Cancer 2019; 146:388-399. [PMID: 31241180 DOI: 10.1002/ijc.32532] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 06/09/2019] [Accepted: 06/14/2019] [Indexed: 12/25/2022]
Abstract
Patients with idiopathic pulmonary fibrosis (IPF) have higher risk of developing lung cancer, for example, squamous cell carcinoma (SCC), and show poor prognosis, while the molecular basis has not been fully investigated. Here we conducted DNA methylome analysis of lung SCC using 20 SCC samples with/without IPF, and noncancerous lung tissue samples from smokers/nonsmokers, using Infinium HumanMethylation 450K array. SCC was clustered into low- and high-methylation epigenotypes by hierarchical clustering analysis. Genes hypermethylated in SCC significantly included genes targeted by polycomb repressive complex in embryonic stem cells, and genes associated with Gene Ontology terms, for example, "transcription" and "cell adhesion," while genes hypermethylated specifically in high-methylation subgroup significantly included genes associated with "negative regulation of growth." Low-methylation subgroup significantly correlated with IPF (78%, vs. 17% in high-methylation subgroup, p = 0.04), and the correlation was validated by additional Infinium analysis of SCC samples (n = 44 in total), and data from The Cancer Genome Atlas (n = 390). The correlation between low-methylation subgroup and IPF was further validated by quantitative methylation analysis of marker genes commonly hypermethylated in SCC (HOXA2, HOXA9 and PCDHGB6), and markers specifically hypermethylated in high-methylation subgroup (DLEC1, CFTR, MT1M, CRIP3 and ALDH7A1) in 77 SCC cases using pyrosequencing (p = 0.003). Furthermore, low-methylation epigenotype significantly correlated with poorer prognosis among all SCC patients, or among patients without IPF. Multivariate analysis showed that low-methylation epigenotype is an independent predictor of poor prognosis. These may suggest that lung SCC could be stratified into molecular subtypes with distinct prognosis, and low-methylation lung SCC that significantly correlates with IPF shows unfavorable outcome.
Collapse
Affiliation(s)
- Atsushi Hata
- Department of General Thoracic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan.,Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Takahiro Nakajima
- Department of General Thoracic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Keisuke Matsusaka
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Masaki Fukuyo
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan.,Department of Genome Research and Development, Kazusa DNA Research Institute, Chiba, Japan
| | - Junichi Morimoto
- Department of General Thoracic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Takayoshi Yamamoto
- Department of General Thoracic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yuichi Sakairi
- Department of General Thoracic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Bahityar Rahmutulla
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Satoshi Ota
- Department of Pathology, Chiba University Hospital, Chiba, Japan
| | - Hironobu Wada
- Department of General Thoracic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hidemi Suzuki
- Department of General Thoracic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hisahiro Matsubara
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Ichiro Yoshino
- Department of General Thoracic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Atsushi Kaneda
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
24
|
Establishment, molecular and biological characterization of HCB-514: a novel human cervical cancer cell line. Sci Rep 2019; 9:1913. [PMID: 30760827 PMCID: PMC6374403 DOI: 10.1038/s41598-018-38315-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 12/19/2018] [Indexed: 01/28/2023] Open
Abstract
Cervical cancer is the fourth most common cancer in women. Although cure rates are high for early stage disease, clinical outcomes for advanced, metastatic, or recurrent disease remain poor. To change this panorama, a deeper understanding of cervical cancer biology and novel study models are needed. Immortalized human cancer cell lines such as HeLa constitute crucial scientific tools, but there are few other cervical cancer cell lines available, limiting our understanding of a disease known for its molecular heterogeneity. This study aimed to establish novel cervical cancer cell lines derived from Brazilian patients. We successfully established one (HCB-514) out of 35 cervical tumors biopsied. We confirmed the phenotype of HCB-514 by verifying its’ epithelial and tumor origin through cytokeratins, EpCAM and p16 staining. It was also HPV-16 positive. Whole-exome sequencing (WES) showed relevant somatic mutations in several genes including BRCA2, TGFBR1 and IRX2. A copy number variation (CNV) analysis by nanostring and WES revealed amplification of genes mainly related to kinases proteins involved in proliferation, migration and cell differentiation, such as EGFR, PIK3CA, and MAPK7. Overexpression of EGFR was confirmed by phospho RTK-array and validated by western blot analysis. Furthermore, the HCB-514 cell line was sensitive to cisplatin. In summary, this novel Brazilian cervical cancer cell line exhibits relevant key molecular features and constitutes a new biological model for pre-clinical studies.
Collapse
|
25
|
Si J, Si Y, Zhang B, Lan G, Wei J, Huang B, Deng Z, Xiong W, Zhang Q. Up-regulation of the IRX2 gene predicts poor prognosis in nasopharyngeal carcinoma. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2018; 11:4073-4082. [PMID: 31949798 PMCID: PMC6962795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 05/18/2018] [Indexed: 06/10/2023]
Abstract
Aberrant expression of the IRX2 gene contributes to the oncogenesis and progression of various cancers. In this study, we analyzed the clinical significance and the prognostic value of mRNA expression level of the IRX2 gene in nasopharyngeal carcinoma (NPC) patients, with the goal to find a novel prognostic biomarker for NPC. Tissue samples were collected prior to treatment from 71 NPC patients for the detection of mRNA expression level of a total of 31503 genes, with high throughput screening of the mRNA expression profile. The Kaplan-Meier curves and log-rank test were used for univariate analyses to determine if the mRNA expression level of IRX2 and other 31502 genes, as well as clinical characteristics were of prognostic value for overall survival (OS), distant metastasis-free survival (DMFS) and disease-free survival (DFS). Regularized Cox regression was performed to test the contribution of prognostic factors to OS, DMFS, and DFS of NPC patients. The Cox proportional hazard model was used to test the independence of prognostic effect of IRX2 and other clinical features. The receiver operator characteristic curve was drawn and the area under the curve (AUC) was calculated to evaluate the predictive power of IRX2 gene. Univariate analyses showed a higher mRNA expression level of the IRX2 gene correlated with shorter OS (P = 0.001), DMFS (P = 0.003), and DFS (P = 0.007). Regularized Cox regression and Cox proportional hazard model analyses further showed that ahigher mRNA expression level of the IRX2 gene in the primary NPC was an independent prognostic factor for OS (Coxnet beta = 0.03, Cox proportion hazard model P = 0.038), DMFS (Coxnet beta = 0.018, Cox proportion hazard model P = 0.01) and DFS (Coxnet beta = 0.008, Cox proportion hazard model P = 0.029). The AUC showed that the mRNA expression level of the IRX2 gene is a significant predictor for predicting the OS (AUC value = 0.7105) and DMFS (AUC value = 0.7027) of NPC patients. Our results demonstrated that the IRX2 gene may be a novel independent unfavorable prognostic factor for NPC patients.
Collapse
Affiliation(s)
- Jinyuan Si
- Department of Otolaryngology-Head and Neck Surgery, Xuan Wu Hospital, Capital Medical UniversityBeijing, PR China
| | - Yongfeng Si
- Department of Otorhinolaryngology Head and Neck Oncology, The People’s Hospital of Guangxi Zhuang Autonomous RegionNanning, PR China
| | - Benjian Zhang
- Department of Otorhinolaryngology Head and Neck Oncology, The People’s Hospital of Guangxi Zhuang Autonomous RegionNanning, PR China
| | - Guiping Lan
- Department of Otorhinolaryngology Head and Neck Oncology, The People’s Hospital of Guangxi Zhuang Autonomous RegionNanning, PR China
| | - Jiazhang Wei
- Department of Otorhinolaryngology Head and Neck Oncology, The People’s Hospital of Guangxi Zhuang Autonomous RegionNanning, PR China
| | - Bo Huang
- Department of Otorhinolaryngology Head and Neck Oncology, The People’s Hospital of Guangxi Zhuang Autonomous RegionNanning, PR China
| | - Zhuoxia Deng
- Institue of Nasopharyngeal Carcinoma, The People’s Hospital of Guangxi Zhuang Autonomous RegionNanning, PR China
| | - Weiming Xiong
- Department of Otorhinolaryngology Head and Neck Oncology, The People’s Hospital of Guangxi Zhuang Autonomous RegionNanning, PR China
| | - Qiuhang Zhang
- Department of Otolaryngology-Head and Neck Surgery, Xuan Wu Hospital, Capital Medical UniversityBeijing, PR China
| |
Collapse
|
26
|
Jiang CL, He SW, Zhang YD, Duan HX, Huang T, Huang YC, Li GF, Wang P, Ma LJ, Zhou GB, Cao Y. Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget 2018; 8:1369-1391. [PMID: 27901495 PMCID: PMC5352062 DOI: 10.18632/oncotarget.13622] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 11/09/2016] [Indexed: 12/20/2022] Open
Abstract
The lung cancer incidence in the Xuanwei and neighboring region, Yunnan, China, is among the highest in China and is attributed to severe air pollution with high benzo(a)pyrene levels. We systematically and comparatively analyzed DNA methylation alterations at genome and gene levels in Xuanwei lung cancer tissues and cell lines, as well as benzo(a)pyrene-treated cells and mouse samples. We obtained a comprehensive dataset of genome-wide cytosine-phosphate-guanine island methylation in air pollution-related lung cancer samples. Benzo(a)pyrene exposure induced multiple alterations in DNA methylation and in mRNA expressions of DNA methyltransferases and ten-11 translocation proteins; these alterations partially occurred in Xuanwei lung cancer. Furthermore, benzo(a)pyrene-induced DKK2 and EN1 promoter hypermethylation and LPAR2 promoter hypomethylation led to down-regulation and up-regulation of the genes, respectively; the down-regulation of DKK2 and EN1 promoted the cellular proliferation. Thus, DNA methylation alterations induced by benzo(a)pyrene contribute partially to abnormal DNA methylation in air pollution-related lung cancer, and these DNA methylation alterations may affect the development and progression of lung cancer. Additionally, vitamin C and B6 can reduce benzo(a)pyrene-induced DNA methylation alterations and may be used as chemopreventive agents for air pollution-related lung cancer.
