Rancourt A, Sato S, Satoh MS. Dose-dependent spatiotemporal responses of mammalian cells to an alkylating agent.
PLoS One 2019;
14:e0214512. [PMID:
30925183 PMCID:
PMC6440626 DOI:
10.1371/journal.pone.0214512]
[Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 03/14/2019] [Indexed: 11/18/2022] Open
Abstract
Cultured cell populations are composed of heterogeneous cells, and previous single-cell lineage tracking analysis of individual HeLa cells provided empirical evidence for significant heterogeneity of the rate of cell proliferation and induction of cell death. Nevertheless, such cell lines have been used for investigations of cellular responses to various substances, resulting in incomplete characterizations. This problem caused by heterogeneity within cell lines could be overcome by investigating the spatiotemporal responses of individual cells to a substance. However, no approach to investigate the responses by analyzing spatiotemporal data is currently available. Thus, this study aimed to analyze the spatiotemporal responses of individual HeLa cells to cytotoxic, sub-cytotoxic, and non-cytotoxic doses of the well-characterized carcinogen, N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). Although cytotoxic doses of MNNG are known to induce cell death, the single-cell tracking approach revealed that cell death occurred following at least four different cellular events, suggesting that cell death is induced via multiple processes. We also found that HeLa cells exposed to a sub-cytotoxic dose of MNNG were in a state of equilibrium between cell proliferation and cell death, with cell death again induced through different processes. However, exposure of cells to a non-cytotoxic dose of MNNG promoted growth by reducing the cell doubling time, thus promoting the growth of a sub-population of cells. A single-cell lineage tracking approach could dissect processes leading to cell death in a spatiotemporal manner and the results suggest that spatiotemporal data obtained by tracking individual cells can be used as a new type of bioinformatics data resource that enables the examination of cellular responses to various external substances.
Collapse