Falcone G, Summerhayes IC, Paterson H, Marshall CJ, Hall A. Partial transformation of mouse fibroblastic and epithelial cell lines with the v-myc oncogene.
Exp Cell Res 1987;
168:273-84. [PMID:
3023119 DOI:
10.1016/0014-4827(87)90435-6]
[Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
To investigate the role of the myc gene in mammalian cell transformation, plasmid constructs containing the v-myc oncogene and a co-selectable G418 resistance marker were introduced into both mouse fibroblasts (NIH-3T3) and bladder epithelial cells (BBN3 and BBN7). After transfection or microinjection of DNA, no transformed foci could be detected on confluent monolayers but, when the cells were cultured under conditions in which individual cells were allowed to grow and form colonies, morphological transformation was observed. Unlike ras-transformed NIH-3T3 cells, v-myc-transformed cells were unable to grow in serum-free medium and therefore still required exogenous growth factors. v-myc-transformed NIH-3T3 cells were poor at forming foci when co-cultivated with untransformed cells; however, the efficiencies could be increased by addition of EGF to the medium. Both v-myc-transformed fibroblasts and epithelial cells acquired the ability to grow in soft agar, though at efficiencies lower than the corresponding ras transformants. Subcutaneous inoculation of v-myc-transformed NIH-3T3 cells into nude mice resulted in no tumours within 6 weeks. After protracted periods (2-3 months) a few tumours were detected, but at a frequency barely above that for spontaneous tumour formation. Epithelial cells transformed by v-myc were either non-tumorigenic or gave a very low incidence of tumours. We conclude that the v-myc oncogene induces morphological changes and anchorage independence in immortal mouse fibroblasts and epithelial cell lines but further events are required for the cells to become tumorigenic.
Collapse