Collapse
Affiliation(s)
- Cheng-Lan Jiang
- Laboratory of Molecular and Experimental Pathology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.,Kunming College of Life Sciences, University of Chinese Academy of Sciences, Kunming 650223, China
| | - Shui-Wang He
- Laboratory of Molecular and Experimental Pathology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Yun-Dong Zhang
- Laboratory of Molecular and Experimental Pathology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.,School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
| | - He-Xian Duan
- Laboratory of Molecular and Experimental Pathology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Tao Huang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yun-Chao Huang
- Department of Thoracic and Cardiovascular Surgery, The Third Affiliated Hospital of Kunming Medical University, (Yunnan Tumor Hospital), Kunming 650106, China
| | - Gao-Feng Li
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, (Yunnan Tumor Hospital), Kunming 650106, China
| | - Ping Wang
- Department of Thoracic Surgery, The First People's Hospital of Yunnan Province, Kunming 650032, China
| | - Li-Ju Ma
- Clinical Medicine Research Center, The First Affiliated Hospital of Kunming Medical University, Kunming 650332, China
| | - Guang-Biao Zhou
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yi Cao
- Laboratory of Molecular and Experimental Pathology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| |
Collapse
|
27
|
Li D, Yang W, Zhang J, Yang JY, Guan R, Yang MQ. Transcription Factor and lncRNA Regulatory Networks Identify Key Elements in Lung Adenocarcinoma. Genes (Basel) 2018; 9:E12. [PMID: 29303984 PMCID: PMC5793165 DOI: 10.3390/genes9010012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 12/15/2017] [Accepted: 12/21/2017] [Indexed: 12/20/2022] Open
Abstract
Lung cancer is the second most commonly diagnosed carcinoma and is the leading cause of cancer death. Although significant progress has been made towards its understanding and treatment, unraveling the complexities of lung cancer is still hampered by a lack of comprehensive knowledge on the mechanisms underlying the disease. High-throughput and multidimensional genomic data have shed new light on cancer biology. In this study, we developed a network-based approach integrating somatic mutations, the transcriptome, DNA methylation, and protein-DNA interactions to reveal the key regulators in lung adenocarcinoma (LUAD). By combining Bayesian network analysis with tissue-specific transcription factor (TF) and targeted gene interactions, we inferred 15 disease-related core regulatory networks in co-expression gene modules associated with LUAD. Through target gene set enrichment analysis, we identified a set of key TFs, including known cancer genes that potentially regulate the disease networks. These TFs were significantly enriched in multiple cancer-related pathways. Specifically, our results suggest that hepatitis viruses may contribute to lung carcinogenesis, highlighting the need for further investigations into the roles that viruses play in treating lung cancer. Additionally, 13 putative regulatory long non-coding RNAs (lncRNAs), including three that are known to be associated with lung cancer, and nine novel lncRNAs were revealed by our study. These lncRNAs and their target genes exhibited high interaction potentials and demonstrated significant expression correlations between normal lung and LUAD tissues. We further extended our study to include 16 solid-tissue tumor types and determined that the majority of these lncRNAs have putative regulatory roles in multiple cancers, with a few showing lung-cancer specific regulations. Our study provides a comprehensive investigation of transcription factor and lncRNA regulation in the context of LUAD regulatory networks and yields new insights into the regulatory mechanisms underlying LUAD. The novel key regulatory elements discovered by our research offer new targets for rational drug design and accompanying therapeutic strategies.
Collapse
Affiliation(s)
- Dan Li
- Joint Bioinformatics Graduate Program, Department of Information Science, George W. Donaghey College of Engineering and Information Technology, University of Arkansas at Little Rock and University of Arkansas for Medical Sciences, 2801 S. University Ave, Little Rock, AR 72204, USA.
| | - William Yang
- School of Computer Science, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA 15213, USA.
| | - Jialing Zhang
- Department of Genetics, Yale University, New Haven, CT 06520, USA.
| | - Jack Y Yang
- Joint Bioinformatics Graduate Program, Department of Information Science, George W. Donaghey College of Engineering and Information Technology, University of Arkansas at Little Rock and University of Arkansas for Medical Sciences, 2801 S. University Ave, Little Rock, AR 72204, USA.
| | - Renchu Guan
- Joint Bioinformatics Graduate Program, Department of Information Science, George W. Donaghey College of Engineering and Information Technology, University of Arkansas at Little Rock and University of Arkansas for Medical Sciences, 2801 S. University Ave, Little Rock, AR 72204, USA.
| | - Mary Qu Yang
- Joint Bioinformatics Graduate Program, Department of Information Science, George W. Donaghey College of Engineering and Information Technology, University of Arkansas at Little Rock and University of Arkansas for Medical Sciences, 2801 S. University Ave, Little Rock, AR 72204, USA.
| |
Collapse
|
28
|
Saito M, Fujiwara Y, Asao T, Honda T, Shimada Y, Kanai Y, Tsuta K, Kono K, Watanabe S, Ohe Y, Kohno T. The genomic and epigenomic landscape in thymic carcinoma. Carcinogenesis 2017; 38:1084-1091. [PMID: 28968686 DOI: 10.1093/carcin/bgx094] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 09/04/2017] [Indexed: 02/06/2023] Open
Abstract
Thymic carcinoma (TC) is a rare cancer whose genomic features have been examined in only a limited number of patients of European descent. Here, we characterized both genomic and epigenomic aberrations by whole exome sequencing, RNA sequencing, methylation array and copy number analyses in TCs from Asian patients and compared them with those in TCs from USA/European patients. Samples analyzed were 10 pairs of snap-frozen surgical specimens of cancerous and non-cancerous thymic tissue. All 10 cases were Japanese patients treated at the National Cancer Center Hospital, Japan, between 1994 and 2010. Mutational signature analysis indicated that the accumulation of age-related mutations drive TC development. We identified recurrent somatic mutations in TET2, CYLD, SETD2, TP53, FBXW7, HRAS and RB1, and no mutations in GTF2I, supporting the hypothesis that TC and thymoma are distinguishable by their genetic profiles. TCs with TET2 mutations had more hypermethylated genes than those without, and hyper-methylation was associated with downregulation of gene expression. Focal genome copy number gains, associated with elevated gene expression, were observed at the KIT (which is known to drive thymic carcinogenesis) and AHNAK2 gene loci. Taken together, the results suggest that the molecular processes leading to TC depend on the accumulation of genetic and epigenetic aberrations. In addition, epigenetic dysregulation as a result of the TET2 mutation was observed in a subset of TCs.
Collapse
Affiliation(s)
- Motonobu Saito
- Division of Genome Biology, National Cancer Center Research Institute, Tokyo 104-0045, Japan.,Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Yutaka Fujiwara
- Department of Thoracic Oncology, National Cancer Center Hospital, Tokyo 104-0045, Japan
| | - Tetsuhiko Asao
- Department of Thoracic Oncology, National Cancer Center Hospital, Tokyo 104-0045, Japan
| | - Takayuki Honda
- Division of Genome Biology, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Yoko Shimada
- Division of Genome Biology, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Yae Kanai
- Department of Pathology, Keio University School of Medicine, Tokyo 160-8582, Japan.,Division of Molecular Pathology, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Koji Tsuta
- Department of Pathology, National Cancer Center Hospital, Tokyo 104-0045, Japan.,Department of Clinical Sciences and Laboratory Medicine, Kansai Medical University, Hirakata 573-1191, Japan
| | - Koji Kono
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Shunichi Watanabe
- Department of Thoracic Surgery, National Cancer Center Hospital, Tokyo 104-0045, Japan
| | - Yuichiro Ohe
- Department of Thoracic Oncology, National Cancer Center Hospital, Tokyo 104-0045, Japan
| | - Takashi Kohno
- Division of Genome Biology, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| |
Collapse
|
29
|
Duruisseaux M, Esteller M. Lung cancer epigenetics: From knowledge to applications. Semin Cancer Biol 2017; 51:116-128. [PMID: 28919484 DOI: 10.1016/j.semcancer.2017.09.005] [Citation(s) in RCA: 198] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 09/12/2017] [Accepted: 09/13/2017] [Indexed: 12/17/2022]
Abstract
Lung cancer is the leading cause of cancer-related mortality worldwide. Advances in our understanding of the genomics of lung cancer have led to substantial progress in the treatment of specific molecular subsets. Immunotherapy also emerges as a major breakthrough in lung cancer treatment. However, challenges remain as a consensual approach for early lung cancer detection remains elusive while primary or secondary drug resistance eventually leads to treatment failure in all patients with advanced disease. Furthermore, a large portion of patients are still treated with conventional chemotherapy that is only modestly effective. The last two decades have seen exponential developments in the epigenetic understanding of lung cancer. Epigenetic alterations in DNA methylation, non-coding RNA expression, chromatin modeling and post transcriptional regulators are key events in each step of lung cancer pathogenesis. Here, we review the central role epigenetic disruptions play in lung cancer carcinogenesis and the acquisition of cancerous phenotype and aggressive behavior as well as in the resistance to therapy. Epigenetic disruptions could represent reliable biomarkers for lung cancer risk assessment, early diagnosis, prognosis stratification, molecular classification and prediction of treatment efficacy. The therapeutic potential of epigenetics targeted drugs in combination with chemotherapy, targeted therapy and/or immunotherapy is currently being intensively investigated. We suggest that integration of tissue-derived or circulating epigenetic biomarkers and epidrugs in clinical trial design will translate epigenetic knowledge of lung cancer into the clinic and improve lung cancer patient outcomes.
Collapse
Affiliation(s)
- Michaël Duruisseaux
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Catalonia, Spain and Centro de Investigación Biomédica en Red de Cáncer (CIBERONC); Department of Respiratory Medecine, Hôpital Louis-Pradel, Hospices civils de Lyon, 28 avenue du Doyen Lépine, 69677, Lyon cedex, France.
| | - Manel Esteller
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Catalonia, Spain and Centro de Investigación Biomédica en Red de Cáncer (CIBERONC); Instituciò Catalana de Recerca i Estudis Avançats (ICREA), 08010, Barcelona, Catalonia, Spain; Department of Physiological Sciences II, School of Medicine, University of Barcelona, 08036, Barcelona, Catalonia, Spain.
| |
Collapse
|
30
|
Ohara K, Arai E, Takahashi Y, Ito N, Shibuya A, Tsuta K, Kushima R, Tsuda H, Ojima H, Fujimoto H, Watanabe SI, Katai H, Kinoshita T, Shibata T, Kohno T, Kanai Y. Genes involved in development and differentiation are commonly methylated in cancers derived from multiple organs: a single-institutional methylome analysis using 1007 tissue specimens. Carcinogenesis 2017; 38:241-251. [PMID: 28069692 PMCID: PMC5862281 DOI: 10.1093/carcin/bgw209] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 12/29/2016] [Indexed: 01/02/2023] Open
Abstract
The aim of this study was to clarify the significance of DNA methylation alterations shared by cancers derived from multiple organs. We analyzed single-institutional methylome data by single-CpG-resolution Infinium assay for 1007 samples of non-cancerous tissue (N) and corresponding cancerous tissue (T) obtained from lung, stomach, kidney, breast and liver. Principal component analysis revealed that N samples of each organ showed distinct DNA methylation profiles, DNA methylation profiles of N samples of each organ being inherited by the corresponding T samples and DNA methylation profiles of T samples being more similar to those of N samples in the same organ than those of T samples in other organs. In contrast to such organ and/or carcinogenetic factor-specificity of DNA methylation profiles, when compared with the corresponding N samples, 231 genes commonly showed DNA hypermethylation in T samples in four or more organs. Gene ontology enrichment analysis showed that such commonly methylated genes were enriched among “transcriptional factors” participating in development and/or differentiation, which reportedly show bivalent histone modification in embryonic stem cells. Pyrosequencing and quantitative reverse transcription-PCR revealed an inverse correlation between DNA methylation levels and mRNA expression levels of representative commonly methylated genes, such as ALX1, ATP8A2, CR1 and EFCAB1, in tissue samples. These data suggest that disruption of the differentiated state of precancerous cells via alterations of expression, independent of differences in organs and/or carcinogenetic factors, may be a common feature of DNA methylation alterations during carcinogenesis in multiple organs.
Collapse
Affiliation(s)
- Kentaro Ohara
- Department of Pathology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Eri Arai
- Department of Pathology, Keio University School of Medicine, Tokyo 160-8582, Japan.,Division of Molecular Pathology, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Yoriko Takahashi
- Biomedical Department, Solution Center, Mitsui Knowledge Industry Co., Ltd., Tokyo 105-6215, Japan
| | - Nanako Ito
- Department of Pathology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Ayako Shibuya
- Division of Molecular Pathology, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Koji Tsuta
- Department of Pathology and Clinical Laboratories, Pathology Division, National Cancer Center Hospital, Tokyo 104-0045, Japan
| | - Ryoji Kushima
- Department of Pathology and Clinical Laboratories, Pathology Division, National Cancer Center Hospital, Tokyo 104-0045, Japan
| | - Hitoshi Tsuda
- Department of Pathology and Clinical Laboratories, Pathology Division, National Cancer Center Hospital, Tokyo 104-0045, Japan.,Department of Basic Pathology, National Defense Medical College, Saitama 359-0042, Japan
| | - Hidenori Ojima
- Division of Molecular Pathology, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | | | | | | | - Takayuki Kinoshita
- Department of Breast Surgery, National Cancer Center Hospital, Tokyo 104-0045, Japan
| | - Tatsuhiro Shibata
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo 104-0045, Japan.,Laboratory of Molecular Medicine, Human Genome Center, The Institute of Medical Science, The University of Tokyo, Tokyo 108-0071, Japan and
| | - Takashi Kohno
- Division of Genome Biology, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Yae Kanai
- Department of Pathology, Keio University School of Medicine, Tokyo 160-8582, Japan.,Division of Molecular Pathology, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| |
Collapse
|
31
|
Kuramoto J, Arai E, Tian Y, Funahashi N, Hiramoto M, Nammo T, Nozaki Y, Takahashi Y, Ito N, Shibuya A, Ojima H, Sukeda A, Seki Y, Kasama K, Yasuda K, Kanai Y. Genome-wide DNA methylation analysis during non-alcoholic steatohepatitis-related multistage hepatocarcinogenesis: comparison with hepatitis virus-related carcinogenesis. Carcinogenesis 2017; 38:261-270. [PMID: 28426876 PMCID: PMC5862314 DOI: 10.1093/carcin/bgx005] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 01/15/2017] [Indexed: 02/06/2023] Open
Abstract
The aim of this study was to clarify the significance of DNA methylation alterations during non-alcoholic steatohepatitis (NASH)-related hepatocarcinogenesis. Single-CpG-resolution genome-wide DNA methylation analysis was performed on 264 liver tissue samples using the Illumina Infinium HumanMethylation450 BeadChip. After Bonferroni correction, 3331 probes showed significant DNA methylation alterations in 113 samples of non-cancerous liver tissue showing NASH (NASH-N) as compared with 55 samples of normal liver tissue (NLT). Principal component analysis using the 3331 probes revealed distinct DNA methylation profiles of NASH-N samples that were different from those of NLT samples and 37 samples of non-cancerous liver tissue showing chronic hepatitis or cirrhosis associated with hepatitis B virus (HBV) or hepatitis C virus (HCV) infection (viral-N). Receiver operating characteristic curve analysis identified 194 probes that were able to discriminate NASH-N samples from viral-N samples with area under the curve values of more than 0.95. Jonckheere-Terptsra trend test revealed that DNA methylation alterations in NASH-N samples from patients without hepatocellular carcinoma (HCC) were inherited by or strengthened in NASH-N samples from patients with HCC, and then inherited by or further strengthened in 22 samples of NASH-related HCC (NASH-T) themselves. NASH- and NASH-related HCC-specific DNA methylation alterations, which were not evident in viral-N samples and 37 samples of HCC associated with HBV or HCV infection, were observed in tumor-related genes, such as WHSC1, and were frequently associated with mRNA expression abnormalities. These data suggested that NASH-specific DNA methylation alterations may participate in NASH-related multistage hepatocarcinogenesis.
Collapse
Affiliation(s)
- Junko Kuramoto
- Department of Pathology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Eri Arai
- Department of Pathology, Keio University School of Medicine, Tokyo 160-8582, Japan.,Division of Molecular Pathology, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Ying Tian
- Department of Pathology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Nobuaki Funahashi
- Department of Metabolic Disorder, Diabetes Research Center, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655Japan
| | - Masaki Hiramoto
- Department of Metabolic Disorder, Diabetes Research Center, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655Japan
| | - Takao Nammo
- Department of Metabolic Disorder, Diabetes Research Center, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655Japan
| | - Yuichi Nozaki
- Department of Gastroenterology, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Yoriko Takahashi
- Biomedical Department, Cloud Service Division, IT Infrastructure Services Unit, Mitsui Knowledge Industry Co., Ltd., Tokyo 105-6215, Japan
| | - Nanako Ito
- Department of Pathology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Ayako Shibuya
- Division of Molecular Pathology, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Hidenori Ojima
- Department of Pathology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Aoi Sukeda
- Department of Pathology and Clinical Laboratories, Pathology Division, National Cancer Center Hospital, Tokyo 104-0045, Japan and
| | - Yosuke Seki
- Weight loss and Metabolic Surgery Center, Yotsuya Medical Cube, Tokyo 102-0084, Japan
| | - Kazunori Kasama
- Weight loss and Metabolic Surgery Center, Yotsuya Medical Cube, Tokyo 102-0084, Japan
| | - Kazuki Yasuda
- Department of Metabolic Disorder, Diabetes Research Center, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655Japan
| | - Yae Kanai
- Department of Pathology, Keio University School of Medicine, Tokyo 160-8582, Japan.,Division of Molecular Pathology, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| |
Collapse
|
32
|
Hong S, Park EC, Kim TH, Kwon JA, Yoo KB, Han KT, Yoo JW, Kim SJ. Effect of pre existing respiratory conditions on survival of lung cancer patients: A nationwide population-based cohort study. Asia Pac J Clin Oncol 2017; 14:e71-e80. [PMID: 28762660 DOI: 10.1111/ajco.12697] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 03/30/2017] [Indexed: 01/07/2023]
Abstract
BACKGROUND Common diseases with potential to increase the risk of death from lung cancer have so far not been studied in large populations. METHODS We did a population-based retrospective cohort study using nationwide health insurance claims data from 2005 to 2012 in Korea including 205 403 lung cancer patients. Multivariate-adjusted hazard ratios (aHRs) of lung cancer mortality by presence, time intervals with lung cancer diagnosis and combinations of pre-existing chronic obstructive pulmonary disease (COPD), pneumonia, asthma and tuberculosis were calculated using the Cox-proportional hazards model. RESULTS The total number of person-years of follow-up was 397 780 and 60.2% of patients died (mean survival 23.2 months after lung cancer diagnosis). Lung cancer patients with previous respiratory disease had increased aHR for mortality (COPD, hazard ratio [HR] = 1.32, CI 1.29-1.35; pneumonia, HR = 1.14, CI 1.08-1.19; and asthma, HR = 1.11, CI 1.06-1.16). Risks were positively associated with longer duration of pre-existing disease diagnosis; cases with >5 years since diagnosis compared to <2 years: COPD, HR = 2.91, CI 2.82-3.00; pneumonia, HR = 1.67, CI 1.51-1.85; asthma, HR = 1.56, CI 1.45-1.68; and tuberculosis, HR = 2.03, CI 1.90-2.17. Furthermore, elevated HRs of death were found among patients with multiple pre-existing co-morbidities. CONCLUSION Hazards of death from lung cancer are significantly increased in cases with pre-existing lung disease, and worse with longer durations, and with multiple combinations before cancer diagnosis. Patients and physicians should be aware of these meaningful risk/prognostic factors for lung cancer when identifying high-risk patient groups.
Collapse
Affiliation(s)
- Seri Hong
- National Cancer Control Institute, National Cancer Center, Goyang, Korea
| | - Eun-Cheol Park
- Department of Preventive Medicine, Yonsei University College of Medicine, Seoul, Korea.,Institute of Health Services Research, Yonsei University College of Medicine, Seoul, Korea
| | - Tae Hyun Kim
- Institute of Health Services Research, Yonsei University College of Medicine, Seoul, Korea.,Department of Hospital Administration, Graduate School of Public Health, Yonsei University, Seoul, Korea
| | - Jeoung A Kwon
- National Cancer Control Institute, National Cancer Center, Goyang, Korea
| | - Ki-Bong Yoo
- Department of Healthcare Management, Eulji University, Seongnam, Korea
| | - Kyu-Tae Han
- Department of Preventive Medicine, Yonsei University College of Medicine, Seoul, Korea.,Institute of Health Services Research, Yonsei University College of Medicine, Seoul, Korea
| | - Ji Won Yoo
- Department of Internal Medicine, University of Nevada School of Medicine, Las Vegas, Nevada, USA
| | - Sun Jung Kim
- Department of Health Administration and Management, College of Medical Science, Soonchunhyang University, Asan, Korea
| |
Collapse
|
33
|
Li T, Liu X, Yang A, Fu W, Yin F, Zeng X. Associations of tumor suppressor SPARCL1 with cancer progression and prognosis. Oncol Lett 2017; 14:2603-2610. [PMID: 28927026 PMCID: PMC5588123 DOI: 10.3892/ol.2017.6546] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 04/13/2017] [Indexed: 01/03/2023] Open
Abstract
SPARC-like protein 1 (SPARCL1), a member of the family of secreted proteins which is acidic and rich in cysteine, is a potential tumor suppressor gene in most types of tumor. A systemic review and bioinformatics analysis was carried out to determine the associations between SPARCL1 and tumor progression and clinical factors. Downregulation of SPARCL1, thought to be regulated by epigenetic modifications including DNA methylation, serves important functions in tumor progression and development, with its regulatory functions on cell viability, migration, invasion, cell adhesion and drug resistance. Downregulation of SPARCL1 was markedly associated with a poor overall survival rate of patients with one of ≥7 solid tumors and predicted increased mortality in patients with one of ≥4 distinct tumor types. The present review indicated that SPARCL1 may be a therapeutic target for cancer treatment and a biomarker to determine prognosis.
Collapse
Affiliation(s)
- Ting Li
- Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Xia Liu
- Centre for Translational Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Antai Yang
- Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Wenjie Fu
- Centre for Translational Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Fuqiang Yin
- Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China.,Key Laboratory of High-Incidence-Tumor Prevention and Treatment, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Xiaoyun Zeng
- Key Laboratory of High-Incidence-Tumor Prevention and Treatment, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China.,School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
34
|
Lu Y, Li S, Zhu S, Gong Y, Shi J, Xu L. Methylated DNA/RNA in Body Fluids as Biomarkers for Lung Cancer. Biol Proced Online 2017; 19:2. [PMID: 28331435 PMCID: PMC5356409 DOI: 10.1186/s12575-017-0051-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Accepted: 03/02/2017] [Indexed: 12/21/2022] Open
Abstract
DNA/RNA methylation plays an important role in lung cancer initiation and progression. Liquid biopsy makes use of cells, nucleotides and proteins released from tumor cells into body fluids to help with cancer diagnosis and prognosis. Methylation of circulating tumor DNA (ctDNA) has gained increasing attention as biomarkers for lung cancer. Here we briefly introduce the biological basis and detection method of ctDNA methylation, and review various applications of methylated DNA in body fluids in lung cancer screening, diagnosis, prognosis, monitoring and treatment prediction. We also discuss the emerging role of RNA methylation as biomarkers for cancer.
Collapse
Affiliation(s)
- Yan Lu
- No.2 oncology department, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, No.110, Ganhe Rd, Shanghai, China
| | - Shulin/Sl Li
- MD Anderson Cancer Center, the university of Texas, 1840 Old Spanish Trail, Houston, TX USA
| | - Shiguo/Sg Zhu
- Department of Immunology and Pathogenic Biology, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, 1200 Cai Lun Rd, Shanghai, China
| | - Yabin/Yb Gong
- No.2 oncology department, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, No.110, Ganhe Rd, Shanghai, China
| | - Jun/J Shi
- No.2 oncology department, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, No.110, Ganhe Rd, Shanghai, China
| | - Ling/L Xu
- No.2 oncology department, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, No.110, Ganhe Rd, Shanghai, China
| |
Collapse
|
35
|
Breast tumor DNA methylation patterns associated with smoking in the Carolina Breast Cancer Study. Breast Cancer Res Treat 2017; 163:349-361. [PMID: 28275920 DOI: 10.1007/s10549-017-4178-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 02/26/2017] [Indexed: 12/17/2022]
Abstract
PURPOSE Tobacco smoking is a risk factor in several cancers, yet its roles as a putative etiologic exposure or poor prognostic factor in breast cancer are less clear. Altered DNA methylation contributes to breast cancer development and may provide a mechanistic link between smoking and gene expression changes leading to cancer development or progression. METHODS Using a cancer-focused array, we examined methylation at 933 CpGs in 517 invasive breast tumors in the Carolina Breast Cancer Study to determine whether methylation patterns differ by exposure to tobacco smoke. Multivariable generalized linear regression models were used to compare tumor methylation profiles between smokers and never smokers, overall, or stratified on hormone receptor (HR) status. RESULTS Modest differences in CpG methylation were detected at p < 0.05 in breast tumors from current or ever smokers compared with never smokers. In stratified analyses, HR- tumors from smokers exhibited primarily hypomethylation compared with tumors from never smokers; hypomethylation was similarly detected within the more homogeneous basal-like subtype. Most current smoking-associated CpG loci exhibited methylation levels in former smokers that were intermediate between those in current and never smokers and exhibited progressive changes in methylation with increasing duration of smoking. Among former smokers, restoration of methylation toward baseline (never smoking) levels was observed with increasing time since quitting. Moreover, smoking-related hypermethylation was stronger in HR+ breast tumors from blacks than in whites. CONCLUSIONS Our results suggest that breast tumor methylation patterns differ with tobacco smoke exposure; however, additional studies are needed to confirm these findings.
Collapse
|
36
|
Sundar IK, Rahman I. Gene expression profiling of epigenetic chromatin modification enzymes and histone marks by cigarette smoke: implications for COPD and lung cancer. Am J Physiol Lung Cell Mol Physiol 2016; 311:L1245-L1258. [PMID: 27793800 DOI: 10.1152/ajplung.00253.2016] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 10/23/2016] [Indexed: 01/23/2023] Open
Abstract
Chromatin-modifying enzymes mediate DNA methylation and histone modifications on recruitment to specific target gene loci in response to various stimuli. The key enzymes that regulate chromatin accessibility for maintenance of modifications in DNA and histones, and for modulation of gene expression patterns in response to cigarette smoke (CS), are not known. We hypothesize that CS exposure alters the gene expression patterns of chromatin-modifying enzymes, which then affects multiple downstream pathways involved in the response to CS. We have, therefore, analyzed chromatin-modifying enzyme profiles and validated by quantitative real-time PCR (qPCR). We also performed immunoblot analysis of targeted histone marks in C57BL/6J mice exposed to acute and subchronic CS, and of lungs from nonsmokers, smokers, and patients with chronic obstructive pulmonary disease (COPD). We found a significant increase in expression of several chromatin modification enzymes, including DNA methyltransferases, histone acetyltransferases, histone methyltransferases, and SET domain proteins, histone kinases, and ubiquitinases. Our qPCR validation data revealed a significant downregulation of Dnmt1, Dnmt3a, Dnmt3b, Hdac2, Hdac4, Hat1, Prmt1, and Aurkb We identified targeted chromatin histone marks (H3K56ac and H4K12ac), which are induced by CS. Thus CS-induced genotoxic stress differentially affects the expression of epigenetic modulators that regulate transcription of target genes via DNA methylation and site-specific histone modifications. This may have implications in devising epigenetic-based therapies for COPD and lung cancer.
Collapse
Affiliation(s)
- Isaac K Sundar
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York
| | - Irfan Rahman
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York
| |
Collapse
|
37
|
Abstract
Lung cancer is the leading cause of cancer-related deaths worldwide. Recent implementation of low-dose computed tomography (LDCT) screening is predicted to lead to diagnosis of lung cancer at an earlier stage, with survival benefit. However, there is still a pressing need for biomarkers that will identify individuals eligible for screening, as well as improve the diagnostic accuracy of LDCT. In addition, biomarkers for prognostic stratification of patients with early stage disease, and those that can be used as surrogates to monitor tumor evolution, will greatly improve clinical management. Molecular alterations found in the DNA of tumor cells, such as mutations, translocations and methylation, are reflected in DNA that is released from the tumor into the bloodstream. Thus, in recent years, circulating tumor DNA (ctDNA) has gained increasing attention as a noninvasive alternative to tissue biopsies and potential surrogate for the entire tumor genome. Activating gene mutations found in ctDNA have been proven effective in predicting response to targeted therapy. Analysis of ctDNA is also a valuable tool for longitudinal follow-up of cancer patients that does not require serial biopsies and may anticipate the acquisition of resistance. DNA methylation has also emerged as a promising marker for early detection, prognosis and real-time follow-up of tumor dynamics that is independent of the genomic composition of the primary tumor. This review summarizes the various investigational applications of methylated ctDNA in lung cancer reported to date. It also provides a brief overview of the technologies for analysis of DNA methylation in liquid biopsies, and the challenges that befall the implementation of methylated ctDNA into routine clinical practice.
Collapse
Affiliation(s)
- Delphine Lissa
- Laboratory of Human Carcinogenesis, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Ana I Robles
- Laboratory of Human Carcinogenesis, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
38
|
Hong S, Mok Y, Jeon C, Jee SH, Samet JM. Tuberculosis, smoking and risk for lung cancer incidence and mortality. Int J Cancer 2016; 139:2447-55. [PMID: 27521774 DOI: 10.1002/ijc.30384] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 06/30/2016] [Accepted: 08/04/2016] [Indexed: 12/24/2022]
Abstract
Among the exposures associated with risk for lung cancer, a history of tuberculosis (TB) is one potentially important factor, given the high prevalence of TB worldwide. A prospective cohort study was conducted to evaluate the associations of preexisting pulmonary TB with lung cancer incidence and mortality. The cohort consisted of 1,607,710 Korean adults covered by the National Health Insurance System who had a biennial national medical examination during 1997-2000. During up to 16 years of follow-up, there were 12,819 incident cases of lung cancer and 9,562 lung cancer deaths. Using Cox proportional hazards models and controlling for age, cigarette smoking and other covariates, the presence of underlying TB was significantly associated with increased risk for lung cancer incidence (HR 1.37 in men with 95% CI 1.29-1.45; HR 1.49 in women with 95% CI 1.28-1.74) and mortality (HR 1.43 in men with 95% CI 1.34-1.52; HR 1.53 in women with 95% CI 1.28-1.83). We also observed a dose-response relationship between number of cigarettes smoked daily and lung cancer risk. There was no evidence for synergism between a history of TB and smoking. The elevation in risk is relatively modest, particularly in comparison to that from smoking, and a prior history of TB is not likely to be useful risk indicator for clinical purposes. In populations with high prevalence of TB, it can be considered for incorporation into models for lung cancer risk prediction.
Collapse
Affiliation(s)
- Seri Hong
- Department of Public Health, Yonsei University Graduate School, Seoul, Republic of Korea.,Department of Epidemiology and Health Promotion, Institute for Health Promotion, Graduate School of Public Health, Yonsei University, Seoul, Republic of Korea
| | - Yejin Mok
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD.,Department of Epidemiology and Health Promotion, Institute for Health Promotion, Graduate School of Public Health, Yonsei University, Seoul, Republic of Korea
| | - Christina Jeon
- Department of Public Health, Yonsei University Graduate School, Seoul, Republic of Korea.,Department of Epidemiology and Health Promotion, Institute for Health Promotion, Graduate School of Public Health, Yonsei University, Seoul, Republic of Korea
| | - Sun Ha Jee
- Department of Epidemiology and Health Promotion, Institute for Health Promotion, Graduate School of Public Health, Yonsei University, Seoul, Republic of Korea.
| | - Jonathan M Samet
- Department of Preventive Medicine, Keck School of Medicine, Institute for Global Health, University of Southern California, Los Angeles, CA
| |
Collapse
|
39
|
Zhang Y, Breitling LP, Balavarca Y, Holleczek B, Schöttker B, Brenner H. Comparison and combination of blood DNA methylation at smoking-associated genes and at lung cancer-related genes in prediction of lung cancer mortality. Int J Cancer 2016; 139:2482-92. [PMID: 27503000 DOI: 10.1002/ijc.30374] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 07/05/2016] [Accepted: 07/26/2016] [Indexed: 01/05/2023]
Abstract
Epigenome-wide association studies have established methylation patterns related to smoking, the major risk factor of lung cancer (LC), which are distinct from methylation profiles disclosed in LC patients. This study simultaneously investigated associations of smoking-associated and LC-related methylation markers with LC mortality. DNA methylation was determined by HM450K assay in baseline blood samples of 1,565 older adults in a population-based case-cohort study. The associations of 151 smoking-associated CpGs (smoCpGs) and 3,806 LC-related CpGs (caCpGs) with LC mortality were assessed by weighted Cox regression models, controlling for potential confounders. Multi-loci methylation scores were separately constructed based on smoCpGs and caCpGs. During a median follow-up of 13.8 years, 60 participants who had a first diagnosis of LC died from LC. The average time between sample collection and LC diagnosis was 5.8 years. Hypomethylation at 77 smoCpGs and 121 caCpGs, and hypermethylation at 4 smoCpGs and 66 caCpGs were associated with LC mortality. The associations were much stronger for smoCpGs than for caCpGs. Hazard ratios (95% CI) were 7.82 (2.91-21.00) and 2.27 (0.75-6.85), respectively, for participants in highest quartile of Score I (based on 81 smoCpGs) and Score II (based on 187 caCpGs), compared with participants in the corresponding lower three quartiles. Score I outperformed Score II, with an optimism-corrected C-index of 0.87 vs. 0.77. In conclusion, although methylation changes of both smoking-associated and LC-related genes are associated with LC mortality, only smoking-associated methylation markers predict LC mortality with high accuracy, and may thus serve as promising candidates to identify high risk populations for LC screening.
Collapse
Affiliation(s)
- Yan Zhang
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, D-69120, Germany.
| | - Lutz P Breitling
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, D-69120, Germany
| | - Yesilda Balavarca
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Im Neuenheimer Feld 460, Heidelberg, D-69120, Germany
| | | | - Ben Schöttker
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, D-69120, Germany
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, D-69120, Germany.,Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Im Neuenheimer Feld 460, Heidelberg, D-69120, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, D-69120, Germany
| |
Collapse
|
40
|
Uncovering Driver DNA Methylation Events in Nonsmoking Early Stage Lung Adenocarcinoma. BIOMED RESEARCH INTERNATIONAL 2016; 2016:2090286. [PMID: 27610367 PMCID: PMC5005773 DOI: 10.1155/2016/2090286] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Revised: 06/28/2016] [Accepted: 07/05/2016] [Indexed: 01/04/2023]
Abstract
As smoking rates decrease, proportionally more cases with lung adenocarcinoma occur in never-smokers, while aberrant DNA methylation has been suggested to contribute to the tumorigenesis of lung adenocarcinoma. It is extremely difficult to distinguish which genes play key roles in tumorigenic processes via DNA methylation-mediated gene silencing from a large number of differentially methylated genes. By integrating gene expression and DNA methylation data, a pipeline combined with the differential network analysis is designed to uncover driver methylation genes and responsive modules, which demonstrate distinctive expressions and network topology in tumors with aberrant DNA methylation. Totally, 135 genes are recognized as candidate driver genes in early stage lung adenocarcinoma and top ranked 30 genes are recognized as driver methylation genes. Functional annotation and the differential network analysis indicate the roles of identified driver genes in tumorigenesis, while literature study reveals significant correlations of the top 30 genes with early stage lung adenocarcinoma in never-smokers. The analysis pipeline can also be employed in identification of driver epigenetic events for other cancers characterized by matched gene expression data and DNA methylation data.
Collapse
|
41
|
Ma X, Le Teuff G, Lacas B, Tsao MS, Graziano S, Pignon JP, Douillard JY, Le Chevalier T, Seymour L, Filipits M, Pirker R, Jänne PA, Shepherd FA, Brambilla E, Soria JC, Hainaut P. Prognostic and Predictive Effect of TP53 Mutations in Patients with Non-Small Cell Lung Cancer from Adjuvant Cisplatin-Based Therapy Randomized Trials: A LACE-Bio Pooled Analysis. J Thorac Oncol 2016; 11:850-61. [PMID: 26899019 DOI: 10.1016/j.jtho.2016.02.002] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 01/30/2016] [Accepted: 02/03/2016] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Tumor protein p53 gene (TP53) mutations are common in stage I through III non-small cell lung cancer, but clinical trials have shown inconsistent results regarding their relationship to the effects of adjuvant therapy. The objective is to clarify their putative prognostic and predictive effects. METHODS A pooled analysis of TP53 mutations (exons 5-8) was conducted in four randomized trials (the International Adjuvant Lung Cancer Trial, J BRonchus 10, Cancer and Leukemia Group B-9633, and Adjuvant Navelbine International Trialist Association trial) of platinum-based adjuvant chemotherapy (ACT) versus observation (OBS). Hazard ratios (HRs) and 95% confidence intervals (CIs) of mutant versus wild-type (WT) TP53 for overall survival (OS) and disease-free survival (DFS) were estimated using a multivariable Cox model stratified on trial and adjusted on sex, age, and clinicopathological variables. Predictive value was evaluated with an interaction between treatment and TP53. RESULTS A total of 1209 patients (median follow-up 5.5 years) were included. There were 573 deaths (47%) and 653 DFS events (54%). Mutations (434 [36%]) had no prognostic effect (OBS HROS = 0.99, 95% CI: 0.77-1.28, p = 0.95; HRDFS = 0.99, 95% CI: 0.78-1.25, p = 0.92) but were marginally predictive of benefit from ACT for OS (test for interaction: OS, p = 0.06; DFS, p = 0.11). Patients with WT TP53 had a tendency toward better outcomes with ACT than did those in the OBS group (HROS = 0.77, 95% CI: 0.62-0.95, p = 0.02; HRDFS = 0.75, 95% CI: 0.62-0.92, p = 0.005). In the ACT arm, a deleterious effect of mutant versus WT TP53 was observed (HROS = 1.40, 95% CI: 1.10-1.78, p = 0.006; HRDFS = 1.31, 95% CI: 1.04-1.64, p = 0.02). CONCLUSIONS TP53 mutation had no prognostic effect but was marginally predictive for survival from ACT. In patients who received ACT, TP53 mutation tended to be associated with shorter survival than wild-type TP53.
Collapse
Affiliation(s)
- Xiaoli Ma
- International Agency for Research on Cancer, Lyon, France; Central Laboratory, Jinan Central Hospital, Jinan, China
| | - Gwénaël Le Teuff
- Department of Biostatistics, Gustave-Roussy, Paris, France; Inserm U1018, CESP, Paris-Sud and Paris-Saclay University, Villejuif, France; Ligue contre le Cancer, Paris, France
| | - Benjamin Lacas
- Department of Biostatistics, Gustave-Roussy, Paris, France; Inserm U1018, CESP, Paris-Sud and Paris-Saclay University, Villejuif, France; Ligue contre le Cancer, Paris, France
| | - Ming Sound Tsao
- Department of Pathology, University Health Network, Princess Margaret Cancer Centre, University of Toronto, Toronto, Ontario, Canada
| | - Stephen Graziano
- Department of Medicine, State University of New York Upstate Medical University, Syracuse, New York
| | - Jean-Pierre Pignon
- Department of Biostatistics, Gustave-Roussy, Paris, France; Inserm U1018, CESP, Paris-Sud and Paris-Saclay University, Villejuif, France; Ligue contre le Cancer, Paris, France
| | - Jean-Yves Douillard
- Department of Medical Oncology Institut de Cancérologie de l'Ouest, R Gauducheau, St. Herblain, France
| | - Thierry Le Chevalier
- Department of Medical Oncology Institut de Cancérologie de l'Ouest, R Gauducheau, St. Herblain, France
| | - Lesley Seymour
- National Cancer Institute of Canada Clinical Trials Group, Queen's University, Kingston, Ontario, Canada
| | - Martin Filipits
- Institute of Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Robert Pirker
- Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Pasi A Jänne
- Lowe Center for Thoracic Oncology and the Belfer Institute for Applied Cancer Science, Dana Farber Cancer Institute, Boston, Massachusetts
| | - Frances A Shepherd
- Department of Medical Oncology and Hematology, University Health Network, Princess Margaret Cancer Centre, University of Toronto, Toronto, Ontario, Canada
| | - Elisabeth Brambilla
- Institut Albert Bonniot, Inserm U1209 CNRS 5309 Université Grenoble Alpes, Grenoble, France; Department of Pathology, Centre Hospitalier Universitaire, Grenoble, France
| | | | - Pierre Hainaut
- International Agency for Research on Cancer, Lyon, France; Department of Medical Oncology and Hematology, University Health Network, Princess Margaret Cancer Centre, University of Toronto, Toronto, Ontario, Canada; Department of Pathology, Centre Hospitalier Universitaire, Grenoble, France; International Prevention Research Institute, Lyon, France.
| |
Collapse
|
42
|
An Integrated Prognostic Classifier for Stage I Lung Adenocarcinoma Based on mRNA, microRNA, and DNA Methylation Biomarkers. J Thorac Oncol 2016; 10:1037-48. [PMID: 26134223 DOI: 10.1097/jto.0000000000000560] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
INTRODUCTION Up to 30% stage I lung cancer patients suffer recurrence within 5 years of curative surgery. We sought to improve existing protein-coding gene and microRNA expression prognostic classifiers by incorporating epigenetic biomarkers. METHODS Genome-wide screening of DNA methylation and pyrosequencing analysis of HOXA9 promoter methylation were performed in two independently collected cohorts of stage I lung adenocarcinoma. The prognostic value of HOXA9 promoter methylation alone and in combination with mRNA and miRNA biomarkers was assessed by Cox regression and Kaplan-Meier survival analysis in both cohorts. RESULTS Promoters of genes marked by polycomb in embryonic stem cells were methylated de novo in tumors and identified patients with poor prognosis. The HOXA9 locus was methylated de novo in stage I tumors (p < 0.0005). High HOXA9 promoter methylation was associated with worse cancer-specific survival (hazard ratio [HR], 2.6; p = 0.02) and recurrence-free survival (HR, 3.0; p = 0.01), and identified high-risk patients in stratified analysis of stages IA and IB. Four protein-coding gene (XPO1, BRCA1, HIF1α, and DLC1), miR-21 expression, and HOXA9 promoter methylation were each independently associated with outcome (HR, 2.8; p = 0.002; HR, 2.3; p = 0.01; and HR, 2.4; p = 0.005, respectively), and when combined, identified high-risk, therapy naive, stage I patients (HR, 10.2; p = 3 × 10). All associations were confirmed in two independently collected cohorts. CONCLUSION A prognostic classifier comprising three types of genomic and epigenomic data may help guide the postoperative management of stage I lung cancer patients at high risk of recurrence.
Collapse
|
43
|
Iroquois homeobox 2 suppresses cellular motility and chemokine expression in breast cancer cells. BMC Cancer 2015; 15:896. [PMID: 26560478 PMCID: PMC4642646 DOI: 10.1186/s12885-015-1907-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 11/03/2015] [Indexed: 12/11/2022] Open
Abstract
Background Disseminated tumor cells (DTCs) can be detected using ultrasensitive immunocytochemical assays and their presence in the bone marrow can predict the subsequent occurrence of overt metastasis formation and metastatic relapse. Using expression profiling on early stage primary breast tumors, low IRX2 expression was previously shown to be associated with the presence of DTCs in the bone marrow, suggesting a possible role of IRX2 in the early steps of metastasis formation. The purpose of this study is to gain insights into the significance of IRX2 protein function in the progression of breast cancer. Methods To assess the physiological relevance of IRX2 in breast cancer, we evaluated IRX2 expression in a large breast cancer cohort (n = 1992). Additionally, constitutive IRX2 over expression was established in BT-549 and Hs578T breast cancer cell lines. Subsequently we analyzed whether IRX2 overexpression effects chemokine secretion and cellular motility of these cells. Results Low IRX2 mRNA expression was found to correlate with high tumor grade, positive lymph node status, negative hormone receptor status, and basal type of primary breast tumors. Also in cell lines low IRX2 expression was associated with mainly basal breast cancer cell lines. The functional studies show that overexpression of the IRX2 transcription factor in basal cell lines suppressed secretion of the pro-metastatic chemokines and inhibited cellular motility but did not influence cell proliferation. Conclusion Our results imply that the IRX2 transcription factor might represent a novel metastasis associated protein that acts as a negative regulator of cellular motility and as a repressor of chemokine expression. Loss of IRX2 expression could therefore contribute to early hematogenous dissemination of breast cancer by sustaining chemokine secretion and enabling mobilization of tumor cells. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1907-4) contains supplementary material, which is available to authorized users.
Collapse
|
44
|
Durham AL, Adcock IM. The relationship between COPD and lung cancer. Lung Cancer 2015; 90:121-7. [PMID: 26363803 PMCID: PMC4718929 DOI: 10.1016/j.lungcan.2015.08.017] [Citation(s) in RCA: 289] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 08/24/2015] [Accepted: 08/27/2015] [Indexed: 02/07/2023]
Abstract
COPD is a risk factor for lung cancer beyond their shared aetiology. Both are driven by oxidative stress. Both are linked to cellular aging, senescence and telomere shortening. Both have been linked to genetic predisposition. Both show altered epigenetic regulation of gene expression.
Both COPD and lung cancer are major worldwide health concerns owing to cigarette smoking, and represent a huge, worldwide, preventable disease burden. Whilst the majority of smokers will not develop either COPD or lung cancer, they are closely related diseases, occurring as co-morbidities at a higher rate than if they were independently triggered by smoking. Lung cancer and COPD may be different aspects of the same disease, with the same underlying predispositions, whether this is an underlying genetic predisposition, telomere shortening, mitochondrial dysfunction or premature aging. In the majority of smokers, the burden of smoking may be dealt with by the body’s defense mechanisms: anti-oxidants such as superoxide dismutases, anti-proteases and DNA repair mechanisms. However, in the case of both diseases these fail, leading to cancer if mutations occur or COPD if damage to the cell and proteins becomes too great. Alternatively COPD could be a driving factor in lung cancer, by increasing oxidative stress and the resulting DNA damage, chronic exposure to pro-inflammatory cytokines, repression of the DNA repair mechanisms and increased cellular proliferation. Understanding the mechanisms that drive these processes in primary cells from patients with these diseases along with better disease models is essential for the development of new treatments.
Collapse
Affiliation(s)
- A L Durham
- Airway Disease Section, National Heart and Lung Institute, Imperial College London, Dovehouse Street, London, UK.
| | - I M Adcock
- Airway Disease Section, National Heart and Lung Institute, Imperial College London, Dovehouse Street, London, UK
| |
Collapse
|
45
|
Sato T, Soejima K, Arai E, Hamamoto J, Yasuda H, Arai D, Ishioka K, Ohgino K, Naoki K, Kohno T, Tsuta K, Watanabe SI, Kanai Y, Betsuyaku T. Prognostic implication of PTPRH hypomethylation in non-small cell lung cancer. Oncol Rep 2015; 34:1137-45. [PMID: 26134684 PMCID: PMC4530927 DOI: 10.3892/or.2015.4082] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 05/11/2015] [Indexed: 02/06/2023] Open
Abstract
PTPRH is a receptor-type protein tyrosine phosphatase thought to be a potential regulator of tumorigenesis. The aim of the present study was to clarify the significance of PTPRH expression and its regulation by DNA methylation in non-small cell lung cancer (NSCLC), especially in lung adenocarcinoma (LADC). PTPRH mRNA expression was examined in 89 NSCLC and corresponding non-cancerous tissues. The correlation between DNA methylation and PTPRH gene expression was investigated in another cohort that consisted of 145 patients with LADC, a major NSCLC subtype. Gene regulation by DNA methylation was assessed using a DNA methylation inhibitor. PTPRH mRNA expression was significantly upregulated in NSCLC. PTPRH DNA methylation was reduced in LADC samples and inversely correlated with mRNA expression. 5-Aza-2'-deoxycytidine treatment of lung cancer cell lines with low PTPRH expression, restored mRNA PTPRH expression levels. Furthermore, low PTPRH methylation was associated with shorter recurrence-free survival (P=1.64x10(-4)) and overall survival (P=5.54x10(-5)). Multivariate analysis revealed that PTPRH DNA methylation was an independent prognostic factor (P=6.88x10(-3)). It was confirmed that PTPRH is overexpressed in NSCLC. Furthermore, we determined that PTPRH is epigenetically regulated by DNA hypomethylation, with prognostic implications for LADC.
Collapse
Affiliation(s)
- Takashi Sato
- Division of Pulmonary Medicine, Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Kenzo Soejima
- Division of Pulmonary Medicine, Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Eri Arai
- Division of Molecular Pathology, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Junko Hamamoto
- Division of Pulmonary Medicine, Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Hiroyuki Yasuda
- Division of Pulmonary Medicine, Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Daisuke Arai
- Division of Pulmonary Medicine, Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Kota Ishioka
- Division of Pulmonary Medicine, Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Keiko Ohgino
- Division of Pulmonary Medicine, Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Katsuhiko Naoki
- Division of Pulmonary Medicine, Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Takashi Kohno
- Division of Genome Biology, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Koji Tsuta
- Department of Pathology and Clinical Laboratories, Pathology Division, National Cancer Center Hospital, Tokyo 104-0045, Japan
| | - Shun-Ichi Watanabe
- Department of Thoracic Oncology, Thoracic Surgery Division, National Cancer Center Hospital, Tokyo 104-0045, Japan
| | - Yae Kanai
- Division of Molecular Pathology, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Tomoko Betsuyaku
- Division of Pulmonary Medicine, Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| |
Collapse
|
46
|
Liu T, Zhou W, Cai B, Chu J, Shi G, Teng H, Xu J, Xiao J, Wang Y. IRX2-mediated upregulation of MMP-9 and VEGF in a PI3K/AKT-dependent manner. Mol Med Rep 2015; 12:4346-4351. [PMID: 26062523 DOI: 10.3892/mmr.2015.3915] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 04/10/2015] [Indexed: 11/06/2022] Open
Abstract
Osteosarcoma (OS) is the most frequent type of primitive malignant bone tumor with a poor prognosis due to distant metastasis. Our previous studies have demonstrated that IRX2 is overexpressed and is important in cell proliferation and invasion. However, the molecular mechanisms underlying the IRX2‑dependent regulation of OS progression remains to be elucidated. In the present study, the effects of IRX2 on the upregulation of MMP2 and VEGF in OS were determined by western blotting, and the underlying molecular mechanisms were elucidated. These findings provided data suggesting that IRX2 modulates the expression levels of MMP2 and VEGF in an AKT‑dependent manner. The overexpression of IRX2 promoted the activation of PI3K/Akt and increased the proliferation and invasiveness of the OS cell lines as shown by CCK8 and invasion assays. Notably, interruption of the AKT pathway by treatment with LY294002, a specific PI3K inhibitor, attenuated IRX2‑induced cell proliferation and invasive ability, and the upregulation of MMP2 and VEGF. The results of the present study suggested that inhibition of the IRX2‑mediated AKT signaling pathway may be a suitable therapeutic target for the treatment of OS.
Collapse
Affiliation(s)
- Tielong Liu
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Weiwei Zhou
- Department of Radiology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Bing Cai
- Department of Orthopedics, Ningbo Development Zone Center Hospital, Ningbo, Zhejiang 315800, P.R. China
| | - Jianjun Chu
- Department of Orthopedics, First People's Hospital of Hefei, Hefei, Anhui 230061, P.R. China
| | - Guodong Shi
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Honglin Teng
- Department of Orthopedics, First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Jian Xu
- Department of Orthopedics, The Workers Hospital of Suqian City, Suqian, Jiangsu 223800, P.R. China
| | - Jianru Xiao
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Yan Wang
- Department of Orthopedics, Chinese People's Liberation Army General Hospital, Beijing 100853, P.R. China
| |
Collapse
|
47
|
Krauss-Etschmann S, Meyer KF, Dehmel S, Hylkema MN. Inter- and transgenerational epigenetic inheritance: evidence in asthma and COPD? Clin Epigenetics 2015; 7:53. [PMID: 26052354 PMCID: PMC4456695 DOI: 10.1186/s13148-015-0085-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 04/09/2015] [Indexed: 12/21/2022] Open
Abstract
Evidence is now emerging that early life environment can have lifelong effects on metabolic, cardiovascular, and pulmonary function in offspring, a concept also known as fetal or developmental programming. In mammals, developmental programming is thought to occur mainly via epigenetic mechanisms, which include DNA methylation, histone modifications, and expression of non-coding RNAs. The effects of developmental programming can be induced by the intrauterine environment, leading to intergenerational epigenetic effects from one generation to the next. Transgenerational epigenetic inheritance may be considered when developmental programming is transmitted across generations that were not exposed to the initial environment which triggered the change. So far, inter- and transgenerational programming has been mainly described for cardiovascular and metabolic disease risk. In this review, we discuss available evidence that epigenetic inheritance also occurs in respiratory diseases, using asthma and chronic obstructive pulmonary disease (COPD) as examples. While multiple epidemiological as well as animal studies demonstrate effects of 'toxic' intrauterine exposure on various asthma-related phenotypes in the offspring, only few studies link epigenetic marks to the observed phenotypes. As epigenetic marks may distinguish individuals most at risk of later disease at early age, it will enable early intervention strategies to reduce such risks. To achieve this goal further, well designed experimental and human studies are needed.
Collapse
Affiliation(s)
- Susanne Krauss-Etschmann
- />Comprehensive Pneumology Center, Helmholtz Center Munich and Children’s Hospital of Ludwig-Maximilians University, Max-Lebsche-Platz 31, 81377 Munich, Germany
- />Priority Area Asthma & Allergy, Leibniz Center for Medicine and Biosciences, Research Center Borstel and Christian Albrechts University Kiel, Airway Research Center North, Member of the German Center for Lung Research, Parkallee 1-40, Borstel, Germany
| | - Karolin F Meyer
- />Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, Groningen, The Netherlands
- />University of Groningen, GRIAC Research Institute, University Medical Center Groningen, Hanzeplein 1, Groningen, The Netherlands
| | - Stefan Dehmel
- />Comprehensive Pneumology Center, Helmholtz Center Munich and Children’s Hospital of Ludwig-Maximilians University, Max-Lebsche-Platz 31, 81377 Munich, Germany
| | - Machteld N Hylkema
- />Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, Groningen, The Netherlands
- />University of Groningen, GRIAC Research Institute, University Medical Center Groningen, Hanzeplein 1, Groningen, The Netherlands
| |
Collapse
|
48
|
Yamanoi K, Arai E, Tian Y, Takahashi Y, Miyata S, Sasaki H, Chiwaki F, Ichikawa H, Sakamoto H, Kushima R, Katai H, Yoshida T, Sakamoto M, Kanai Y. Epigenetic clustering of gastric carcinomas based on DNA methylation profiles at the precancerous stage: its correlation with tumor aggressiveness and patient outcome. Carcinogenesis 2015; 36:509-20. [PMID: 25740824 PMCID: PMC4417340 DOI: 10.1093/carcin/bgv013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Single-CpG resolution genome-wide DNA methylation analysis indicated that distinct DNA methylation profiles are established during field cancerization in gastric mucosae, and such profiles at the precancerous stage are inherited by gastric cancers, thus determining tumor aggressiveness and patient outcome. The aim of this study was to clarify the significance of DNA methylation alterations during gastric carcinogenesis. Single-CpG resolution genome-wide DNA methylation analysis using the Infinium assay was performed on 109 samples of non-cancerous gastric mucosa (N) and 105 samples of tumorous tissue (T). DNA methylation alterations in T samples relative to N samples were evident for 3861 probes. Since N can be at the precancerous stage according to the field cancerization concept, unsupervised hierarchical clustering based on DNA methylation levels was performed on N samples (βN) using the 3861 probes. This divided the 109 patients into three clusters: A (n = 20), B1 (n = 20), and B2 (n = 69). Gastric carcinomas belonging to Cluster B1 showed tumor aggressiveness more frequently than those belonging to Clusters A and B2. The recurrence-free and overall survival rates of patients in Cluster B1 were lower than those of patients in Clusters A and B2. Sixty hallmark genes for which βN characterized the epigenetic clustering were identified. We then focused on DNA methylation levels in T samples (βT) of the 60 hallmark genes. In 48 of them, including the ADAM23, OLFM4, AMER2, GPSM1, CCL28, DTX1 and COL23A1 genes, βT was again significantly correlated with tumor aggressiveness, and the recurrence-free and/or overall survival rates. Multivariate analyses revealed that βT was a significant prognostic factor, being independent of clinicopathological parameters. These data indicate that DNA methylation profiles at the precancerous stage may be inherited by gastric carcinomas themselves, thus determining tumor aggressiveness and patient outcome.
Collapse
Affiliation(s)
- Kazuhiro Yamanoi
- Division of Molecular Pathology, National Cancer Center Research Institute, Tokyo 104-0045, Japan, Department of Pathology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Eri Arai
- Division of Molecular Pathology, National Cancer Center Research Institute, Tokyo 104-0045, Japan,
| | - Ying Tian
- Division of Molecular Pathology, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Yoriko Takahashi
- Bioscience Department, Business Development Division, Mitsui Knowledge Industry Co., Ltd., Tokyo 105-6215, Japan
| | - Sayaka Miyata
- Bioscience Department, Business Development Division, Mitsui Knowledge Industry Co., Ltd., Tokyo 105-6215, Japan
| | - Hiroki Sasaki
- Department of Translational Oncology, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Fumiko Chiwaki
- Department of Translational Oncology, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Hitoshi Ichikawa
- Division of Genetics, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Hiromi Sakamoto
- Division of Genetics, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Ryoji Kushima
- Department of Pathology and Clinical Laboratories, Pathology Division, National Cancer Center Hospital, Tokyo 104-0045, Japan and
| | - Hitoshi Katai
- Department of Gastric Surgery, National Cancer Center Hospital, Tokyo 104-0045, Japan
| | - Teruhiko Yoshida
- Division of Genetics, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Michiie Sakamoto
- Department of Pathology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Yae Kanai
- Division of Molecular Pathology, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| |
Collapse
|
49
|
Mansfield AS, Wang L, Cunningham JM, Jen J, Kolbert CP, Sun Z, Yang P. DNA methylation and RNA expression profiles in lung adenocarcinomas of never-smokers. Cancer Genet 2014; 208:253-60. [PMID: 25650174 DOI: 10.1016/j.cancergen.2014.12.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 12/18/2014] [Accepted: 12/23/2014] [Indexed: 10/24/2022]
Abstract
Lung cancer occurs in never-smokers. Epigenetic changes in lung cancer potentially represent important diagnostic, prognostic, and therapeutic targets. We compared DNA methylation profiles of 28 adenocarcinomas of the lungs of never-smokers with paired adjacent nonmalignant lung tissue. We correlated differential methylation changes with gene expression changes from the same 28 sample pairs. Using principal component analysis, we observed a distinct separation in methylation profiles between tumor and adjacent nonmalignant lung tissue. Tumors were generally hypomethylated compared with adjacent nonmalignant tissue. Of 1,906 CpG sites differentially methylated between tumor and nonmalignant tissue, 1,198 were within classically defined CpG islands where tumors were hypermethylated compared with nonmalignant tissue. A total of 708 sites were outside CpG islands where tumors were hypomethylated compared with nonmalignant tissue. There were significant differences in expression of 351 genes (23%) of the 1,522 genes matched to the differentially methylated CpG sites. Genes that were not significantly differentially expressed and were hypermethylated within CpG sites were enriched for homeobox genes. These results suggest that the methylation profiles of lung adenocarcinomas of never-smokers and adjacent nonmalignant lung tissue are significantly different. Despite the differential methylation of homeobox genes, no significant changes in expression of these genes were detected.
Collapse
Affiliation(s)
- Aaron S Mansfield
- Division of Medical Oncology, Department of Oncology, Mayo Clinic, Rochester, MN, USA
| | - Liang Wang
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Julie M Cunningham
- Division of Experimental Pathology and Laboratory Medicine, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA; Medical Genome Facility, Mayo Clinic, Rochester, MN, USA
| | - Jin Jen
- Division of Experimental Pathology and Laboratory Medicine, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA; Medical Genome Facility, Mayo Clinic, Rochester, MN, USA; Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | | | - Zhifu Sun
- Division of Biomedical Statistics and Informatics, Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Ping Yang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA; Division of Epidemiology and Department of Medical Genetics, Health Sciences Research, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
50
|
Kanai Y, Arai E. Multilayer-omics analyses of human cancers: exploration of biomarkers and drug targets based on the activities of the International Human Epigenome Consortium. Front Genet 2014; 5:24. [PMID: 24592273 PMCID: PMC3924033 DOI: 10.3389/fgene.2014.00024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 01/24/2014] [Indexed: 12/27/2022] Open
Abstract
Epigenetic alterations consisting mainly of DNA methylation alterations and histone modification alterations are frequently observed in cancers associated with chronic inflammation and/or persistent infection with viruses or other pathogenic microorganisms, or with cigarette smoking. Accumulating evidence suggests that alterations of DNA methylation are involved even in the early and precancerous stages. On the other hand, in patients with cancers, aberrant DNA methylation is frequently associated with tumor aggressiveness and poor patient outcome. Recently, epigenome alterations have been attracting a great deal of attention from researchers who are focusing on not only cancers but also neuronal, immune and metabolic disorders. In order to accurately identify disease-specific epigenome profiles that could be potentially applicable for disease prevention, diagnosis and therapy, strict comparison with standard epigenome profiles of normal tissues is indispensable. However, epigenome mechanisms show heterogeneity among tissues and cell lineages. Therefore, it is not easy to obtain a comprehensive picture of standard epigenome profiles of normal tissues. In 2010, the International Human Epigenome Consortium (IHEC) was established to coordinate the production of reference maps of human epigenomes for key cellular states. In order to gain substantial coverage of the human epigenome, the IHEC has set an ambitious goal to decipher at least 1000 epigenomes within the next 7–10 years. We consider that pathway analysis using genes showing multilayer-omics abnormalities, including genome, epigenome, transcriptome, proteome and metabolome abnormalities, may be useful for elucidating the molecular background of pathogenesis and for exploring possible therapeutic targets for each disease.
Collapse
Affiliation(s)
- Yae Kanai
- Division of Molecular Pathology, National Cancer Center Research Institute Tokyo, Japan ; Core Research for Evolutional Science and Technology, Japan Science and Technology Agency Tokyo, Japan
| | - Eri Arai
- Division of Molecular Pathology, National Cancer Center Research Institute Tokyo, Japan ; Core Research for Evolutional Science and Technology, Japan Science and Technology Agency Tokyo, Japan
| |
Collapse
|